The Annals of Probabzhty
1976, Vol. 4, No. 4, 570-586

WEAK MARTINGALES AND STOCHASTIC INTEGRALS
IN THE PLANE!

By EUGENE WONG AND MOSHE ZAKAI
University of California, Berkeley

This paper continues the development of a stochastic calculus for two-
parameter martingales, and particularly for the two-parameter Wiener
process. Whereas in an earlier paper we showed that two types of stochastic
integrals were necessary for representing functionals and martingales of a
Wiener process, introduction of two mixed area integrals is necessary to
complete the stochastic calculus. These mixed integrals are weak martin-
gales in the sense of Cairoli and Walsh, and are necessary in a general
representation for weak martingales and transformations of weak mar-
tingales.

Stopping times are introduced for two-parameter processes, and a
characterization of strong martingales in terms of stopping times is given.

0. Introduction. This paper continues recent work toward the development
of a stochastic calculus in the plane (i.e., for the case where the time parameter
is two dimensional) for continuous martingales in general and for the two pa-
rameter Wiener process in particular.

The basic references for this work are the fundamental paper by Cairoli and
Walsh [3] and a previous paper by the present authors [4]. The reader is referred
to [3] and [4] for further references.

In order to describe the contents of this paper we give, first, an incomplete
definition for two parameter martingales, weak, 1- and 2-martingales. Precise
definitions and references will be given in the next section. Let (Q, &, &) be
a probability space, &, ,, 0 < s < s, 0 < t < ¢, sub g-fields of .5 such that
F oty C©F o, if 5, < sand 1, < 1, In what follows assume 0 < 5, < 5, < 5,
0=y, g f, and X, , to be &, -measurable. Then X,, is a martingale if
EX, . |7, 1,,1) =X, .+ X, is an adapted l-martingale if for all fixed ¢

( X,,.:| 7 .. ) =X, ,and an adapted 2-martingale if for all fixed s E(X, oty F a) =
X, (there is some difference between the definition of 1- and 2-martingales

used in this paper and that of [3] as will be pointed out in the next section).
X, is a weak martingale if

{ 89,89 Xal tp T } =0.

In Section 2 we show that X, , is a weak martingale if and only if it is the sum
of a martingale, a I-martingale and a 2-martingale (a discrete version of this
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result appears in [1]). A one (or two) martingale X, , is said to be proper if for
a fixed s (resp. ¢) it is of bounded variation in ¢ (resp. s). It is shown that weak
martingales satisfying certain restrictions can be decomposed into the sum of a
martingale, a proper 1-martingale and a proper 2-martingale. In Section 3 we
introduce a mixed area integral {§ ¢(z, z') dM, dp(z’) where p(z) is a (possibly
random) function of bounded variation and M, is a martingale. It isshown that
such integrals are proper 1 or 2 martingales. In some special cases this integral
reduces to the mixed integral introduced by Cairoli and Walsh [3]. In Section 4
it is shown that every proper 1- or 2-martingale of the Wiener process satisfying
a suitable differentiability condition can be represented as a mixed area integral.

Stopping times are introduced in Section 5 and used to give a characterization
of strong martingales of the Wiener process.

1. Preliminaries and notation. Letz = (s5,7), 0 < s < 5, 0 < ¢ < ¢, denote
points on a rectangle in the positive quadrant of the plane. z; < z, will denote
5 < s,and 1, < 1. R, will denote the rectangle {z: 0 < z < z}. Let (Q, %, %)
be a probability space and {&,, z ¢ R, } be a family of sub o-fields of & such
that [3]:

(F)) z < 7' implies &, c .,

(F,) &, contains all the null sets of .,

(Fy) forallz, &, =NF,,s >s t' >t

(F,) for each z, & !and & ?are conditionally independent given .5, where
Fr=F,,,F2=F,

z x,to’ so,t .

DEFINITION. A process {M,, z € R, } is a martingale if (1) M, is &, adapted,
(2) for each z, M, is integrable, (3) for each z < 7/, E(M,, | & ,) = M,.

Let z = (s, £), 2/ = (s', t'), the condition s < s’, t < ¢’ will be denoted by
z<kz. If z<7, (z,2'] will denote the rectangle (s, s'] x (t, #'] and if X, is a
random process, X(z, z’] will denote X,, , + X, , — X, , — X, ,..

Several other notions of martingales were introduced in [3]. We follow here
these definitions with the exception of the definition of adapted 1- and 2-martin-
gales which differ from the definition of 1- and 2-martingales given in [3], as will
be pointed out later. In the following definitions X = {X,, z ¢ R,o} is assumed,
for each z € R, , to be integrable and .7, adapted.

DEFINITIONS. (a) X, is a weak martingale if E{X(z, z']| %} = 0 for every
27 <z,

(b) X, is an adapted l-martingale (2-martingale) if X, is %, adapted and
{X,,.» .} is a martingale in s for each fixed ¢ (in 7 for each fixed s).

(¢) X, is a strong martingale if it vanishes at the axes and E{X(z, z']| &} V

F .} = 0 for every 7 < 7/,

REMARK. X, was defined in [3] to be a 1-martingale if X, is & ! adapted and
E{X(z, ']| 7'} = 0, z < 7/, therefore X, is an adapted 1-martingale if and only
if it is a 1-martingale, %, adapted and X, , is an .%, ,-martingale.
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Some additional notational conventions.

(a) The letters z, {, » will be used to denote points in R, whenever these
letters appear with or without primes. It will always be assumed that z, = (s, £,),
0 < s < o0,0< 1, < oo is a fixed point in the plane.

(b) We say that z, A z, if 5, < 5, and 17, < #, and that z, A z, if 5, < s, and
t, < t,, in either of these cases z; A z, will denote the point (s,, #,).

(¢) z, V z, will denote the point (max (s,, 5,), max (t,, ,)).

(d) The function A(z, z’) is defined as h(z, z’) = 1 if z A 2/, and 0 otherwise.

(e) The region of integration for a stochastic integral is usually understood
from the context and in such cases will be omitted from the notation. For
example, if we write

X, =1¢@ &) dM dM,,
it will be understood that the region of integration is R, x R,.
2. The decomposition of weak martingales.

ProposITION 2.1. X, is a weak martingale on R, if and only if it is expressible
as X, = M}' + M.} where M} is an adapted 1-martingale, M? is an adapted 2-
martingale.

Proor. It follows directly from the definitions that every adapted 1- or 2-
martingale is a weak martingale. Let

M, = E(Xso,t I‘-g-s,t) .

Note that E(X, ,|.#,,) = E(X,, .| .,) by assumption (F,) on the conditional
independence property of the o-fields. Therefore M}, is an adapted 1-martingale.
Let Y, =X, — M,'. Thenfor h >0, (s, t + h) < z,,
E(Ys,t+h — T | ‘-g—so,t)
= E(Y, 1 — s,tl‘g-s,t)
= E{Xs,t+h - Xa,t - E(Xso,t+h]‘7:,t+h) + E(Xs
= E{X, ;. — X, — sptth T Xso,tl‘g.;,t}
=0

F )| F o

ot

since X, , is a weak martingale. Therefore Y, = M,?is an adapted 2-martingale. []

REMARKS. (a) If the o-fields &, and &, are trivial and X, , = O then
M}, = M;,= M;, =0. (b) The decomposition of Proposition 1 is not unique.
However, if X, = M, + M2?and also X, = N,! + N,22then M,* — N,'and M?— N}
are both 1- and 2-martingales. Therefore, by the converse to Proposition 1.1
of [3] (see the proof of Proposition 1.1 of [3]), M} — N, = N> — M is a
martingale.

Let Var (X, .) denote the variation in the ¢ direction of X, , over the interval
[0, t,], similarly Var (X, ,) will denote the variation in the s direction of X, , over
[0, ] '
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DEFINITION. A weak martingale, in particular an adapted 1- or 2-martingale,
will be said to be regular on R, if it satisfies the following conditions:

(a) For every fixed ¢, X, , is a one parameter semimartingale in the parameter
s (i.e., the sum of a one parameter martingale relative to &, , and a function
of bounded variation).

(b) For every fixed s, X, , is a one parameter semimartingale in the ¢ parameter.

(c) Let X,, = m(s) + A(s) where m(s) is an &, , martingale and A(s) is of
bounded variation then E Var 2(+) < co.

(d) Let X, , = n(f) + o(t) where n(t) is an &, , martingale and p(?) is of
bounded variation then E Var p(+) < oo.

DEFINITION. An adapted 1-martingale M,! (2-martingale M.?) is said to be a

proper 1- (2-) martingale if EVar (M;) < oo for all s < 5 (EVar (M? ) < o0
for all ¢ < ¢)).

PROPOSITION 2.2, Let M, be an adapted 1-martingale on R, . If EVar (M, .)<oo
then M}, is proper on R,, and, moreover, Var (M, ) is a one parameter positive
submartingale relative to 57'

Proof. Let A(r) = M, ,, Z(t) = A(0) + 2*(r) — A~(f) where A*(r) and A~(7) are
nondecreasing and nonnegative and A+(0) = 27(0) = 0. Then
M. = E( + 2°(f) — 27()]F )
= E(4 + 2°(0) — 27()]F 10 -

Note that since 2,* and 2,- are increasing functions, so are E(2,*|.%#,,) and
E(2,|F,,,). Therefore

Var (M2,) < E(Var (M}, )| &,

which proves the proposition. ]

ato

PROPOSITION 2.3. Let M} be a regular 1-martingale; then M,1‘-= MY 4+ M,
where M, is a proper 1-martingale and M, is a martingale.

ProoF. Let M; , = A(#) + M(r) where A(z) is of bounded variation and m(7)
is a one parameter martingale. Let

X, =EQM|F .0 .= E(m(n)|F ) -
Then X, is a proper 1-martingale, Y, is a martingale and M,! = X, + Y,. [J
THEOREM 2.4 Every regular weak martingale X, can be decomposed as
X, =MH? + M2F + M,

where M,''F is a proper 1-martingale, M** is a proper 2-martingale and M, is a
martingale.

Proor. Let X, , = 4, + m, where 2 is of bounded variation and m, is a one
parameter martingale. Let

X’a = E(ztl"g‘a,t) s Xzb = E(mtlﬁ-‘vt) *
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Let Y, = X, — X, — X.*, note that ¥, , = O for all r < 7,. Let Yitg=0s+ b,
where p, is of bounded variation and 4, is a one parameter martingale. Such a
decomposition is possible since X st + X1, is a one parameter martingale and
X, is regular. Let

ch = E(psl._?:’t) s de = E(hsl'—gr,t) .

Note that X,* = X, — X,* — X,* — X,* — X,? is a weak martingale, X, = 0for
allt < fyand X o, = 0 for all s <5, It follows from the definition of weak
martingales that X =0 for all z < z,. Setting M“? = X°, M*»? = X°* and
M = X* + X* completes the proof. []

THEOREM 2.5. If M,"* is a proper and continuous 1-martingale with M:f = 0,
then for g > 1

Esuprcr,, M7 = () E(Var (M)

Similarly for a proper and continuous 2-martingale M»* with Mx? = 0,
E(sup,ep, M7 < (Lly E(Var (M»2))a
q —_—

for g > 1.

Proor. Since M;f =0,

SUPsy, [M37] < Var (M,,.) ;
therefore
sup, .., [M37| < sup,g,, Var (M, .) .

Since, by Proposition 2.2, Var (M, .) is a positive submartingale, Doob’s maximal
inequality yields for ¢ > 1

EY{sup, .,y |M.M|7} < EVa(sup,g,, Var (M}:7))?

< 4 EVe(Var (M};2))r
g-1 )
which proves the theorem. There is, obviously, a corresponding inequality for

REMARK. The original version of Proposition 2.2 did not include explicitly
the conclusion that Var (M, ) is a submartingale. A reviewer called our attention
to this fact and also pointed out that our proof of Theorem 2.5 can be replaced
by the simplified proof given here.

3. Mixed area integrals. In [4] we introduced a stochastic integral over
R x R, §§ ¢(z, 2') dW(z) dW(Z') (see also [3]). It seems that for the full de-
velopment of a stochastic calculus in the plane still another integral is necessary.
This integral will be of the form (§ ¢(z, /) dW(z') dz where ¢(z, z') = O unless
z A Z' (or (2 A z)) and will be a proper 1-martingale (2-martingale). A related
integral has been introduced by Cairoli and Walsh in [3] and termed a mixed
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integral. The relation between the mixed integral of Cairoli and Walsh and the
mixed area integral so defined in this section will be pointed out later.

Let y,, z € R, be a continuous random function of bounded variation adapted
to &, and let p(4) be the signed measure induced on the Borel sets A4 of R,
by p,. Let |u|(4) denote the variation of the y measure. That is, if y(4) =
pt(A) — p=(A) is the Jordan decomposition of u then |u|(A4) = p*(4) + #=(A).
We assume that the total variation of p is bounded by a constant z, < oo, i.e.,
I#'(Rzo) = o s,

Let M, be a continuous martingale and let 4 = (z,, z,'], B = (z,, z,'] be rec-
tangles such that if ze B and 7’ € 4, then z A z’. Define, now, the process

(3.1) X, = aM(4 n R)u(B N R,)

where a is &,

ZIVZ

,-measurable. Then
(a) X, is a continuous proper 1-martingale,
(b) The variationof X, is |a| - [M(A)| - {fo|d, (B N R, )| < [M(A)| - |a] - |¢|(B).

Let
¢z, ) =« if zeB, zZeAd

=0 otherwise
and define
(3:2) 1 (G, ) dMy, di; = X,

where X, is as defined by (3.1).

To simplify notation assume z, = (1, 1). Fix an integer » and introduce a
grid on R,

2y = (27", 27%)
where i, j are integers 0 < i, j < 2". Define the rectangle A,; = (z;;, 2,41, ;4]
Let 7, (2) denote the indicator function of A,;. Define
Gijal2, 2') = aly ()], (2') if z; Ay
=0 otherwise

and « is bounded and ZU”“ measurable. A function ¢(z, z’) is said to be a

simple function if it is a finite sum of functions of the form ¢,; ,,(z, z’) for some
n. The extension of (3.2) to simple functions is obvious, and the resulting X,
is a proper 1-martingale. Let ¢ be a simple function and for A,; = (2,5, Z;11,;11]>
let M(A;;) = Ziss a1 + Zij — Ziyay — Zij4e Then

(3.3) Xop = Ziidm Pusm pt(Bis) M(Byy) -

If M, is a strong martingale then we have

EXZO = E{Z .05 Pigu Pirir i (D) (B ;) MP (D)} -
(3:4) = E §§$n, xn, xn,, 95 2)6(0, 2) dpt, dpt, d[MT,
= E s, (S, 92 ') dp.yd[M]:
where [M]," is the unique & ; predictable process such that {M,? — [M]}, &}
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is a martingale in s for ¢ fixed, and the passage from (3.3) to (3.4) follows from
Proposition 1.7 of [3].
The variation of X, ,, 0 < 6 < ¢, is upper bounded by

(3.5) Var (X, 5, 0 < 0 < 1)) < 345 [#1(Bs5) - [ Dest Pusora M(Bi )| -
Setting |x|(4;;) = (l#]) - (Ju|)* we have by the Schwarz inequality
(3.6) E(Var (X, ,, 0= 0 < 1))

= E{Z 1el(s) + 2 1A (Dt Pijen M(B1))'} -
And since M, is a square integrable strong martingale, we have by 1.7 of [3]
(3.7) E(Var (X, 5,0 = 0 < 1)) < o E 245 |[l(Biy) (X g0 MA (A1)
(3-8) = tE \\r, xr, ¢z, 2)d|p|(2)d[M].. .

Consider now the special case where p(z) is a product measure u(s,r) =
#(s)p¥(t). For simplicity we will assume that p is a positive measure, " (d;)
will denote p®(2="(i + 1)) — p®(2-"i) and similarly for x*(d;). In this case
we can write instead of (3.5)

Var (X, 5,0 < 0 < 1) < 205 4(d)| Dot Pisia eV (d) M(A)| -
Setting 4@ = (u®)}(n?)? yields
(39)  E(Var Xy < B(3; 1*(d) T #(@)( Sow))
< mPE §0 (5§ $(0, 7, 7) dp (o) d[ M1 dp()
If 1 is not positive, then (3.9) holds with x®(r) replaced by |x®|(7).

The requirement that M, be a strong martingale was needed to pass from (3.7)
to (3.8); in the following particular case this is not necessary. Let ¢(z, z') be a
corner function, i.e., ¢(z,z') = h(z, z')n(z v z’) where h(z,z') = 1 whenever
z A z' and zero otherwise. Then
(3.10) Pisin = Ty 10 < k) - 11 <))
where I( ) denotes the indicator function. Substituting (3.10) in (3.3) and
summing over [/ we have
(3.11) Koy = Zis #(B4g) Do s Tes(M(k + 1, j) — Mk, j)) -

Setting ¢ = ptut we have

EXL, = toB{ 25 |11(Beg) Ziss mii(M(k + 1, j) — M(k, j))}
= F‘oE{SRZO dlp|(s, 1) §3o 75, dy[ M]},.}

where [M],! is as in (3.4) and is chosen to be measurable in (s, f). Integration
by parts with respect to s yields

(3.12) EXG < poE oo Spo w3 d[ M5 d| (s, 1) -
Furthermore
Var (X, 0, 0 < 0 < 1) < 24 |1(Biy) | Diess mes(M(k + 1, j) — M(k, j)) -
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Therefore by the same arguments as those leading from (3.11) to (3.12) we have
(3.13)  E(Var X, ,, 0 <0 < )" < pE{{i0 $¢o 73, d[ M, dy| (s, )} -

In addition to (3.10) assume, now, that z is a product measure: namely
u(s, 1) = p(s)p®(t) where, for simplicity, we assume that ¢® and p® are posi-
tive measures. Then

Xzo = 205 #5200 1V (Dess Tg(Migia,; — M,,,5))) -
Let
a; = 204 11 (Dksi Tof(Misn,; — My ) 5
then Var (X, ,,0 <0 < 1) < X3, ¢1,ayl.
Setting g, = (1;)4(;)},
E(Var Xy < pO(t)E(3; 1y%a,) .

Now, a; can also be written as

a; = 200 (T j (M1, — My ;) Zise ™) -
Therefore

(3.14) E(Var X)* = p®(t) §o0 o0 (4 2(5))m5, d[ M, d, (1) -

~ Let M, be a square integrable strong martingale and let B, be the class of all
processes {¢(C, '), €, &' < z,} satisfying

(1) ¢ is predictable as defined in Section 2 of [3],

(2) ¢, &) =0unless{ AL,

3) E SSRZOX%O P, C)d|p|ld[M],! < oo, or if p, is a product measure, the
right-hand side of (3.9) is finite.

Since simple functions are dense in B,, the mixed area integral §§ ¢ du dM
can be extended by continuity to all ¢ in B,. In view of Theorem 3 of Section 2
the integral will be a continuous proper 1 martingale satisfying (3.4) and (3.8).
Similarly, let M, be a square integrable martingale and let B, be the class of all
corner functions ¢({, {') = A, {)=({ Vv {') satisfying

(1) =(§) is F, predictable,
(2) E{§t oo n2,d[M],d,|p|(s, )} < oo, or if p is a product measure, the right-
hand side of (3.9) is finite.

Then the mixed surface integral can be extended to B,. To summarize:

THEOREM 3.1. (1) Let p, satisfy the assumptions made at the beginning of this
section, let M, be a continuous strong square integrable martingale, and assume
¢ € B, Then

(a) §§¢(E, &' du(€)dM,, is a proper square integrable continuous 1-martingale;
(b) the integral is linear in ¢;
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() EX.is asgiven by (3.4) and E(Var X, ,, 0 < 0 < t)* satisfies the upper bound
(3.8). ‘

(d) Furthermore, if u is a product measure, (3.9) holds.

(2) Let y, and M, be as in part 1 and © € B, then (a) and (b) hold with ¢({, (') =
@&, &€ v {'). EX?and E(Var X, ,,0 < 0 < 1)* satisfy the bounds (3.12) and
(3.13) respectively. If p is a product measure then (3.14) is satisfied.

REeMARKS. (a) In [3] Cairoli and Walsh introduced the mixed integral
$o0 a0 2(s, 1) 9. M, dt .

We now show that the mixed area integral of this section includes the mixed
integral of [3] when =z, is & -predictable. Let u(f) = st. Approximate ¢ by
simple functions. It follows that the area integral {{ = dz dM,, can be expressed
as

§ SRzOXRzo n(z V 2')dzdM,, = §}o §osn(s, 1) 0,M,, dt
and conversely if E (% (% z%(s, t) dt d[M]:, < oo, then

Voo S0 (s, 1) 0, M, dt = {§ > n(z v 2y dz aM,
N

and the integrand z(z Vv z’)/s’ is admissible by (3.14). Note that z(z Vv z’)/s’ is
also a corner function since we integrate over z vV z/, and z Vv 2/ = (¢', 1.

(b) Let X, = {§ ¢(C, {') dpy dMy, then, in view of (3.4), X, = Oforallze R,
does not imply that ¢({, ') =0 in Rz,0 x Rzo‘ In particular, for { = (o, 7),
dp, = do dr, if

P(C, €)= sin 202D g, )
then X, = 0 for all z in R, . For any ¢(C, () define
P 0) = 2 1§ 9o w3 ) do
and ¢(C, &) = ¢(C, ¢) — ¢(C, ¢'), and similarly

21 1 T ' ’
¢'(C,C) ="; Soﬂb(c’a’r)df .

Then i '

1 9(C, &) dw dl’ =0

$$ @&, ¢)didw, =0.
We can also define ¢(C, £'), ¢(Z, {), etc., since the bar and ~ operations on the
¢ and ¢’ variables commute. Note that ¢(¢, £') = n(¢’, ) (a corner function)
and (§ ¢,(C, {N¢y(C, £y dL dl’ = 0.

(c) The stochastic integral of the second type [4] was generalized in [3] to

§§ ¢(z, 2/)dM,dM,,, where M, is a strong martingale and EM; < co. By an
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argument similar to the one given here {{ ¢ dM dM can be defined for martin-
gales which are not strong provided that ¢(z, ') is a corner function (¢(z, z’) =
n(z V 2')h(z, 2')) as follows:

Let A = (z, z’] be a rectangle, z = (s, 1), 2/ = (s, ). Let 4, = ((s, 0), (s', 1)],
A, = ((0, '), (s, t')]. Define X,* = aM(4, n R, )M(A, n R,) as in Proposition 2.4
of [3]. Note that in this case, since M, is not strong, X 4 need not be orthogonal
to M, but X,* is a martingale and we still have as in Proposition 2.4 of [3]

X4e = a® §§ L, (0L, (&) d[M]* d[MT]. .

If A= (z,z'], B=(2,2']and A n B = @ then X4 and X,? are orthogonal.
It follows, by standard arguments, that for corner functions, Proposition 2.5 of
[3] holds without the requirement that M, be strong except that in this case
{{ ¢ dM, dM,, need not be orthogonal to M.

4. The representation of some weak martingales of the Wiener process. Let
X, € 27} be a proper 1-martingale of the Wiener process and assume that almost
all the sample functions of 4(s) = X, , are absolutely continuous with respect
to some fixed (nonrandom) positive finite measure, i.e.,

(4.1) A1) = 15 0(6) dv(6) .
Furthermore, we will assume that
4.2) E (b 0%(0) dv(0) < oo .

It will be shown in this section that 1-martingales satisfying the above conditions
can be represented as mixed area integrals. The Wiener process assumption is
not used in the following proposition but will be needed later.

PROPOSITION 4.1. Let {fi} be a complete orthogonal set with respect to the v
measure on [0, t,] (i.e., (ko fi(¢')f;(t") dv(t') = 0,;). Under the above conditions on X,
there exists a sequence of martingales M(z) such that for z < z,

4.3) EX, — XX, S f(@O)YM(s, 0) dvy)* >4 0.
Proor.
(4.4) Xoo = E|F ) = G E(@0,| 7)) dv,

hence, by F, of Section 1
X,

8

o= S0 E(pg| F,0) dv, -
Let
a; = {50 p(0)f(1) dv, .
Therefore a; are %, -measurable and
EQ, — 52 a; \ fi(6) dve)* = E(§5(0(6) — LY @, f(0)) dv,)?
S K0 E(o(0) — 27 a, fi(0))" dv,
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which converges to zero by dominated convergence. Let M(z) = E(a,| F,)-
Then M}(z) < Ea?, and by (4.4)
E(X,, — §§ T3 My(s, 0)f(0) dvy)* = E(\i E{py — L1 «:fil0)|-F .0} dvo)?
< K {§ E(pp — L7 aif(9))* dv,
which converges to zero as N — oo, thus proving (4.3). [J
THEOREM 4.2. Under the above conditions on X,, X, can be written as
(4.5) X, = §Sp,xn, 95, &) dp(C) dW
where du(z) = ds dv(t).

PrOOF. Let M,(z) be the martingales of Proposition 4.1. Then, by the corol-
lary to Theorem (6.1) of [4]

Myz) = § &) AWy + §§ ¢, ) dW W,
and by (4.4)
(4.6)  E Xy MXz) = E 57 {a, ¢0) dC + E X7 (,, \,, ¢4°(C, C) a0 dl

Let M, (z) = § () dW,, and approximate ¢ and f by simple functions. It
follows that

§5 fi(0) Mo, (s, 0) dv(0) = §§ $ailC, &) dpee dWe
where { = (o, 0), dp; = do dv(#), and
0 ©) = e 0 LD g @)
Now, by the orthogonality of f,(6)
E §$ g, xn,, (LF*SUO)9(Q)) dpp d < K E T35 (p, #2(E) AT
where K, is independent of Nand K. Therefore, by (4.6) 3.1 f(0)$,({’) converges
to a function ¢=(¢, {’). Set
O ) = 1 470, 0
then
(4.7) Y S fO)Mo, (s, 0) dv(0) —q.m. §§ @u(C, &) dpc AW,

Similarly, let
M, (2) = {§ @G, C') dW dW,

and approximate f and ¢ by simple functions. It follows that
VSUO)My (s, 0) dv(0) = §§ ¢, G, &) dpte W,

where p, is as before and

$i(C C) = fl(?) (SRC\,;, (€, n) dW))

g
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(cf. Theorem 2.6 of [3]). The convergence of 1/¢’ 31V ¢’¢y, ;, to a function ¢
follows as in the previous case. Hence, by Proposition 4.1.

X, = 1§ (PE &) — ¢ O) dpc W,
which is the desired result. []

5. A characterization of strong martingales of the Wiener process. It was
shown by Cairoli and Walsh [3] that a martingale M, of the Wiener process ¥,
is a strong martingale if and only if it is a type-one integral, i.e., M, = { ¢, dW_.
A characterization in terms of stopping times will be given here.

DEFINITIONS.
1. T(z, w) is a stopping time if
(a) T(z, w) is a measurable and adapted random process;

(b) for almost all w, T(z, w) as a function of z is nonincreasing (z > 2/ =
T, < T,) and takes only the values zero or one.

2. T(z, w) is a predictable stopping time if it is a stopping time and a predict-
able process. ‘ }

3. Let Y, be a square integrable martingale (or a function of bounded varia-
tion) and let T be a predictable stopping time. Then Y,,, (Y stopped at T')

Yiir = {2, TC 0) dY(§, o) .
More generally, let Y, be any adapted process such that
Se, T dY,
is defined and adapted, then Y,,, is defined in the same way.

In order to point out the difference between stopping in the one-parameter
and the two-parameter cases, let T be defined as

T(z) =0 if s=1 and =1
=1 otherwise;
then if (s, 7) is in the region where T = 0, M, ;,, = M, , + (M, , — M, ,) +

(M,,, — M, ,). Therefore in the stopped region M, is M, , plus the sum of two
one-parameter martingales.

PRroPOSITION 5.1. Let M, be a right continuous square integrable martingale, T
a predictable stopping time and let

X, ={¢.dM,

where
E SRzo 0, d[M], < o .

Also if M, is a right continuous strong martingale, and EM; < oo, let

Y, = {§ ¢(C ) dM, dM,,
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where
E {\n, xr,, 42, 2) d[M1. d[M],, < oo .
Then
(5'1) Xonr = SR, Tc¢chc
and
(5.2) Y,\r = SSszRz TC vV el &ydM, dM,, .

Proor. We prove, first, (5.1). It follows from Theorem 2.2 of [3] that
E(X,,; — § Tc¢c nd)2 = E(S Tc ch - § Tc¢c nd)z .
= E{S Tc d<X>c + § Tc¢c2 d<M>c
- 2 S TC¢C d<X’ M>C}

where (+) is an increasing function as defined in [3]. Equation (5.1) follows
since {X), = (¢ d{ M), (X, My = § ¢ d{M),. Turning now to the proof of
(5.2), let ¢ be such that

(5.3) E§ (¢, — ¢20) d[M],? d[M],, —
and let

0

n—oo

Y = (¢t dM aM,, .
Also let T, be such that |T| < 1 and
(5.4) Ef(T» —T)yYdY), —
By (2.19) of [3]
(5.5 EV(T =Ty dY), = EN\(Th, — T.00)'¢i . d[M]) d[ M, .

0.

n—o0

Therefore
ENT dYy» — (T, dY,) < E(\ T"d(Y — Y™))* + E(\ (T — T") dY)?
SEY =Yy, + EN(T, = T,")&Y),
which tends to zero as n — co. Therefore

(5.6) E§T dY,” — (T, dY,)* -, .0.

n—0

Let n, z;5, Ay, 1y, (2), ¢uj, be as defined in Section 3 (the lines between equa-
tions (3.2) and (3.3)). Let T,” be a sequence of simple function approximations
to T, on the partition defined by n satisfying (5.4); for ze A,;, T?; will denote
T,». Then

(5.7) {TrdYy =3, , THhYYR, 0 A,).
Approximating ¢, .. by simple functions ¢7 .,

Lo = 2igm GZ’?j,kzIAij(c)[Ak,(C’)
Y = Y Pt M@y 0 RY)M(A, N R,) .
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Substituting Y, into (5.7) yields
§TrdY e = §§ T o gt dM M,
= VTt — doe) + (Te- — Teo)eo + Teo e o ]dMdM,
and (5.2) follows by (5.3), (5.4), (5.5) and (5.6). ]
From now on we consider the Wiener process case; in this case every stopping
time is predictable. Let &, be the o-fields generated by the Wiener process

W, { < z, let T be a stopping time and let &, ;, be the o-fields generated by
Weir €< 2.

PROPOSITION 5.2. Let ¢, be &, adapted and E SRzo $2dz < co. Let T, be a
stopping time; then, a.s.

E{SRZ pdW, |JJ(:0AT} = SR, T dW,.

PRrOOF. Let T, be a left continuous modification of 7. Then, by Proposition
5.1, W, = W,,,- and therefore & ., = .5 ,,-. Given a sample W,,,,
¢ < z, we can determine whether T, = 1 or T,~ = 0 by examining the quadratic
variation of W, , along an increasing path from (0, 0) to z; this follows from
Proposition 7.1 of [3]. Therefore T .~ is &, ,-measurable and so is ¢ T, .
Therefore

So, 0T dWeip = (o, ¢ T dW,
is & ,-measurable.

It remains to be shown that E{{, (1 — T)¢,dW,|.¥, ,,} =0. Letn, z,,,
A,; be as defined in Section 3 (after equation 3.2). Let [z] = ([s-2"], [z-2"])
where [s-2"] is the largest integer k satisfying k < s-2". Set T," = (T))".
Note that the number of different samples functions of the random function T,
{ < z,1is finite. Consider now { (1 — T,)¢,dW .. Since T* = T, and T," \ T,
as n — oo, it follows by dominated convergence:

(5.8) -~ EQ(T" —Top dWe) = EJ(T" — T)p’dl —,... 0.

Let ¢, be a simple function:

b= Duj aijIAi,;(C)
where a,; is & -measurable. Then
Vo, (1 = T Mg dWe = F; a(1 — TH)W(A,; 0 R,)
and
E(a;(1 — Ti)W(dy; 0 R)|F ) =0
since if T7; = 1 then 1 — T2, = 0 and if T7; = 0 then
E(a, ;(1 — TI)W(A;; 0 R)|F pu V ﬂ‘,‘ii \% ﬁ'jﬁ) =0.
Let ¢, be a sequence of simple function approximations to ¢; then
(1 —=T)pdWw = §(1 = T")g"dW + § (1 — T")(¢ — ¢") dW
+ (T — T)pdw .
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The last two terms converge to zero in quadratic mean as n — co. Therefore,
since .F ;0 D F 4, E({ (1 — T)pdW |5, ) = 0 which completes the proof. []

Let %+ = N, & r» Where T is as defined in the proof of the previous
theorem (i.e., 7" = (T;;)~ and T~ is the left continuous version of T'). We will
assume that T, = O for z > z, and denote X,onr By X

ProrposiTION 5.3. &,y = . F ,_.

Proor. In the proof of Proposition 5.2 we showed that & ,- = & ;. Let
g(£) be square integrable and nonrandom. Let
Y = exp (g, 9(C)dW. .
Since the number of different samples of T is finite,
E(Y |5 ) = exp n, 9(QT" AW, - exp} {p, (1 — TgC) dC -
By the (reversed) martingale convergence theorem
E(Y|.54) = lim, o, E(Y| 5 )
= exp $p, 9)T " dW, - expg §p, (1 — T7)g%E) db
which is % ,-measurable. Since random variables of the form of Y with g({) =
27 a;9(&), where g,({) are orthonormal on R, , generate the Hermite polyno-

mials which are dense in the space of square integrable functionals of W, it
follows that & ,+ = & ,—. [ '

THEOREM 5.4. Let T, and T, be stopping times and T,—= Tl(C) T,(§)=min (Tl, T2)
then &, and &, are conditionaly independent given &

Proor. Since the number of different samples of 7™ is ﬁmte it follows by the
independence of W(A) and W(B), where A and Bare Borelsetsin R} , AN B= @,
that &, ., and &, , are conditionaly independent given & ,... Therefore, if
Y is a bounded &, -measurable random variable and since 7,"- 7" = (T,-T,)"

E(Y|F e V F ) = EE[Y|F 0V F 0l Fppe V F 74}
= E{E[Y| F pu]| F 1+ V F e}
Since E[Y | F n] =45 E[Y|F 1+] a8 B — o0, it follows by the smoothing prop-
erty of conditional expectations that
E(Y| F 0+ V fTS,L} E{Y|F 4}
By Proposition 5.3 &+ = & ;- and the proof is complete. []

ProrosiTioNn 5.5. If ¢ W ois F ! adapted and ¢, . is chc, adapted,
E§ (¢,V)dz < oo, E({ ¢}, dzdz’ < oo then a.s.

(5.9) E{§ ¢,V dW | T} = E{¢ V| F 2 AN F LT dW,
and

(5:10)  E{S§ ¢p0 dW W | F 1} = N B¢ | F rp  )Te - Too dW dW,,

vy
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Proor. Equation (5.9) follows easily from Theorem 5.4 for the case where
¢ are simple functions and the extension to general ¢ is straightforward.
Equation (5.10) follows from (5.9) by the stochastic Fubini theorem (Theorem
2.6 of [3]). [

Let T)(z, ) 0 < 2 < oo, be a one-parameter collection of stopping times such
that for almost all , T, (2, w) = T, (2, ®) Whenever 4, < 4,. We will call such
a collection an increasing collectlon of stopping times. Let M, be a martingale
of the Wiener process and let z, be fixed. We will denote

“/1 - ‘/zOATx
X, =M, ,,.

THEOREM 5.6. Let M, be a square integrable martingale of the Wiener process,
then M,, z < z, is a strong martingale if and only if {X,;, & ,} is a martingale for
all increasing families of stopping times.

Proor. If M, is a strong martingale then M, = §, ¢, dW_[3],
X; = SRZO Tx(c)¢c dWc

by Proposition 5.1 and therefore (X;, &) is a martingale by Proposition 5.2.
Conversely, let @ < 8 and define

A={z:s+t £ a}
={zia<s+tZp}.
Let T, and T, be the following deterministic stopping times.
Tz, w) =1 if zed

=0 otherwise;
Tyz,w) =1 if zeAUB "~
=0 otherwise.

Let M, = §§ ¢(§, ') dW_ dW_,; then
Xy = Koy = §$a,m,y (T V ) = TV O)G(C, &) dW aW,

Divide the above integral into five integrals. I, is the above integral over
€ Vv {’ € 4 hence this integral is zero. A is the above integral over { € 4, {' € B,
(and { v {’ € B), I, is the above 1ntegra1 over {'e A, {eB, I,is over { vV { ¢ B,
Ced, l'ed, Iisover{'e B, {eB. Since &, = a{W, e 4}, it follows by
simple function approximation that E(/;| & ;) = 0 for all i with the exception
of i = 4. Consider now E(I,| & ;). If X is to be a martingale, we must have a.s.

E{§Venenvees $(2 2)dW, 0 dW, 0 | F 7} = 0.
And, by Proposition 5.5
W§ E{(z, 2) [ F 7} AW, 0 AWy ip, = O

where the region of integration is the same as the previous integral.
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Thus §§ (E{¢ | &, )z A Ty)d(z' N T)) =0, and
B, 0)|F7) =0 as.
For { v (' fixed let « (€ Vv {’). By the continuity of the &, o-fields
P, 0) = lim, ¢, E(g(C, €) |7} = 0
which completes the proof. []
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