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ON CODING A STATIONARY PROCESS TO
ACHIEVE A GIVEN MARGINAL DISTRIBUTION

By JouN C. KIEFFER
University of Missouri-Rolla

The problem of coding a stationary process {X;}; _,, onto a stationary
process { ¥;}32 _, so that for some positive integer m, (Yo, Yy, -+, Y,,_ ) has
a given marginal distribution is considered. The problem is solved for {X;}
nonergodic as well as ergodic. The associated universal coding problem is also
solved, where one seeks to find a coding function which yields the desired
marginal distribution for each member of a class of possible distributions for

{X;}-

Introduction. Let (S, $) be a measurable space. Let {X;}72 _ be a stationary
(S, $)-valued process defined on some probability space. Let 4 be a finite set.
Suppose it is desired to code {X;} onto a stationary A-valued process {Y;}{2 _ .
Letting (S, $®) be the measurable space consisting of S, the set of bilateral
infinite sequences from S, and 5%, the usual product o-field, this means there is a
measurable coding function f: §° — 4 such that Y, = f({X,,;};2 _,), for each
integer i. Suppose we wish to find f so that for some positive integer m,
(Yy, - -+, Y,,_p will have some previously specified marginal distribution 7 on
A™. For an ergodic process {X;}, the solution to this problem follows easily from a
result of Grillenberger and Krengel [1, Theorem 1.1]. In this paper we solve the
problem for nonergodic stationary processes {X;}. We also solve a related universal
coding problem: given a family % of possible distributions for {X;}, find f so that
the desired marginal is attained for every member of . This type of problem
would arise if the distribution of {X;} were unknown.

NoTATION. We fix for the remainder of the paper a finite set 4, a positive
integer m > 2, and a probability measure = on 4 ™. We assume 7 is an invariant
distribution; that is, if X}, X¥, - - - , X} are the successive projections from 4™ —
A, we assume that (X}, - - -, X¥_)) and (X%, - - -, X}}) have the same distribution
on A™~! under 7. For 1 < k < m, let m, be the probability distribution on A4*
which is the distribution of (XF¥, - - - , X¥) under 7.

Let Z be the set of all integers. Let @ be the set of all subsets of 4. We let
(4*, @°) be the measurable space consisting of 4%, the set of all bilateral
sequences x = (x)2_, from A4, and @, the usual product o-field. We let
{X;}%2 _, be the family of all projections from A* — 4; thus, Xi(x) = x;, i € Z.
We let T,: A® — A be the shift transformation; thus, if x = (x;) then Tjx = x’
= (x]), where x;{ = x;,,,i € Z.
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If p is a probability measure on @, forn =1, 2,- - -, let u, be the measure on
A" which is the distribution of (X,,- - -, X,) under p. If (i, --,i,) €A™,
define w(i,liy, * + 5 dp_y) = (@i 0 0, i)/ TGy 0 s doy) if
Tp—1(ip, * + 5 i,,_y) > 0. Otherwise, define #(i,,|i}, - - * , i,,_;) = 0. For n > m, let
7, be the probability measure on 4" such that =,(i, - - ,i) =
Wm—l(il" Y im—l)'”(imiil’ ] im—l)'”(im+lli2” ) lm) : ””(iniin—m+l’. ) in—l)’
Let # be the T,-stationary probability measure on & such that %, = m,, n =
1,2,--- . #is called the Markov extension of . (Markov extensions were previ-
ously considered in [1], [2], [3], and [4].) # is an (m — 1)-Markovian measure.

If n<m, let A, (7)={(i,-"-,i) €A™ m,(iy," -+ ,i)>0}). If n>m,
let A,(m) = (G, « - - ,8) € A" w(iy, -+« ,0,) >0, @(iy + + + 4 ip,) >
0’ R '”(in—m+l’ ] ln) > 0}' LetAoo('”) = {x € AOO: '”(xi’ Y xi+m—1) > 03
i € Z}. Note that 4 (=) is a set of 7 probability 1.

Let {Z;}{Z_, be the process where Z;, = (X, - -, X,,,,_,). Then {Z;} is a
stationary Markov process under #. Let 7*: 4,,_(7) X A4,,_,(7) = [0, 1] be the
stochastic matrix such that

W*((il’ R im—l)’ @ ir/n—l)) =0if (¢}, - - -, ir,n—2) 7> (iz, S dy)
= W(il —llil, tT T im—l)’ otherwise.

Then, #[Z,,, = x|Z; = x'] = a*(x/, X), x, X' € A,,_ (7).

We define 7 to be mixing if T, is mixing with respect to #, and define « to be
ergodic if T, is ergodic with respect to #. It is easily seen that « is mixing if and
only if {Z;} is a mixing process under 7, and = is ergodic if and only if {Z;} is an
ergodic process under #. It is well-known what it means for a stationary Markov
process to be mixing or ergodic. Thus # is mixing if and only if #* is regular (that
is, some power of «* has all positive elements), or if and only if #* is irreducible
and aperiodic. 7 is ergodic if and only if #* is irreducible. The following lemma
gives another characterization of these concepts.

LemMmA 1. (a) 7 is ergodic if and only if there exists a probability measure p on
@, stationary and ergodic with respect to T, such that y,, = =.

(b) = is mixing if and only if there exists a probability measure p on @, stationary
and mixing with respect to T, such that p,, = .

A

Proor. (a) If 7 is ergodic then # is ergodic. Conversely, suppose =7 is not
ergodic. Then there exists C ¢ 4™ ! such that

0 <7T{(i1,’ A ,im): (il’ ¢t ’im—l) (S C}
=a{(ip i) (p iy ) EC (i --,i,)EC}<L
Suppose p is a T,-stationary probability measure on @ such that p, = #. Let
F=n2_ X, ", Xiym2)€C}.Then T,F=Fand 0<pu(F) <1, sopuis
not ergodic.

(b) If 7 is mixing then # is mixing. Conversely, suppose « is not mixing. If 7 is
not ergodic, by (a) there is no mixing p on @ such that u, = 7. Thus we may
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suppose 7 is not mixing but ergodic. Let r be the period of #*. There exist disjoint
sets Cg,* * +, Co_y C A™ 1 such that 237 {(iy, -« + ,0,): (ipy s+ + 5 ip_y) € G,
(i ,i,) €ECyi} =1 (In the preceding C, = Cy) Suppose p on &% is
stationary and p,, = 7. Set F= N2 _, NZo{(Xpsp* " » Xipyjum—2) € G}
Then F, T,F,- - -, T;~'F are disjoint, TjF = F, and p(U}ZgT4F) = 1. Thus g
cannot be mixing since lim,_ ., w(T4F N F) does not exist.

We fix now a standard measurable space (2, %) and a one-to-one bimeasurable
mapping T of © onto itself. Let &P, be the family of all probability measures p on &
such that T is an aperiodic measure-preserving transformation on (2, %, p). Let &,
be the family of all probability measures g on % such that T is an aperiodic ergodic
measure-preserving transformation on (2, ¥, p). We assume ?_ # ¢. Then by
ergodic decomposition theory, P, # ¢.

By a partition P of £ we mean a finite measurable partition P = {P/: j € E}.
(Thus the index set E is finite.) Given P = {P/:j € E} and i € Z, T'P is the
partition TP = {T'P/: j € E}. If m <n, V].,,T P is the partition indexed by
E"~™*1 given by

{T"”Pj' AT~ "+Dphan oo o AT "Ph-m+i: (it s jpemer1) € En—m+1}.

If p€®P,, and P=(P/:j € E} is a partition, then dist,P is the probability
measure A on E such that A(j) = w(P/),j € E.
The following theorem is an easy consequence of Theorem 1.1 of [1].

THEOREM 1. Let p € @,. Let w be mixing. Then there exists a partition P =
{P/:j € A} of Q such that dist,(V §~'T~'P) = .

REMARK. We may translate this theorem into the context of coding one
stationary process onto another to achieve a given marginal distribution. For,
suppose {X;} is an aperiodic ergodic (S, &)-valued process defined on some
probability space (€, ¥, X'). In Theorem 1, take (2, %) to be (S, $%) with T the
shift on S . Take p on 5 to be the distribution of {X;}. Let P be the partition of
S *® given by Theorem 1. Define f: S® — 4 so that f(x) =/ if and only if x € P/,
where x € S, j € A. Then f codes {X;} onto an A-valued process {Y;} such that
the distribution of (Yo, - - -, Y,,_,) is dist,(V §~'T ~'P), which is #. In this paper
we will describe our coding results in terms of the existence of a certain partition P
rather than in terms of a certain coding function f, since it makes the notation
simpler. But the reader may easily translate any theorem we give into a theorem
about coding one stationary process onto another to achieve a desired marginal
distribution.

Proor oF THEOREM 1. Let H(7) denote the entropy of #. From [3], it may be
calculated as follows: for each i € 4,,_ (), let p, be the probability vector
p; = (7*(i,)):j € A,,_(7)). Let H(p) be the entropy of p,. Then H(#)=
27— 1()H(p,). If H(%) = 0 then H(p;) = O for all i. This means every row of 7*
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has only one nonzero element. Thus every power of #* has this form. Since #* is
regular, this implies 4,,_;(7) has only one element. Then, for some a* € 4,
w(a*, - - -, a*) = 1. In this case, Theorem 1 follows trivially. (Take P/ = @, =
a*; P/ = ¢, otherwise.) Thus, we can assume H(#) > 0. Find a partition Q of Q
such that the entropy H,(Q, T) of Q with respect to T is less than H(#) and Q
contains a set of irrational measure. Let ¥, be the sub-o-field of & generated by
{T'Q: i € Z}. Let p, be the restriction of u to Fj,. Let T, be the automorphism of
(@, %y, o) induced by T. T, is ergodic and aperiodic. The entropy H(Ty) of Ty, is
H,(Q, T) < H(#). Thus by Theorem 1.1 of [1], there exists a %,-measurable
partition P = {P/:j € A} such that dist,(V§~'T;P) =7 and {T'P:i € Z)
generate . :

Theorem 1 allows us to answer a question posed at the end of [3]. Suppose the
invariant distribution = satisfies #(x) > 0, x € 4™. It was asked at the end of [3]
whether there is an ergodic p on @ of entropy zero such that y,, = «. Since 7 is
mixing (7* is clearly regular), choose (2, ¥, u) and T: @ — Q so that p € ¥, and
H,(T) = 0. Find the P given by Theorem 1. Using P define an ergodic 4-valued
process {X;} with the distribution of (X, - - -, X,,_)) equal to #. { X} has entropy
0, so let u on @ be the distribution of {X;}.

We note that Theorem 1 becomes false if we require only that = be ergodic. For
by Lemma 1, if p is mixing, so is «#. So if we want to extend Theorem 1 to a =
which is ergodic but not mixing, we will have to require that p be ergodic but not
mixing. This question is settled in Theorem 4. If « is not ergodic, then by Lemma 1
there is no ergodic p which yields the marginal «. Since we want to code at least
ergodic p, there is no point in considering nonergodic .

Another possible extension of Theorem 1 would be to find P so that
dist,(V §~'T~"P) = = for all p € P,. This result we will obtain in Theorem 3. To
get Theorem 3, we will need a sharpening of Theorem 1, namely Theorem 2. Also,
from Theorem 2 we can get Theorem 1 as a corollary without having to use
Theorem 1.1 of [1] to prove Theorem 1 as we did. This is of interest because the
proof of Theorem 1.1 of [1] is very difficult. The proof of Theorem 2 we will give
will be an easy application of some lemmas from [1].

DeriNITIONS.  If 7; and 7, are probability distributions on 4™ define |7, — |
=3, enlm@) — 7). f P=(P/:jE€ E} and Q = {(: j € E} are two parti-
tionsof Qand p € @, let |P — Q|, = 3= ,u(P/AQ’). Define M(7) to be the set of
all invariant probability measures # on 4™ such that # is absolutely continuous
with respect to 7.

If n>m,and Q = (i}, - - -, i,) € A", define p, to be the probability measure
on A™ such that py(x) =(n —m + 1)"2;-’;{”“8((1}, s himeh X)X €A™
(8(#, j) denotes the Kronecker delta: 8(i, j) = 1if i = j; 8(i,j) = 0, i #j.)

If 7 is mixing, then since #* is regular we may find a positive integer L > m and
for each j > L a map 7,: A™ ™' X A"~ ' - 4/ such that if b, b’ € A4,,_ () then
brb, B’ € ATy 1ys
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The following lemma we will need later. It is a combination of Lemmas 2.1 and
2.3 of [1].

LEMMA 2. Let 0 <e < 1. Let m be mixing. There exists h(¢) > 0 and a positive
integer N(¢) > 2m such that given n > N(¢) and any Q* € A,,_,(7), there exist
finitely many sequences Q,, Q,, - - - , Qx from A, (), beginning and ending with Q*,
Jfor which the following holds:

If # € O(n) and |7 — w| < h(e), and if 1 >¢ > e, there exist nonnegative
numbers &y, &y, + -+ , g, such that Z{_ o, = ¢ and w = (1 — )7 + K. o5,

LeMMA 3. Let m be mixing. Let p € P,. Let 0<e < 1. Then if P = {P’: j €
A} is a partition of Q satisfying dist,(V §~'T ~'P) € M(m) and |dist,(V m-lT—ip)
— 7| < h(e/2), there exists a partition P = {(P/: j € A} such that
dist,(Vy~'T~'P) = 7 and |P — P|, <e.

PrOOF. Let 7 = dist,(V m-1T~iP). By a strong form of the Rohlin-Kakutani
Theorem [7, page 22], we may find F € ¥ and positive integers N, and N, such
that: :

@ {T'F:i=0,--+,N;, + N, + 2L — 1} are disjoint.

(b) WE N F) = W(E)W(F), E € v {+Na+2Dmy ~ip, ,

© N, + Ny + 2L — (N, + N, — 2m + 2)p(u itV *2L-1TF)

Ny + Ny + 2L — (N, — m + Dp(ud* V2L 1TF)

M)~

(d) “(U.])V,+N2+2L—1TjF) < 1.

m + .
(e (M—1+N“;‘:2“L")#(U$V'+N’+2L_'T’F) >e/2.

2L + N, <
® N, + N, +2L &
(8) N, > N(e/2).

Fix Q* € 4,,_(7). By Lemma 2, pick Q,,- - -, Qx € Ay () beginning and
ending with Q* so that |# — 7| < h(e/2), # € IM(w) and 1 >¢& > ¢/2 imply the
existence of nonnegative a;, - - - , ag such thata, + - - - +agy=¢ and 7 = (1 —

eF + Ef_la,-pg.

Let { X/} _ . be the collection of maps from & to 4 such that X/(w) = j if and
only if T'w € P/. We will define a map ¥: @ - A®° such that T, o ¥ = ¥ o T. At
the end of the proof we will have to adjust ¥ to obtain a map ¥': & — 4 such
that T, o %' = ¥’ o T. Then P will be the partition P/ = {w: ¥'(w), = j}.

Let w € ©. We wish to define ¥(w). Say ¥(w) = (»);2 _, where now we have to
define each y; € 4. Let {i,}5- _, be a sequence of integers such that

Gt --- i <y <

O {(i}={i€eZ:T'wEF}.

If m < n are integers, we let [m,n]={m,m + 1,- - - ,n}. We need to define
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(Vi i € [y, iy — 1]) for each k € Z. To do this, for each k divide [i, i, — 1]
into 4 parts: 4, = [ii, 4 + L— 1, B, =[ip + L,jy + L+ N, — 1, C, =[ip + L
+ Nyi, + 2L+ N, — 1], D, =[i, + 2L + Ny, i,,, — 1]. Note that 4,, B,, C,
consist of L, N, L consecutive integers, respectively. D, contains at least N,
consecutive integers since i, ., — i > N, + N, + 2L. First, for each k we define
Y(w) over B, and D,. For k € Z, define (y;: i € D) to be (X/(w): i € D), and
define (y;: i € By) to be Q,. Now we need to define ¥(w) over each 4, and C,. For
each k, let bf, b¥, b¥, b¥ be the following 4 blocks from 4™~ !:

bf = last m — 1 entries of ¥(w) in D, _,.

by = first m — 1 entries of ¥(w) in B,.

bf = last m — 1 entries of ¥(w) in B,.

bf = first m — 1 entries of ¥(w) in D,.
Since ¥(w) was defined over the B,’s and D,’s first, bf, - - - , bf are defined. (In
fact, b5 = bf = Q*)) For each k € Z, define (y;: i € 4;) to be 7,(b¥, b¥) and
define (y;: i € C) to be 7,(b¥, bf). This completes the definition of ¥(w) = ().

Since 7 € OM(«), with probability one (X;(w)) € A (7) and so with probability
one, ¥(w) € 4 (7).

If m < n are integers let F; = U% T'F. Let { Y;} _ be the collection of maps
from € — A4 such that {Y(w)} = ¥(w). We define probability distributions
), Ty M3 0N A™ as follows:

m(x) = [{(Yo - -, Y,in)) = x} 0 B0 /u[ B+,
xXEA™.
my(x) = l‘«[{(Yo’ s Y, ) =x}n (Flf"-N'_m)c]/.“[(Flf+N'—m)c]’
xX€EA™,
m(x) = [{(Yo+ + Ypot) = X} 0 FEM=m] [ FEPM], x4,
((F£*™M~™)° denotes the complement of F/*"1~™) Note that on F 7+,
we have (Yo, - - -, Y,_) = (X - -, X,,_))- Using this fact and (b), we have

7 = 7. Now (F£+*M1~™) is the disjoint union of FJ'}Z*M~™ and some set G.
We have

w(G)=1-(Ny—m+ Du(F) — (N, — m + )u(F)

N+ N,—2m +2 Ni+Ny+2L—1
_1_( N, + N, + 2L w(Fg )
Also,

N —m+1
FL+N—m ] = 1— ( 1 )“ FNi+N+2L-1)
“[(L )] N, + N, +2L (73 )
Let 75 be the probability measure on 4™ such that

76(x) = u[{(Yo, - - -, ¥,,_y) = x} N G]/w(G), x€EA™
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We have m, = (1 — a)m, + ang, where a = w(G)/u[(FE*¥~™y]. By (c),
a <3[h(e/2) — |7 — =|). Thus, |7, — 7| < a|ng — m| < h(e/2) — |7 — =|, and
since 7, = 7, we have |7 — m,| < h(e/2). Now =, is absolutely continuous with
respect to « since for p-almost all w, (Y (w), - - -, Y;4,—1(®w) € 4,,(7) for all
i€ Z.

We now argue that 73 = p, . For w € Q, let (i }y-_,, be the sequence chosen
earlier satisfying (h) — (i). Let Bf =[iy + L,i, + L + N, — m), kK € Z. Then,
UR_oB¥ ={i € Z: T'w € FF*M~™)}. Thus, for p-almost all w, and each x €
A™,

k- —NzieB's((Y(w) > Yi+m—1("*’))’ x) -
(N + l)(N, —m+1) = b, (%),

7T3(X) = 1imN—>oo

since ¥(w) is Q, over each B, k € Z. Now p,, is invariant because Q, starts and
ends with the same sequence in 4™~!. We have dist(Y, - * - , ¥,,_,), the probabil-
ity distribution of (Y, - - - , Y,,_;) on A™, given as follows:

dist(Yo, - « -, Y,o_y) = p[ FLM7 oy + p[ (FLM) ]y

Now dist(Yy, - - - , Y,,_,) and m, are invariant and p[(F£*~™)] > 0 by (d), so
w, is invariant. Thus, 7, € O (7) and |7, — 7| < h(e/2). Setting &’ = p[FF*M1—m),
we have 1 > ¢’ > ¢/2, by (e) and (d). Thus, pick non-negative a,, - - - , ax such
that @, + - - - ax = ¢ and 7 = (1 — &), + S} ,qp,. Since T is aperiodic on
(©, ¥, p), p must be nonatomic. Thus, we may pick {Fj, - - -, Fg}, a partition
of F, such that p[U/"""T’F]l=a, i=1---,K Let (F)p*" ™ =
UL+L”"mTfE, i=1,---,K We now define ¥': @ - A®. Let w € Q; we define
(N2 _o where (y)) = ¥'(w). Let {i}7-_, be given by (h) — (i). For each k,
define (y;: i € By) to be Q; where j is the unique integer in the range 1 < j < K
such that T*%w € F,. Define y; = Yj(w), i & U, B,.

Let {Y/}72 _ be the collection of maps from & to 4 such that { Y/(w)} = ¥'(w),
w € . Define the following probability distributions on 4 ™:

7(x) = [{(Y6 -+, Yoo) = x} 0 (BN /e,
i=1---,K,x€A™
() = W[{((To- -+ Vo) = x) 0 (FEM")]/ (1= &), x €A™
Now if T'w & FL*M~™™ then (Y/(w), ), Y/mp_ (@) = (Y(w), - - -,

Ym_1(@). Thus #'=m, Also @] =p,,i=1,---,K (Argue as we did to

show T3 = lig,. J) .
Let P be the partltlon such that P/ = {Yo=J},J € A. Then dist,(V g~ IT-p)

= dist(Yy, - - m—p) = (1 — &)’ + K T = (1 - ¢&)m, + 2,_,ap,g = .
We now estimate |P - Pl For p-almost all w, |P — P|, =Yy # Xg] =

Neon 11 = 8(Y) (@), X/(w))]

2k--—N(ik+l - lk)

lin'lN —>00
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Since Y/(w) = X/(w) for j € Dy, this limit is no bigger than 2L + N)/QRL + N,
+ N,), which is less than € by (f).

LemMA 4. Let 7 be mixing. Let p € P,. Let k =2(m — 1) + L. Let P = {P’: j
€ A} be a partition ofSZ Lete >0.If |d1st (VPITP) — 2| < e/(2k + 1), there
exists a partmon P= {P’ J €A} such that dist, (Vg™ lT"P) € OM(7) and
(vg='T=P) - (vy~'T~'P)|, <e.

Proor. Let {Y;};2_, be the collection of mappings from © — A4 such that
Y, (w) = j if and only if T'w € P/. Let S = {(Yg, - * * , ¥,,_) € 4,,(7)}. Let F =

J___kT‘fS We will define a certain map ®: @ > A® suchthat ® e T = T, o &.
Then P will be the partition P/ = {w: ®(w), = j}. Let w € 2. We will define a
sequence (x,)2 _ to be ®(w). Let B(w) = {i € Z: T'w & F}. Let D(w) = {i €
B(w): i — 1 &€ B(w)}. For each j € D(w), let C(w) = [j, n], where Cy(w) C B(w)
and n + 1 € B(w). We have B(w) = Ujep,,)C(w), a disjoint union. Define x; =
Y (w), i & B(w). For each j € D(w), we define (x;: i € C(w)). Note that by choice

of F, C(w) has at least k elements. Define (x; - : :, Xj;,_2) =
(Y(w)’ ) j+m 2(“’)) =b and (xn m+2 """ xn) = (Yn—m+2(w)’ IR Yn(w))
= b'. Define (X, pm_15* * * 5 Xy pms1) to be 7.(b, b'), where r=(n—m+1) -

G+m-—-1+ l. This completes the definition of ®(w).

Let {X/};2 _. be the collection of mappings from & — A4 such that {X/(w)} =
®(w), w € Q. Let P be the partition such that P/ = {X; = j}. By construction,
{X/(w)} € A, (m) for every w. Therefore dist,(V {,""T“'IS) € 9 (7). Note that if

T'w € F, t}_len (‘Xi/’ e ’Xil+m—l) = (Yia R Yi+m—l)‘ Thus |(V6n-lT_iP) -
(VET'T™P)|, = pl(Xs, - -+ Xpo)) #* (Yo =, Vo)l < W(F9) < 2k + 1)
Bl(Yo, - -+, Y, )) & Ap(m)] < QK + D]e/Qk + 1) + 7(4,(m))]] = e.

Lemmas 3 and 4 give us the following.

THEOREM 2. Let w be mixing. Let p € &,. Given &€ > 0, there exists § > 0 such
that if P=(P/:jE€ A} isa partztzton of @ and |dist,(V§'~'T~'P) — @| <39, then
there exists a partition {P’ Jj € A) such that |P — P| p <& and
dist,(V ¢ “IT-ipy= 7.8 depends‘ only on € and w and not on P, T, or (R, F, p).

Now, given any 8§ > 0, and any invariant # on 4™, there exists P such that
|dist,(V§~'T~'P) — | <8 [5, Lemma 5, page 22]. Thus Theorem 2 implies
Theorem 1.

We are now in a position to find a P in Theorem 1 which will yield the marginal
distribution # simultaneously for all u € ¥,. To do this we need the following
ergodic decomposition theorem.

LEMMA 5. There exists a family { p,: @ € Q} C P, such that
(a) For any E € %, the map w— p(E) from Q to the real line is measurable.

(b) Forany p € 9, and E € F, W(E) = [qp(E)du(w).
(c) Forany p € 9, pl{w: p, = p} = L
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SKETCH OF PROOF. Let T, be the shift on (2, ). We have a measurable map
a: (2, ) - (Q%, ) such that a(w) = (T'w)2 _ . Let P,(Q®) and P () be
respectively the sets of Ty-ergodic, stationary, aperiodic probability measures and
Tg-aperiodic, stationary probability measures on %. a carries ¥, into (but not
onto) ¥,(2*) and &, into P (2%). By [6], there is a family {u.: x € Q) C
?,(2*) which satisfies the obvious analogues of (a)—(c) for the space (2%, ). Let
C be a countable subfield of ¥ which generates F. Let F = {w € Q: i, [x €
Q®: xy € C, some x; & T'C] =0, C € C}. Then F € ¥. Define {p,: @ € Q)} as
follows: if w & F, define p, to be some fixed element of ¥P,. If w € F, define p, so
that p (E) = p,,){x EQL*: x, € E}, E € §. We omit the tedious verification
that { p,: w € 2} c @, and (a)—(c) hold.

Fix for the rest of the paper the family { p,: @ € 2} c @, such that (a)—(c) of
Lemma 5 hold. For each p € 9, let 4, = {w: p, = p}. We have u(4,) = 1 and
w(4,) =0fory € P, p' #*p. {4,: p € P,} is an uncountable partition of Q.

LEMMA 6. Let 7 be mixing. Let € > 0. Let 8§ > 0 be given by Theorem 2. Suppose
|dist,, (Vg “IT~P) — 7| < &8 for all u € P,. Then for any n > 0, there exists P such
that [P P|, <eand|dist(Vy~'T~P) — a| <nforallp € 9,.

ProOF. Let € C ¥ be a countable field which generates ¥. Let P, P,, - - - be
an enumeration of all 4-indexed partitions whose sets come from €. Fix p € @,.
By Theorem 2, find P’ such that |P’ — P|, <e and dist,(V§~'T~'P") = 7. We
may pick P, so that [P/ — P’|, is so small that |P, — P|, <& and
|dist”(vo"T"'P)— 7| <7n. Let 4, = {w € Q: |P, - P|, <
e,|dist”a(v 'T~P,) — 7| <n). Let B, —{w wEA,,,weu,_oA} “n=
1,2,---. The Bjs partition Q. If for n=1,2,---,P, = (PJ:j € A}, define

P={P:je€ A} so that P/ = U (Pi N B). Let,uE?P Then 4, C B, C 4,
for a unique n. This implies that for each j € 4, Pn 4, = P/ N A for that
unique n. Consequently, since p(4,) = 1, we have |P — P w = |Pn Pl x <eand
|dist,(V g~ 'T~"F) — | = |dist, (V{," IT=P) — @| <.

LEMMA 7. Given 8 > O, there exists P such that |dist,(V ¢~ 'T ~'P) — #| <& for
allp € 9,.

PrOOF. A method of proof analogous to that of Lemma 6 will work here.

THEOREM 3. Let 7 be mixing. There exists P such that dist, (Vg™ 'T™'P) ==
forallpe ..

Proor. Pick positive numbers {¢}:2., so that 3¢, < oo. For each ¢ pick the
corresponding §; given by Theorem 2. We can assume 6; — 0. By Lemmas 6 and 7
find a sequence of partitions {P;};2, such that for all i=1, 2,---, and all
p € P, |dist,(V/,'T7P) — | <8 and |P,,, — P, <¢. Letting P, = {P/:j €
A}, we have %2, uw(P/, ,AP/) < oo for all j € A, p € @,. Therefore if we set
E’ = lim sup,_,, P/, it follows that lim,  , uw(P/AE’) =0, j € A, p € ?,. Letting
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A={a, -+ ,a) and defining P = {P/: j € A} to be the partition such that
Pr={w:w€E*w& E%1<t<s—1},1<s<k-1,

we have |P, — P|, — 0 for all p € ?,. We must have dist,(V §~'T “P) = = for all
p € @,. By Lemma 5, this must hold also for all p € &,.

DEFINITION. Let N be a positive integer. We say u € 9P, is N-decomposable if
there exists F € ¥ such that F, TF,- - -, T""'F are disjoint, T"F = F, and
WUy 'TF) = 1.

LeEMMA 8. Let « be ergodic but not mixing. Let r be the period of n*. Let p € ¥,.
Let dist,(V §~'T ~'P) = m. Then p. is r-decomposable.

PrOOF. This is clear from the proof of Lemma 1(b).

DerFINITION. If P = {P/: j € E} is a partition of ©, and if F € %, then P N F
is the partition {P/ N F:j € E} of F.

THEOREM 4. Let 7 be ergodic but not mixing. Let r be the period of m*. Then
there exists P such that dist,(V o=1T =P = « for all r-decomposable p € 9P ,.

ProoF. Find disjoint Cp, - - -, C,_; C A™" ! such that 3720 #{(i}, - - -, i,):
Gp s ip ) ECy (iys+*,iy) €ECyy} =1, where C, = Cp. Let F=nN2Z_,
Nj2o{(Xipspp* * * > Xipsjem-2) € C}. Let v = 7. Let v’ be the measure on @
such that »'(E) = w(E N F)/v(F), E € @°. Recall that {Z;}®_ is a stationary
ergodic Markov process under », where Z, = (X, - - - , X;,,,_,)- It follows that
{U}®, is a stationary mixing Markov process under »’, where U, =
z,,:--,2Z,,,_,) It follows that {(X,,- - -, X, ,,_)} is stationary and mixing
under »’ since (X, - - - , Xj,;,_) is a function of U,. Thus »" is stationary and
mixing relative to 7.

Let %, be a countable subfield of ¥ which generates 4. Let E,, E,, - - - be an
enumeration of the sets in %,. Letting I denote the indicator function of E,, define
F* € ¥ to be the set of all w € £ such that

(@) lim,_ n7 'S5 L (T¥ o) exists, 0<,j<r—1i=12-""

(b) There is a least i > 1 such that the r numbers {lim,_, ,n~'S} _I(T* *w):

0 < j <r — 1} are distinct.
(¢) For the i satisfying (b), lim, n"'S;_[z(T¥®) > lim, . n"'3%_,
I(T"Y), 1<j<r-1
It is not hard to see that F* TF*, ..., T" 'F* are disjoint, T"F* = F* and
plUs~'T'F*] = 1 for every r-decomposable p € @,. By Lemma 5, p[u§™'T'F*] =
1 for all r-decomposable p € 9,.

Let O = {(V:j € A"} be the partition of A% such that / = {(Xy, - - + , X,_))
= j}. Choose a positive integer k such that kir > m + r — 1. By Lemma 1, since »’
is T} stationary and mixing, dist,(V*(T;)~’Q) is a mixing distribution on
(4"). By Theorem 3, pick P= {ﬁf :j € A"}, a partition of &, such that
dist, (v ﬁ"(T’):‘ﬁ) = dist,(V ¥~ (T)~'Q), for every &’ on & such that T” is an
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aperiodic automorphism of (2, ¥, p’). Let P = {P/:j € A} be a partition of Q
such that

Pi A TF* = Ti[u {ﬁ(kl,...,k,)n F*:k,.=j}],jEA,
0<i<r-1

Then (V™ 'TP) N F* = P 0 F*. Let p € ®, be r-decomposable. We show
that dist, (Vv m=1T~ip) = 7. Define y’ on ¥ so that p'(E) = w(E N F*)/w(F*), E
€ 9. Slnce p’ is concentrated on F* and T"F* = F*, we obtain dist,( V 5~ 'T /P)
= dist,(V§~(T")~ iP). Since T” is an aperiodic automorphism of Q, F, ), we
have dlSt#(V k=1T=ip) = dist ( V K~ Y(T5)~'0). Now O = vV, X(T,)"'Q, where
Q ={Q/:j € A} is the partition of 4%° such that @/ = {X, =,}. Thus,
dist,( V ¢~ 'T ~/P) = dist,(V ¢~ 'T;7Q). Now dist,(V g~ 'T " 'P) =

‘2’ odist, (Vv f*"‘"T“P) and 7 = dist,(V ;,"-'T—"Q)

'2;_'d1st,,(vj+”‘"T ‘Q). Since [j,j+m—1]1C[0,kr—1], 0<j<r—1,
we have 7 = dist,(V g~ 'T ~'P).
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