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NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE
CONVERGENCE IN THE LAW OF LARGE NUMBERS

BY SoREN AsMUSSEN AND THOMAS G. KURTZ
University of Copenhagen and University of Wisconsin-Madison

Relationships between the growth of a sequence N, and conditions on the
tail of the distribution of a sequence X; of i.i.d. mean zero random variables are
given that are necessary and sufficient for

g
The results are significant for distributions satisfying E(|X,|) < oo but E(|X,|?)

= oo for some B > 1. Necessary and sufficient conditions for the finiteness of
sums of the form

1
—ﬁ;E’,":‘_,X, >8} < oo.

2201 P {| 5 21X > e}

are obtained as a corollary.

1. Imtroduction. Throughout this paper X, X,, X3, - - - will be a sequence of
independent identically distributed random variables with

(1.1) E|X,| < o, EX, = 0

and we will define F(¢) = P(|X,| > 1), p(n,e) = P(|X, + - - - +X,|/n >¢). We
are interested in relationships between the growth of a sequence N, and conditions
on the tail F of the X, that imply

(1.2) %_1P(N,, €) < oo foralle > 0.

Finiteness of the sum in (1.2) is an indication of the rate of convergence (termed
“complete convergence” by Hsu and Robbins (1947)) of the averages to zero and is
the necessary and sufficient condition (by Borel-Cantelli) for the almost sure
convergence of a triangular array of independent random variables. The sum can
also be interpreted as the expected number of times [SX)| > eN,. Questions of
this type arise in the study of sums of independent random variables indexed by
lattices and more general partially ordered sets, for example, Smythe (1974), as well
as in the study of supercritical branching processes, for example, Asmussen (1978)
and Athreya and Kaplan (1978). In that setting, the sequence is replaced by a

triangular array and N,, N,, - - - are the generation sizes of the branching process
(of course, here N;, N,, - - - are random variables and the p(N,, €) are conditional
probabilities).

In Theorems A and B y(x) will be a strictly increasing function on [0, o0)
satisfying sup, ., ;¢(x + 1)/¢(x) < o0; ¢~ !(x) will be absolutely continuous with
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CONDITIONS FOR COMPLETE CONVERGENCE 177

derivative y(x); and for some # and some C > 0 y(x) will satisfy y(yx) < Cy%(x)
for x > 0 and y > 1. Note that for some C,, C, and some a, 8 < 0, C,x* < ¥(x)
< C,eP*. The requirement on y is automatic if Y is convex (# = 0) and also is
satisfied if Y(x) = x% a > 0 (0 = (1 — a)/a). If y is increasing then this condition
is equivalent to dominated variation as defined in Feller (1969).

THEOREM A. Let t;, N, satisfy

(13) limy_, , N /¥(%) = 1.
If inf,t, — t,_, =a > 0 for some ! > 0 and
(1.4) sr()F(r) dt = Eg(1X)]) < oo

where g(t) = [45v(s) ds, then (1.2) holds. Conversely, if sup,t, — t,_, =A < oo and
(1.2) holds, then (1.4) holds.

CoRrOLLARY 1. (1.4) holds if and only if (1.2) holds for some [and then every]
sequence N, satisfying lim,_, N, /y(hk) = 1 for some h > 0. Also, (1.4) is equivalent
to the existence of sequences t,, N, satisfying (1.2), (1.3) and lim,_, t,,, — # = 0.

COROLLARY II. (1.4) holds if and only if
(1.5) S oM (n+ 1) =y (n)p(n,e) <o  forall &>0.

THEOREM B. Define H(t) = sup,, ,sF(s). Then (1.2) holds for every sequence N,
satisfying

(1.6) inf, N, /Y(hk) >0  for some h >0
if and only if
1.7) I&y()H(r) dt < 0.

REMARK. One might expect that if (1.2) holds and M, > N,, then 3 p(M,, ¢) <
oo for all € > 0. A comparison of Theorems A and B shows that this is not the case
in general. However, roughly speaking, moment assumptions only slightly stronger
than (1.1) will ensure that (1.4) and (1.7) are the same condition and in fact are
both equivalent to

(1.8) ey~ F(2) dt < oo.

More precisely, always (1.8) = (1.7) = (1.4) and (1.4) < (1.8) for any concave y
and also, e.g., for Y(x) = x#, B > 0. We verify these implications below. For an
example where (1.4) holds but not (1.7), let y(#) = 1/¢ and let the X, be con-
centrated on {=2, +2% ..., 27 ...} with P(X,=2")= P(X,= — ") =
/i,

EXAMPLE. In connection with the branching process example above, we note
the following particular cases. If N, /wm* — 1 with m > 1,0 <w < oo, then (1.2)
holds without further assumptions than (1.1) (from a generalization of Corollary I).
This may fail if it is only known that N, > wym{ with 0 <w, < oo, m; > 1, but
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here at least the condition E|X,|log*|X,| < oo is sufficient for (1.2) (Theorem B
and the remark). However, if lim inf N, ,/N, > m, > 1, then again (1.1) is
sufficient for (1.2) (Theorem A with Y(x) = e, 1, = log N,).

There are many results in the literature related to those given here (see the review
paper by Hanson (1970) and Heathcote (1967)). In particular, Katz (1963) proved
that for A > 1

(1.9) S n*p(n,e) < oo  forevery e >0

if and only if E|X,]* < oo, thereby generalizing earlier results of Spitzer (1956),
Erdés (1949) and Hsu and Robbins (1947). This result is the special case of
Corollary II with y(x) = x'/®~D X\ > 1 and Y(x) = e* for A = 1. More recently
Smythe (1974) has given a result similar to the first part of Theorem A but with
more restrictions on ¢ and on the relationship between ¢ and N,. In connection
with the idea of replacing ¢F(¢) by H(¢) in Theorem B, see also Franck and Hanson
(1966), and in connection with the last part of Corollary I, Dvoretzky (1949).

2. Proors. The results are based on the following theorems from Kurtz
(1972).

Tueorem C. Let X, X,, - - - be independent random variables with mean zero
and let S,, = 27 _ 4, X, for some sequence a, > 0. Let F(t) = sup, P{|X,| > t} and
define m = sup,a; [}, F(t) dt and e = 3, a, %), F(?) dt.

(@ Ifn <28 and 0 < a < 1, then

4

P{sup,|S,|>8+ e} < (a+1) P R——
(26 — m)**!

+ I}Ekf(l,u“F(u/ak) du.

(b) Lete >0and L > 1. If
a<l+elL-1),7<8/253,fou' " *F(u/a,)du < M < o,
then
P{sup,|S,|>8 + e} < (Z,feu"F(u/a,) du)(a + 1)
(e + DM)™" | a(afa+ DM }
Mplo(8/27*1 —m)™*! TEZY(8/2m+ ! — )™

x|1+ 3k,

Note that
Scfou' " F(u/a) du = 2 a, [/ *(a,0)' "°F(v) dv < Z,a,fSF(v) do.

Consequently when 2,4, = 1, for example, we may take ¢ = 1 and replace M by
J&EF(v) dv.

CoroLLARY III. Let ¢, =1/N, k=1,---,N and a, =0 for k > N. Let
n=1/N[JF(t)dt, e = [FF(t) dt and M = [FF({) dt.
(@) If n <28 and a < 1, then

P{sup,|S,| >8 + e} < CN[ju*F(uN) du
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where C depends on a, 8 and m, and is increasing in 7).
(b) Let L>1,a < 1+ (L —1)andn < 8/2L. Then
P{sup,,|S,,| >8 + e} < CN[u*F(uN) du
where C depends on o, 8, M and n and is increasing in 7).
We start by proving the first part of Theorem A. Taking a = 2 + @ in Corollary
[II, (1.2) is implied by
(2.1) SN, S ®F(Nu) du < 0.

Let M = sup N, /{(t,), m = inf N, /y(t,). Since we can break the sum in (1.2) into
I parts, without loss of generality we can assume / = 1. Furthermore we can assume
t, = 2 and hence

(%)

supksup,k_,<,<,k7(7)— =K < c0.

Then (2.1) is bounded by
M (4) fou* ™+ Fimuy (1)) du = M [gu**° y(t,) F(muy (1)) du

< MIYPHOS [y oWt Fmap(1) di di
(2.2)
KM
< TSGR OS Sty Gy (0) F(map(1)) it du

< A 32 g 0) FOmu(1)) dt .

Substituting x = mu(¢) the inner integral becomes

X X X
(2.3) I8 =5 = JF(x) dx < Cf§ —5575 Y(*) F(x) dx
m-u mu m“"u

and finiteness of (2.1) follows.
To prove the sufficiency of (1.7) in Theorem B we bound (2.1) by

(2.4 S Joul 1 H(N, u) du
and then using the monotonicity of H approximate (2.4) by
2 fou’  HW(k)u) du ~ fou’* [FH(Y(x)u) dx du
(2.5) _—
- fg,u“'fgf’;y(;)ﬂ(t) dt du < CAPY(O)H(2) dt du < oo.
The second part of Theorem A and the necessity of (1.7) is based upon

LemMA. If 0 < e < 8, then p(N, €) > NF(N8)(1 — o(1)).



180 SOREN ASMUSSEN AND THOMAS G. KURTZ

ProOF. Define
Sy=X,+--- +XN,S}J‘)=SN—Xk k=1, N,
My = |X1|V e VIXNI‘
Then

P(My > N8) = P(U_,{|X,] > N8}) > NF(N8) — (Iz")F(Na)%

P(|Sy| < Ne, My > N&) < ZY_\P(ISP| > N(8 — ¢), |X,| > N§)
= NP(|Sy_,| > N(8 — ¢)) F(N8) = o(NF(N®))

and the assertion follows since
p(N, ) > P(|Sy| > Ne, My > N8) = P(My, > N§) — P(|Sy| < Ne, My, > Nb).

To obtain the second part of Theorem A let k = SUp, 5, SUPo<s<4 (Yt + 8))/Y(2).
Then

SN F(N/ M) > mE (1) F(8)) > T2, S (5 F()) di

> T [ FY()) dr = T Sy XV(X) F(x) dx

and if (1.2) holds, then the left-hand side is finite by the lemma.
Clearly (1.4) is necessary in Theorem B as well. Therefore to verify the necessity
of (1.7) we may assume (1.4) holds but that

JSY()H(2) dt = o0.
Let Ty = {¢: H(t) # tF(t)} and T, = {¢ : H(¢) = tF(¢)}. Then
JoY()H() dt = [ry()H(2) dt + [7y(2)tF(¢) dt = oo.

Since the second term on the right is finite the first is infinite. For every ¢ € T,
there is a s, > ¢ such that H(u) = s,F(s,) for t < u < s,. Since H(?) is left continu-
ous T, is a union of intervals (z,, s,) = (%,, s,) on which H(¢) is a constant (i.e.,
5, F(s,)). Therefore

[ Y()H(2) dt = Zs,F(s,) [3v(1) dt
= 25, F(5,)(y7'(s,) — ¥7(5,)) = o0,

We cannot assume #, > s,_,, but we can select a subset of the intervals (tn) 55) =
(a;, b)) such that g; > b;,_, and

zbiF(bi)(\l’_l(bi) - ‘P_l(ai)) = ©0.
Furthermore since

(v~'(8) - ¥~ (a))b,F(b) < %fﬁ'}tY(t)F(t) dr

we are able to select the intervals so that lim, ,b,/a, = c0. We obtain the desired
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sequence by defining N, = [b.] for
and observe that
SNF(N) > 2(v7([b]) — ¢ ([bi-1]) — 1)- b]F([5,])

>y ([6]) - v @) - 1) [6]F([b]) =
The first part of Corollary I follows immediately from Theorem A. To obtain the
second part, note that if #,, N, satisfy (1.2), (1.3) and lim,_, % ., — 4 = O then
(1.4) follows by the converse of Theorem A.
If (1.4) holds, then

(26) zap([$(l/m)], 1/m) < oo
for every m and hence we may select M,, such that M, /mfoo as mfoo and
7 p([$(1/m)], 1/m) <m™2.
Let #, <t, <t; < - - - be the ordering of
Un{l/m:M,/m<Il/m<M,,,/(;m+1)}
and set N, = [¢(8)]. If t, > M,,/m then t, ., — t, <m~ ' and if ¢ > 1/m then
(N €) <2, cpg ymP(Nps &) + 22,17 2 < oo,
For Corollary II, define T, = {n : y(k) — 1 <n <{Y(k + 1)}. Let N,, N, €T,
satisfy
P(Ni, ) < p(n, &) < p(Np €)
for all n€T,. Let af =@ 'n+ DAk + D)Vk - @ ' (m)A(k+ 1) VEk.
Note that
T,={n:a’>0}, Zaf=vy ' (n+1)=y7(n), Z,4 =1
From this we have
(2.7) Zp(N;, €) < 2y nacp(n, €)
=32, (n+ 1) =y (n)p(n, &) < Zp(N,, e).

Y(k) =1 <N, <Yk +1)
there exist k < ¢, < k + 1 such that lim,_, N, /y(¢,) = 1. Since inf, 2, — #,_, > 1
and supg#, — tk_1 < 2, Theorem A applies to the right hand side of (2.7) and
similarly to the left.
It only remains to verify the claims in the remark following Theorem B. Note
first that

Since

[0 = ) F(0) dr = [ fy(s) ds F(1) a
= JRY(O)[7F(s) ds
= 27 y(/2) 5. (s) ds dr.
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Let s, > ¢, 5,F(s,) = H(¢). Then
C2[5v(1/2)[ 5, (s) ds dt > [§y()(s, — t/2)F(s,) dt
> 27 ey(H)H(?) dt
and it follows that (1.8) = (1.7). Finally if ¢ is concave then (1.4) = (1.8) since
(1) > [ov(s) ds = 4 ~'()) — ¥7Y(0),
and if Y(x) = x? then ty(¢) = ¢ !(2)/B.
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