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A CONSTRUCTIVE RENEWAL THEOREM

By Y. K. CHAN

University of Washington and New Mexico
State University
Let P be a distribution on R with a positive, finite mean. A construc-
tive, unified version of the renewal theorem is proved. A routine method
is provided with which one can compute, in principle at least, the point xo
where the renewal measure Q settles down. As a corollary, it is shown
that x, depends continuously on P.

1. Introduction. Let X, X,, - - - be a sequence of independent random vari-
ables with a common distribution P which has a positive, finite mean p. As
usual, define the convolution P, x P, of two distributions P, and P, by
§ f(x)dP, x Py(x) = {§ f(x + y) dP,(x) dPy(y). Define the renewal measure Q on R by

Jf(x)dO(x) = D7 & (fX + -+ + X)) = X7 § flx) dP*(x)
where f is any continuous function on R with compact support. Q[x, x + h] is
the expected number of partial sums X, + ... + X; which fall in the interval
[x, x + h]. The classical renewal theorems.assert that, far from the origin, Q
behaves like a discrete or continuous uniform measure, ([2], [3], [4])-

To illustrate, consider a distribution P supported by [0, co). In case it is not
a lattice measure, i.e., in case it is not supported by {jL:j=0,1, ...} for
any L > 0, the well-known Blackwell’s theorem asserts that for any # = 0,
Q[x, x + h] > h/pn as x — co. The proof given by Smith [4] is constructive,
which means that given ¢ > 0, we can follow the steps of the proof and compute
a sufficiently large x, so that |Q[x, x + A] — hk/u| < e whenever x > x,and 0 <
h < 1. One has to, of course, interpret the hypothesis constructively. For
example, the assumption that P is nonlattice is taken to mean that there is a
way to compute a positive lower bound for (1 — #(7))/t| on every finite z-interval.
Here ¢(f) stands for the characteristic function of the distribution P. Proofs
for Blackwell’s theorem based on compactness arguments have also been given.
Though elegant, they have little computational consequence.

There is also an analogous theorem in case P is a lattice measure. This was
given a proof, also constructive, by Erdds, Feller, and Pollard in [2]. Later
authors (see [3]) removed the restriction that P be supported by [0, oo).

To find the “sufficiently large x, beyond which Q settles down,” one would
therefore first determine whether P is lattice. If it is nonlattice, one follows
Smith’s proof and calculates x,. Ifitislattice, one follows Erdos-Feller-Pollard’s
proof to find x,.
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However, deciding whether a given measure is of the lattice type is not a
finitely performable operation. It is not possible to write down a program for
a (human or mechanical) computer such that the input is a sequence of digits
representing a measure P, and the output, after finitely many steps, is 0 or 1
indicating the type of P. Furthermore, it is not possible constructively to deter-
mine the period of a lattice measure P (the largest L such that {jL: j= 0,1, ...}
supports P). And the calculations of x,, if one follows Erdds-Feller—Pollard’s
proof, depends in an essential way on L.

To illustrate the point, consider the distribution P~ which assigns measures %
to each of the points r and 1. If r is taken to be Euler’s constant y = lim (1 +
3+ -+ + 1/n —logn) = .57721. . ., theclassical theorems cannot tell us when
Q7 settles down, because it is not known whether P7 is lattice or nonlattice. (It
is not known whether 7 is rational or irrational.)

One may argue that this counterexample is not interesting, and that the dis-
tributions encountered in practice can always, somehow, be verified to be of
one type or the other. But there is another way to look at the issue raised. The
measure P is often only a close approximation of some “true” measure P’. This
happens, for example, when we replace P’ by P which assigns mass P'[jL,
(j + 1)L) to jJL. Now there is the question whether x, (wWhere Q settles down)
has anything to do with x, (where the “true” renewal measure Q’ settles down).
It seems highly intuitive that the answer is yes. However, it is not at all obvious
how to prove this from the classical theorems.

We will now prove a renewal theorem which does not refer to whether P is
lattice or to its period if lattice. From this, the two classical versions will be
deduced. We will also show that x,, when defined properly, depends continuously
on Prelative to the metric A(P’, P) = { |F'(x) — F(x)|dx where F(x) = P(— oo, x].

2. Formulation of the theorem. By changing the scale if necessary, we will
assume that the given distribution P has mean p strictly between 3 and 4. This
will simplify presentation without loss of generality.

Define a function F(x) by F(x) = 1 — F(x) if x > 0, and F(x) = —F(x) if
x < 0. Let P be the measure with density #. Note that {=, |F(x)|dx =
(=« |x| dF(x) exists by assumption. So there is a continuous, positive, nonin-
creasing function b defined on (0, oo) such that

(2.1 $io> a0 [E(x)]| dx < a forall @ > 0.

Since the number (1) will enter many times, we will write B for 5(1). Note
that 3 < pp = {=, F(x)dx < 1 + {2, |F(x)|dx < 1 + 2B. Hence B > 1.

The Fourier transform ¢(f) = § e*“F(x) dx of P is related to the characteristic
function ¢(¢) = § e dP(x) of P by §(r) = (¢(r) — 1)/it. Classically the period
L of P is given by 2r/r where ¢ = inf {r > 0: ¢(¢) = 0}. Our difficulty, as im-
plied in the introduction, is that the calculation of ¢ is not possible from the
most general data.

We therefore use a substitute for . For arbitrary positive real numbers n
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and ¢, we say that the real number T € [0, n] is an (n, ¢)-frequency for P if

(2.2) c<m=min{g®:t=0 or 0Kt < T —n},
and
(2.3) w@(T) < m* incase T < n.

(Note that m < |#(0)] = ¢ < 4.) Thus, instead of the first zero = of ¢, we use
T where |§(T)| is very small compared to |§(¢)| for t€ [0, T — n~']. Note that
if ”” < n,and T is an (n, c)-frequency, then T' A n’ is an (n’, ¢)-frequency. Given
any distribution P and any » > 0, we have a routine method to find an (n, c)-
frequency T for some c¢. [To find one such 7, we may assume n» > 1. Choose
positive real numbers ¢, (k = 0, 1, - .., N where N is some integer > n?) such
that ¢, < 3, such that ¢, < n=°c}_,, and such that the sets A4, = {te[0, n]:
|(1)| < ¢, or t = n} are totally bounded. (Theorem 8 on page 101 of [1] shows
that this can be done constructively.) Then ¢, = inf 4, exists. Partition the #,’s
into two sets 4 and B so that ¢, — ¢, , < n'if t,€ 4, and so that ¢, — #,_, >
n/Nift,e B. Let T =min{t: te A or t = n} and let ¢ be any positive number
with ¢ < ¢y. Then clearly T < ¢, and'so (2.2) is satisfied. Moreover, if T < n,
then T = ¢, forsome 7, € 4 and so whenever 0 <t < T —n'=1t, —n ' < 1,_,
we have |§(¢)]* = i, > rPc, = m’|d(1,)| = n’|$(T)|. Thus condition (2.3) is also
satisfied.] If T is an (n, c)-frequency, we will call L = 2z/T an (n, ¢)-period.
We will need the fact that

(2.4) T > B if T isan (n,c)-frequency with n>=2.
Suppose n > 2 and T < B-%. We will deduce a contradiction. First note that
I —cosTx < T*x?2 < 27'B~* for all xe[—B, B]. Hence
|Re §(T)| = |§ cos TxF(x) dx|
2 | F(x) dx| — [§j055 27 B dx| — (55 |[F(x)| dx
>p—1—-1>1.
On the other hand we have n > 1 = B~% > T. Hence (2.3) implies |§(T)| <

n~'m? < 27%42 < 1, a contradiction.
We can now state the theorem.

THEOREM. Let P be a distribution on R with positive, finite mean, satisfying
(2.1) for some b. Let ¢ > 0 be given. Then there exists n = n(b, ¢) > 0 with the
following properties. If L > 0 is any (n, c)-period for P, we can find x, = xe, b,
n, ¢) > 0 such that ‘

(2:5) § G(x — ) dQ(y) — p77 § G(y) dy| < e X Z X
2.5y § G(x —y)dO(y)| < ¢ X = —X
where G(y) is any function of the form 1 A L~*(a + L — |y|), for some a € [0, 1].
Moreover, x, depends continuously on ¢, n, ¢ (relative to ordinary convergence

in (0, c0)), and on b (relative to uniform convergence on compact intervals).
X, is independent of L. []
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Since we can always find some (n, c)-period for a given n, the theorem is always
applicable. ‘

Consider a distribution P, satisfying (2.1) for some 5. Let ¢ > 0 be given, let
n = n(e, b) be as given by the theorem, and let L be some (n, ¢)-period of P.
Suppose P; is a sequence of distributions converging to P with respect to the
metric A(P;, P) = § |F;(x) — F(x)| dx. Then clearly |§(f) — $(#)] < A(P;, P) >0
uniformly in . Hence (2.2), (2.3) are satisfied by @, if j is large enough. Con-
sequently L is also an (n, c)-period for P; if j is large enough. We now prove
that P; satisfies (2.1) for some b; which converges to b uniformly on compact
subintervals of (0, co). There is no loss of generality in assuming b(a) T co as
a 0. But

S|z|>b(a) ]F](x)| dx <a-+ 'zj a> 0

if we write 2; = A(P;, P). Take any b,/ such that (2.1) is satisfied by 5, and P,,
and define b;(a) = b((a — 4;),) A (b;/(a) v b(a)). Then, since b;(a) = b((a —
2;)4) A bj(a), condition (2.1) is satisfied by 4, and P; also. Because the function
b is continuous, the expression b; tends to 4 uniformly on compact subintervals
of (0, o), as desired. Now, since x, depends continuously on b, we have
Xo(¢, b;, 1, ¢) — xy(¢, b, n, ¢) when P; — P, as promised in the introduction.

It is easy to deduce the classical versions of the renewal theorem from the
one presented here. For example, let P be a lattice measure with the known
period L > 0. Then for any », the number L is an (n, c)-period of P for some
¢ > 0. If we let G(y) = L~(L — |y|);, then the integral { G(y)dyisequalto L,
while § G(kL — y) dQ(y) is equal to Q,,, the mass assigned to kL by Q, (k =
0, +1, -..). So the theorem reads

0w — p'L <e  if k= Lix,,
Q] < e if k< —L7x,
This is the lattice version.
Likewise, if P is a nonlattice measure, every n > 0 is an (n, c)-frequency of
P for some ¢ > 0. Let ¢ > 0 be given, and consider the indicator y of some

interval [—a, a] with 0 < a < 1. Then for n large enough, the (n, c)-period
L = 2z/n is so small that the two functions defined by

G(y)y=1AL7"Ya— |y, and G"(y)=1ALMNL +a— |y,

are such that 0 < ' §G"(y)dy — p™"{ G'(y)dy < ¢. Applying the theorem
to G’ and G”, and using the fact that G’ < y < G”, we deduce

[§2(x =) dO(y) — 7 {x() dy| < 5¢ if x = x,,
[§x(x —y)do(y)l <e if x= —x,.
This is the nonlattice version.

Before proceeding with the proof of the theorem, we remark that while the
classical theorems permit the case # = oo, we have not attempted to give a
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method to calculate x, in this case or when we do not know if 4 < oo or ¢ = oo.
The reason is that, evidently, we do not have the function b in this case, and
some different data will be needed to compute x,. The presentation would there-
fore be substantially different.

3. Proof of the theorem. The proof will be broken into several elementary
lemmas, whose proofs are presented in the next section. Throughout the proof,
“const” stands for an absolute constant, not necessarily the same in different
places. ‘

Let P, b, ¢ be as given in the hypothesis of the theorem. Let L > 0 be an
(n, ¢)-period of P for some n and ¢. Let G be a function of the form G(y) =
I AL*a+ L — ly|), for some ae[0, 1].

Let K be any integer such that KL = n—t > (K — 2)L. Write D for KL and
define G(y) = 1 A D~%a + D — |y|),. We prefer to work with G, because we
have the convenient lower bound D > n~t. In view of (2.4), we see that when-
evern > 2, we havealso D = KL <n~t + 2L <14 2L =1+ 4x/T < 2*B}.

Define ¢, F, P, § as in last section. Let g, denote the Fourier transform of G,

go(t) = 2., "G y(x) dx = 2D't~%cos at — cos (a + D)t) .
The key step in the proof is to introduce
9.(0) = (9() — 2n7'B%), + (9o(1) + 2n7'B°)_ .
(x, =x Vv O0and x_ = x A 0). Since g, is bounded in absolute value by |g,|, it
is integrable and has an inverse Fourier transform
G, (x) = 2n) {=, e g, (1) dt .
The next lemma shows that G, is integrable and converges in a strong sense to
G0 as n — oo.

LEMMA 1. |Gy(x) — G,(x)| < const {n~*B? A n"B%x~%} if n = 2.

The function G, has the desirable property that its Fourier transform g, van-
ishes whenever ¢ is close to 0.

LEMMA 2. |¢(f)| = const n=3c* if |g,(f)] > O and if n = 2°B%.

The function g, /@ is therefore well defined if we equate it to O whenever |@|
is smaller than const n—%?2,

LEMMA 3. If n = 2°BY, then g,|$. is the Fourier transform of some integrable
function H(x) such that §,,5 ., |H(X)| < « for all @ > 0, where r(a) = r(a, b, n, c)
depends continuously on its arguments.

LEMMA 4. P« Q = m, — P where m,_ is the Lebesgue measure on [0, co).
PROOF OF THE THEOREM. Suppose n > 2°B!. Lemma 3 implies
G,(v) = { Hwv — 2)dB(z) .
In particular, since (=, df(z) = {*.. £(z) dz = p, integrating the above displayed
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equality yields

3.1) {G,(v)dv = p § Hw)dv.

We compute, using Lemma 4,

§ Gulx — 7) dO(y) = §§ H(x — y — 2) dP(2) dO(y)

(3.2) = { H(x — u)dP « Q(u)
= {¢ H(x — u)du — § H(x — u) dP(u)
= (", H(v)dv — G,(x) .

In view of (3.1), the last equality can also be written as

(3.3) { G (x —»)dQ(y) = 7 { G,(v)dv — (T Hv)dv — G, (X) .

From Lemma 1, we have

(3.4) |§ Gy(v) dv — § G,(v) dv| < const =B .

Next note that 3 < ¢ <14+ B- P[1, ) + 1 and so P[l, o0) > B~'. Hence
([3], pages 359-360) the measure Q assigns mass no greater than const B to any
unit interval. Therefore, using Lemma 1 again,

(3-5) |§ Go(x — ») dQ(y) — § G.(x — ) dQ(y)| < constn=tB¥ .
Next, since n > 2°Bf > 2, we have D < 2B}, and so G,(x) vanishes if |x| >
2°B¥(> D + 1). Lemma 1 then implies
(3.6) |G.(x)| < constn~f:B¥  if |x| > ntB¥ v 2°Bt.
Finally, if |x| > r(¢/8) where r is as given in Lemma 3, then
(3.7) Spoisiar [H(V) dv < ¢/8 .
Combining the formulas (3.3) through (3.7), we see that
(3.8) |§ Go(x — ») dQ(y) — #7* § Gu(y) Y|
< (¢/8) + const n~#B*% - const n~"*B < ¢/4

whenever
(3.9 n > n, = const 2°B? v const ¢e=*B¥ V const ¢~ ¥BY ,

X = x =r(/8) vV ntBY v 2’B,
A fortiori, inequality (2.5) is valid when L > n~# (for we can pick K = 1 and
have G = G,) and when
(3.10) n = n, = const ¢"®B¥ , (const is chosen so large that n, = n,),

x=x,=x+1.

In case L < 2n~t we have D =KL <2L + n~t < 5n~t. Define G(y) =
DD — |y|),. Then (3.8) is satisfied by G if n = n, and x = x,. But 0 <
G(y) — G(y) £ G(y + a) + G(y — a). Hence, whenever n > n, and x = X,
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we have
=< { Gy(x — y)dQ(y) — § G(x — ) dQ(y)

(3.11) < §G(x —y —a)dQ(y) + § G(x — y + ) dQ(y)
< 2p7 § G(y) dy + 2¢/4
< 10n~% + ¢/2.

Likewise

(3.12) 0 <y §Gyy)dy — = § G(y) dy < 10nt .

Combining (3.8), (3.11) and (3.12), we see that
§ G(x — ) dO(y) — ¢ | G(y) dy| = 3[4 + 20n7¢ < ¢
whenever n > n, and x = x,. This is inequality (2.5). The proof of (2.5)" is a
repetition of the steps after (3.7), but making use of (3.2) instead of (3.3).
4. Proof of the lemmas.

ProorF oF LEMMA 1. We may assume that there exist numbers 0 < 7, <

t, < -+ < t, = oo such that

lgo(t)] < 2n~'B3? if te(—ty —ty_) U -+ U(—=ty —1)
4.1 Uty ) U eee U (tyys ta) s

lgo()| > 2n7'B3 if te(—ty_yp —lyg) U - U(—t,,)U -

U (fg5—9s tae—1) -
Integration by parts yields
Go(x) — Gou(x)] = |27)7" § = e7**(go(r) — 9.(0)) 1]
= |(27ix)™ {2, e"%(g,'(r) — 9,/(2)) @] -

But g,/ = g, or 0 according as |g,| > 2rn~'B* or < 2n~'B®. Hence, using (4.1),
we have

|(27ix)™ {5 e*(g4'(1) — 94/()) |
(4.2) = [@rx)™" Do §21_, €79, (1) |
< |@mat)™ Db femegy (D2} + @)™ They Sizi_ 1o (n)] dt
=< Qrx)7 DL 90 (1)) 4 2ax)™ (5 1g4(1)] dt
Now, because n > 2 by hypothesis, we have D < 2‘B. Hence straigh.tforward
differentiation yields the estimates
|9/()] < const BID--2, and - |g,’(¢)| < const B3D~1t~? if ff=1.
To estimate |g,'(f)| and |g,”(¢)| when |t| 1, notice that g,(f) can be written as
2Dt {¢+P t~1sin tu du. Hence
|90’ ()] = [2D7* {2+ t=*(tu cos tu — sin tu) du|
< D' (P 2 dy
< (a + Dy’
< const B,
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Here we used the elementary inequality |6 cos® — sinf| < 6%/2. A similar
reasoning shows |g,”(¢)] < const B# for all ¢. Now write 4 = 2:D-tB*. Then
A > 1, and we can use the bounds obtained to estimate the second summand
in the last expression of (4.2):
(27X~ (5 (9,7 (1) dt < (2zx*)~* const {{¢ Bt dt + (% B*D~'t~*dt}
< const B¥ D-tx"?
= const B¥nrix~2,
We will show that the first summand in the last expression of (4.2) has the same
bound. First we prove that for any interval [a, 5]
() Xijetap 190(1;)] = const BED'a=* 4 const (8 — a)B*D~a* if & = 1,
(i) Xl¢;e0,0 190 (2;)] < const B® 4 const (8 — a)B# for all « = 0.
It suffices to give the proof for those ¢#;’s in [a, 8] for which g,(t;) = +2n'B%.
Denote these #;’s by 5, < --- < s,. Rolle’s theorem implies

1190 (8:)] = 190(81)] + 24 (8; — $i1) max, 5 lg”|
= 190'(s)] + (B — @) maxg,, 419" -

Combining this with the bounds obtained for |g,'| and |g,"”|, we have inequalities
(i) and (ii). Now we can apply (ii) to the interval [0, 4 4 1], and apply (i) to
the intervals [4 + 1, 4 4+ 2], [4 + 2, A 4 3], - - - to obtain

20 194(7;)] = const {B* + (4 + 1)Bi}

+ const {BID™  BDH(A + 1) 2+ (A +2)2+ ..}
< const AB? 4 const B3D*A4"!

< const B%nrt .

So we see that |G(x) — G,(x)|, along with the expressions in (4.2), is bounded
by const B¥nr:x~2

At the same time, if we write 4 = ntD-tB-%, then -

Go(x) — Gu(x)] = (27)7 (2. |9u(1) — 9a(1)] dt
< const {{¢ 2n"1B%dr + {5 2Dt~ dr}
< const n~tD-tB?
< const n~12B%,
The lemma is proved.

PROOF OF LEMMA 2. Suppose n > 2°Bt, |g,(f)] > 0, and |§(¢)| < 2-n=3%*. We
will deduce a contradiction. Since g,(—1) = g,(f) and |§(—1)| = |(¢)|, we may
assume ¢ = 0. From the definition of g,, we have |g,(¢)] > 2n7'B%. But |g(f)| <
2Dt/Dt* = 2! as evident from the definition of g,. Hence t < nB~* < n. Since
[p(£)] < 27%n~3%* < 27°. 4% < 1, we also have ¢ = B-%. (See the proof of (2.4).)
Next, let j be any integer. Observe that since D = KL = 2zK/T, we have |g,(f)| =
2D-'t*cosat — cos(at + Dt — DjT)| < 2D~*t+*D|t — jT| < 2B%t — jT|. Hence

|t — jT| = 27'B=3|gy(f)| > n~* J any integer.
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In particular, since T > ¢ + n~* would imply (because of (2.2)) that l6(1)| >
¢ > 2-%-% wemusthave T < t — n~' < t < n. Hence |¢(T)| < n~°m*accord-
ing to (2.3). Now choose the integer j such that j7 < ¢t < (j + 1)T. Then
t — jT < T — n~'. But, using the elementary inequality (1 — cos(a + f))* <
(1 — cosa)t 4 (1 — cos )}, we have
{1 —cos(t— jT)udP(u) < § (1 — cos tu)t + j(1 — cos Tu)t)* dP(u)
< {(§ 1 — cos tu dP(u))t + j(§ 1 — cos Tu dP(u))}}*
< (G + JTIFTIY
< {(n - 25} + j(Tn>m)iy?
< {27%7%c + (JT)T tn~tm}
< {27%n7'm + (n)Bin~im}?
< {27%7'm + 270" 'm)? n > 2Bt
= 2"*"n"m?.
Hence, since |t — jT| > n7%,

[Im ¢(¢t — jT)| = |(t — jT)* § 1 — cos (t — jT)udP(u)| < 2~*n~'m* < 27'm .

Likewise
|§ sin (+ — jT)u dP(u)| < 2% § (1 — cos (t — jT)u)? dP(u)
< 24§ 1 — cos (t — jT)u dP(u)}t
< 2827%n7'm.
So

IRe §(t — jT)| = |(t — jT)* | sin (r — jT)u dP(u)| < 2827°m < 27'm .

Combining, we have |§(t — jT)| < m < min {|§(s)|: 0 < s < T — n~"}, contra-
dicting the fact that 0 < ¢t — jT < T — n™".

ProoF oF LEmMMA 3. The proof is a modification of the proof of Lévy-Wiener’s
theorem for Fourier transforms of (complex valued) finite lattice measures on R,
as given in [6], page 245.

Suppose n = 2°B? as in the hypothesis. Let 7 = const n~%c* so that 16()] = 79
whenever |g,(f)] > 0, as guaranteed by Lemma 2. Write X = b(5) and define
S(t) = (X, e F(x)dx. Let 0< 1< -+ < t, = co be numbers as in (4.1).
Since t,,_, will enter many times, we will write y for #,_,. Thus y*=
2D-Ycos ay — cos (a + D)y| - 2nB=* < const nD~* < const nt. Because |S(f) —
é(1)| < n by the definition of X, we see that

(4'3) IS(t)l > 67) on (_’zk-n —tzk—z) ...y (—’1’ tl) Uu..-u (’Zk—-v tzk-—l) .
From Cauchy’s formula, we have
(44) g, (0/P() = 2r)7 §8 g,(1)(S() + 27e'* — $(1))(S(r) + 2ne'r)2ne'? dp

where the integrand is taken to be 0 if g,(r) = 0. The lemma would be proved
if we could show that each of the three factors in the integrand is the Fourier
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transform of an integrable function on R. Only the third factor causes trouble.
Standing alone, it is not even defined for all ¢. Fortunately (4.4) is still valid
if we replace S(r) by any modification S(r) which coincides with S(f) when
g.() # 0.

For the construction of the modification S, we note that |S'(f)| < X § |F(x)|dx <
X(2B + 1) < 3XB, and similarly that |$”(r)] < 3X*B. With this observation,
we can, by elementary means, construct a continuously differentiable function
S on R, twice differentiable except at finitely many points, such that

(1) §=8 on  (—ty gy —ly-g) U o U (fypmps f1) 5
(i) S| = 4y on R,
(iiiy |$'| < constXB, and |§”| < const X?B%~* on [—y,)],
4.5) (V) S0 =S0) +SO)t— )
+ 6X°BY TNt — yySOISOIT it =2y
8(t) = S(—y) + S'(=y)t + )
+ 6X°B (e 4 yPS(=)IS(=p)I7 i 1= —p.
As remarked earlier, equality (4.4) becomes
(4.6)  g.(0)/$(1) = (21)7 §¥" gu(1)2e™(S(1) + 27 — (1) 7(S(1) + 27e'?) 7 dp .
Consider the last factor in the integrand. From (4.3) and (4.5) we deduce that
for [¢] = y,
(4.7) IS(9)] = 67 + 6X*B~(|t| — y)* — 3XB(|f] — y)
= 4y + AX°BN(|1] — y)*
Hence (S(¢) + 2ne™)~! is bounded in modulus by (2y + 4X?B%)~(|7| — y)*~* for
|| = y. For|f] <y it is bounded by (27)~' because of (4.5)(ii). Hence it is
integrable. Its inverse Fourier transform

(4.8) G,(x) = (2n)™ (=, e~"(S(r) + 2pe'r)~" dt
is bounded in modulus by
(4.9) (2m)72{y(27)™ + (4(2)XB)"'7}

< const {y7~" + (XB)7'} < const nm’

(For the last simplification we used the fact that y < const nz and that XB > 1.)
Moreover, since S'(f) is continuous on R and S”(r) exists except at finitely many
points, we can integrate by parts twice in (4.8) and obtain

G,(x) = —Q2rx?)* (=, e~"={(S(r) + 2pe'r)~'}" dt .
The last integrand is equal in modulus to
[2(5(t) + 279e*?)=38"(1) — (S(1) + 279e'?)~28"(1)| .

For |tf| £ y, this function is bounded by const X?B*™?, thanks to (4.5) (ii) (iii).
For |t| = y, it is bounded, in view of (4.7), by

const {(27 + 4X*B7(|f] — y)))T"X?B* + (29 + 4X'B7(|tf] — y)) T X*B*p77} .
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Straightforward integration with respect to ¢ yields
|G,(x)| < const x~*{yX*B)~* + XBy~* + XBy~*} < const X*Bip-tniix~".

Combining this bound for |G,(x)| and the one in (4.9), we obtain via direct
integration

(4.10) {°s |G,(x)] dx < const XBy~?n' ,
Slxl>23(a) |Gp(x)l dx é [24 for all « > 0

where A4(a) = const X*B*)~*nt:a".

Let M be a positive real number and let 2 be a positive decreasing function
on (0, o). For convenience we will say loosely that a function f{f) has rate 2
and total mass at most M if f{(¢) is the Fourier transform of some (complex) in-
tegrable function J(x) such that {=_, |J(x)|dx < M, and {5, [J(X)| dx < a for
all @ > 0. Thus (4.10) says (S(r) + 27e’?)~! has rate 4, and total mass at most
M, = const XBy~*n"=. In general, if a,, - - -, ay are positive reals witha, + ... +
ay = 1 and if fi(), - - -, fy(f) have rates 2;, ---, 1y and total masses at most
M,, - -, M respectively, then

4.1 fi4 o+ fy has rate A(a) = A (a,@) V - -+ V Ay(aya),
(4.12)  fi---fy  hasrate A(a)= NV, ,(a(NM, - M, ... My)™),
where the hat * signifies omission. For illustration we prove the assertion for
the (ordinary) product f; --- fy. Thus let J,, --.,J, be integrable functions
with Fourier transforms f], - - -, f;y respectively. Then f; - - f, is the Fourier
transform of J;, x - - . x J, and
Siat>ac Vo * - oo % Jy(x)] dx

=§.. Slz1+~-+w1vl>l(a) Ma(x)) = Tulxy)| dxy - - dxy
S 29l Slx,-|>z<a>/1v Va(x1) -+ Ty dxy -+ - dixy
SN M o My My(a(NM, -+« M; -+« My)™)

J

Al

.

The first inequality holds because |x, + - - - + x,| > A(a) implies |x;| > 2(a)/N
for some j. The second follows from the definition of 2 and from Fubini’s
theorem.

Now we can look at the second factor in the integrand of (4.6). It can be
written as '

(4.13) T (—27€7)7(S(1) — $(1))7 .

But (—27e*?)=(S(f) — ¢(?)) is the Fourier transform of (29e)1F(x)y,,» r. Hence
it has rate A(a) = b(27a) and, by definition of X, total mass at most (}). From
(4.12), then, the jth summand in (4.13) has rate jb(29'ya). Now let & > 0 be
given. Let N be an integer with —log,a + 1 < N < —log,a + 3. Using (4.11)
with a; = 3-12-4j, we see that the function YJ¥_, (—27e®)=(S(f) — (*))’ is the
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Fourier transform of an integrable function whose modulus has integral on {x:
|x| > Nb(na/6)} bounded by a/2. We already know that 3%, (—29e™)=9(S(f) —
$())? has total mass < 2-¥ < a/2. Combining, we see that the expression (4.13)
is the Fourier transform of an integrable function whose modulus has integral
over {x: |x| > (—log, @ + 3)b(a/6)} bounded by a. In other words, the second
factor in the integrand of (4.6) has rate

(4.14) Ay(a) = const (log, a~Y)b(ya/6) ,
and total mass at most M, = 2.

Finally, the first factor g,(7) in the integrand of (4.6) is the Fourier transform
of the function G,(x). From Lemma 1, g,(r) has rate 4,(a) = const B¥nr:a~! v Bt
and total mass at most M, = const B¥n~*%,

Summing up and using (4.12), we see that the integrand of (4.6) has rate

r(a) = 30(a(3M, M) V 34,(a(3M, M) V 32(a(3M, M,)™) .

It is easy to check that the last expression is a continuous function of a, b, n,
and ¢. Moreover, since r is independent of the integration variable p in (4.6),
the integral g,(¢)/#() in (4.6) also has rate r(a). (This is in analogy of Lemma
5.5(b) in [6], page 246.) This proves our lemma.

PRrOOF OF LEMMA 4. Recall that P has density a(x) — F(x) where a(x) = 0 if
x < 0,and a(x) = 1 if x > 0. Thus P« Q is a measure on the real line with
density X7, § [a(x — y) — F(x — y)]dF*i(y) = F(x), which is also the density
of m, — .

REMARK. We have carried out a computation to find x, for the distribution
P7 in the introduction. By refining various steps of the proof, we find that x, =
350 will work for ¢ = 0.1. One can, of course, then obtain a smaller x, (indeed
the smallest x,) by examining Q7 from 0 to 350.
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