ON CODING A STATIONARY PROCESS TO ACHIEVE A GIVEN MARGINAL DISTRIBUTION

By John C. Kieffer

University of Missouri-Rolla

The problem of coding a stationary process $\{X_i\}_{i=-\infty}^{\infty}$ onto a stationary process $\{Y_i\}_{i=-\infty}^{\infty}$ so that for some positive integer m, $(Y_0, Y_1, \dots, Y_{m-1})$ has a given marginal distribution is considered. The problem is solved for $\{X_i\}$ nonergodic as well as ergodic. The associated universal coding problem is also solved, where one seeks to find a coding function which yields the desired marginal distribution for each member of a class of possible distributions for $\{X_i\}$.

Introduction. Let (S, S) be a measurable space. Let $\{X_i\}_{i=-\infty}^{\infty}$ be a stationary (S, S)-valued process defined on some probability space. Let A be a finite set. Suppose it is desired to code $\{X_i\}$ onto a stationary A-valued process $\{Y_i\}_{i=-\infty}^{\infty}$. Letting (S^{∞}, S^{∞}) be the measurable space consisting of S^{∞} , the set of bilateral infinite sequences from S, and S^{∞} , the usual product σ -field, this means there is a measurable coding function $f: S^{\infty} \to A$ such that $Y_i = f(\{X_{i+j}\}_{j=-\infty}^{\infty})$, for each integer i. Suppose we wish to find f so that for some positive integer m, (Y_0, \cdots, Y_{m-1}) will have some previously specified marginal distribution π on A^m . For an ergodic process $\{X_i\}$, the solution to this problem follows easily from a result of Grillenberger and Krengel [1, Theorem 1.1]. In this paper we solve the problem for nonergodic stationary processes $\{X_i\}$. We also solve a related universal coding problem: given a family $\mathfrak P$ of possible distributions for $\{X_i\}$, find f so that the desired marginal is attained for every member of $\mathfrak P$. This type of problem would arise if the distribution of $\{X_i\}$ were unknown.

NOTATION. We fix for the remainder of the paper a finite set A, a positive integer $m \ge 2$, and a probability measure π on A^m . We assume π is an *invariant* distribution; that is, if X_1^* , X_2^* , \cdots , X_m^* are the successive projections from $A^m \to A$, we assume that $(X_1^*, \cdots, X_{m-1}^*)$ and (X_2^*, \cdots, X_m^*) have the same distribution on A^{m-1} under π . For $1 \le k \le m$, let π_k be the probability distribution on A^k which is the distribution of (X_1^*, \cdots, X_k^*) under π .

Let Z be the set of all integers. Let $\mathscr Q$ be the set of all subsets of A. We let $(A^{\infty}, \mathscr Q^{\infty})$ be the measurable space consisting of A^{∞} , the set of all bilateral sequences $x=(x_i)_{i=-\infty}^{\infty}$ from A, and $\mathscr Q^{\infty}$, the usual product σ -field. We let $\{X_i\}_{i=-\infty}^{\infty}$ be the family of all projections from $A^{\infty} \to A$; thus, $X_i(x)=x_i$, $i \in Z$. We let $T_A \colon A^{\infty} \to A^{\infty}$ be the shift transformation; thus, if $x=(x_i)$ then $T_A x=x'=(x_i')$, where $x_i'=x_{i+1}$, $i \in Z$.

Received January 1978.

AMS 1970 subject classifications. Primary 28A65, 60G10.

Key words and phrases. Stationary aperiodic process, ergodic process, stationary coding, mixing invariant marginal, ergodic decomposition.

If μ is a probability measure on \mathscr{C}^{∞} , for $n=1,2,\cdots$, let μ_n be the measure on A^n which is the distribution of (X_1,\cdots,X_n) under μ . If $(i_1,\cdots,i_m)\in A^m$, define $\pi(i_m|i_1,\cdots,i_{m-1})=\pi(i_1,\cdots,i_m)/\pi_{m-1}(i_1,\cdots,i_{m-1})$ if $\pi_{m-1}(i_1,\cdots,i_{m-1})>0$. Otherwise, define $\pi(i_m|i_1,\cdots,i_{m-1})=0$. For n>m, let π_n be the probability measure on A^n such that $\pi_n(i_1,\cdots,i_n)=\pi_{m-1}(i_1,\cdots,i_{m-1})\pi(i_m|i_1,\cdots,i_{m-1})\pi(i_{m+1}|i_2,\cdots,i_m)\cdots\pi(i_n|i_{n-m+1},\cdots,i_{n-1})$. Let $\hat{\pi}$ be the T_A -stationary probability measure on \mathscr{C}^{∞} such that $\hat{\pi}_n=\pi_n, n=1,2,\cdots,\hat{\pi}$ is called the *Markov extension* of π . (Markov extensions were previously considered in [1], [2], [3], and [4].) $\hat{\pi}$ is an (m-1)-Markovian measure.

If n < m, let $A_n(\pi) = \{(i_1, \dots, i_n) \in A^n : \pi_n(i_1, \dots, i_n) > 0\}$. If n > m, let $A_n(\pi) = \{(i_1, \dots, i_n) \in A^n : \pi(i_1, \dots, i_m) > 0, \pi(i_2, \dots, i_{m+1}) > 0, \dots, \pi(i_{n-m+1}, \dots, i_n) > 0\}$. Let $A_{\infty}(\pi) = \{x \in A^{\infty} : \pi(x_i, \dots, x_{i+m-1}) > 0, i \in Z\}$. Note that $A_{\infty}(\pi)$ is a set of $\hat{\pi}$ probability 1.

Let $\{Z_i\}_{i=-\infty}^{\infty}$ be the process where $Z_i=(X_i,\cdots,X_{i+m-2})$. Then $\{Z_i\}$ is a stationary Markov process under $\hat{\pi}$. Let $\pi^*: A_{m-1}(\pi) \times A_{m-1}(\pi) \to [0,1]$ be the stochastic matrix such that

$$\pi^*((i_1, \dots, i_{m-1}), (i'_1, \dots, i'_{m-1})) = 0 \text{ if } (i'_1, \dots, i'_{m-2}) \neq (i_2, \dots, i_{m-1})$$
$$= \pi(i'_{m-1}|i_1, \dots, i_{m-1}), \qquad \text{otherwise.}$$

Then, $\hat{\pi}[Z_{i+1} = x | Z_i = x'] = \pi^*(x', x), x, x' \in A_{m-1}(\pi).$

We define π to be *mixing* if T_A is mixing with respect to $\hat{\pi}$, and define π to be *ergodic* if T_A is ergodic with respect to $\hat{\pi}$. It is easily seen that π is mixing if and only if $\{Z_i\}$ is a mixing process under $\hat{\pi}$, and π is ergodic if and only if $\{Z_i\}$ is an ergodic process under $\hat{\pi}$. It is well-known what it means for a stationary Markov process to be mixing or ergodic. Thus π is mixing if and only if π^* is regular (that is, some power of π^* has all positive elements), or if and only if π^* is irreducible and aperiodic. π is ergodic if and only if π^* is irreducible. The following lemma gives another characterization of these concepts.

- LEMMA 1. (a) π is ergodic if and only if there exists a probability measure μ on \mathfrak{C}^{∞} , stationary and ergodic with respect to T_A , such that $\mu_m = \pi$.
- (b) π is mixing if and only if there exists a probability measure μ on \mathfrak{C}^{∞} , stationary and mixing with respect to T_A , such that $\mu_m = \pi$.
- PROOF. (a) If π is ergodic then $\hat{\pi}$ is ergodic. Conversely, suppose π is not ergodic. Then there exists $C \subset A^{m-1}$ such that

$$0 < \pi\{(i_1, \dots, i_m): (i_1, \dots, i_{m-1}) \in C\}$$

= $\pi\{(i_1, \dots, i_m): (i_1, \dots, i_{m-1}) \in C, (i_2, \dots, i_m) \in C\} < 1.$

Suppose μ is a T_A -stationary probability measure on \mathscr{Q}^{∞} such that $\mu_m = \pi$. Let $F = \bigcap_{i=-\infty}^{\infty} \{(X_i, \cdots, X_{i+m-2}) \in C\}$. Then $T_A F = F$ and $0 < \mu(F) < 1$, so μ is not ergodic.

(b) If π is mixing then $\hat{\pi}$ is mixing. Conversely, suppose π is not mixing. If π is not ergodic, by (a) there is no mixing μ on \mathcal{C}^{∞} such that $\mu_m = \pi$. Thus we may

suppose π is not mixing but ergodic. Let r be the period of π^* . There exist disjoint sets $C_0, \dots, C_{r-1} \subset A^{m-1}$ such that $\sum_{i=0}^{r-1} \pi\{(i_1, \dots, i_m): (i_1, \dots, i_{m-1}) \in C_i, (i_2, \dots, i_m) \in C_{i+1}\} = 1$. (In the preceding $C_r = C_0$.) Suppose μ on \mathscr{C}^{∞} is stationary and $\mu_m = \pi$. Set $F = \bigcap_{i=-\infty}^{\infty} \bigcap_{j=0}^{r-1} \{(X_{ir+j}, \dots, X_{ir+j+m-2}) \in C_j\}$. Then F, $T_A F$, \dots , $T_A^{r-1} F$ are disjoint, $T_A^r F = F$, and $\mu(\bigcup_{j=0}^{r-1} T_A^j F) = 1$. Thus μ cannot be mixing since $\lim_{i\to\infty} \mu(T_A^i F \cap F)$ does not exist.

We fix now a standard measurable space (Ω, \mathcal{F}) and a one-to-one bimeasurable mapping T of Ω onto itself. Let \mathcal{P}_s be the family of all probability measures μ on \mathcal{F} such that T is an aperiodic measure-preserving transformation on $(\Omega, \mathcal{F}, \mu)$. Let \mathcal{P}_e be the family of all probability measures μ on \mathcal{F} such that T is an aperiodic ergodic measure-preserving transformation on $(\Omega, \mathcal{F}, \mu)$. We assume $\mathcal{P}_s \neq \phi$. Then by ergodic decomposition theory, $\mathcal{P}_e \neq \phi$.

By a partition P of Ω we mean a finite measurable partition $P = \{P^j: j \in E\}$. (Thus the index set E is finite.) Given $P = \{P^j: j \in E\}$ and $i \in Z$, T^iP is the partition $T^iP = \{T^iP^j: j \in E\}$. If $m \le n$, $\bigvee_{i=m}^n T^{-i}P$ is the partition indexed by E^{n-m+1} given by

$$\{T^{-m}P^{j_1}\cap T^{-(m+1)}P^{j_2}\cap \cdots \cap T^{-n}P^{j_{n-m+1}}: (j_1,\cdots,j_{n-m+1})\in E^{n-m+1}\}.$$

If $\mu \in \mathcal{P}_s$, and $P = \{P^j : j \in E\}$ is a partition, then $\mathrm{dist}_{\mu}P$ is the probability measure λ on E such that $\lambda(j) = \mu(P^j), j \in E$.

The following theorem is an easy consequence of Theorem 1.1 of [1].

THEOREM 1. Let $\mu \in \mathcal{P}_e$. Let π be mixing. Then there exists a partition $P = \{P^j : j \in A\}$ of Ω such that $\operatorname{dist}_{\mu}(\vee_0^{m-1}T^{-i}P) = \pi$.

REMARK. We may translate this theorem into the context of coding one stationary process onto another to achieve a given marginal distribution. For, suppose $\{X_i\}$ is an aperiodic ergodic (S, \mathbb{S}) -valued process defined on some probability space $(\Omega', \mathbb{F}', \lambda')$. In Theorem 1, take (Ω, \mathbb{F}) to be $(S^{\infty}, \mathbb{S}^{\infty})$ with T the shift on S^{∞} . Take μ on \mathbb{S}^{∞} to be the distribution of $\{X_i\}$. Let P be the partition of S^{∞} given by Theorem 1. Define $f: S^{\infty} \to A$ so that f(x) = j if and only if $x \in P^j$, where $x \in S^{\infty}, j \in A$. Then f codes $\{X_i\}$ onto an A-valued process $\{Y_i\}$ such that the distribution of (Y_0, \dots, Y_{m-1}) is $\mathrm{dist}_{\mu}(V_0^{m-1}T^{-i}P)$, which is π . In this paper we will describe our coding results in terms of the existence of a certain partition P rather than in terms of a certain coding function f, since it makes the notation simpler. But the reader may easily translate any theorem we give into a theorem about coding one stationary process onto another to achieve a desired marginal distribution.

PROOF OF THEOREM 1. Let $H(\hat{\pi})$ denote the entropy of $\hat{\pi}$. From [3], it may be calculated as follows: for each $i \in A_{m-1}(\pi)$, let p_i be the probability vector $p_i = (\pi^*(i,j): j \in A_{m-1}(\pi))$. Let $H(p_i)$ be the entropy of p_i . Then $H(\hat{\pi}) = \sum_i \pi_{m-1}(i)H(p_i)$. If $H(\hat{\pi}) = 0$ then $H(p_i) = 0$ for all i. This means every row of π^*

has only one nonzero element. Thus every power of π^* has this form. Since π^* is regular, this implies $A_{m-1}(\pi)$ has only one element. Then, for some $a^* \in A$, $\pi(a^*, \cdots, a^*) = 1$. In this case, Theorem 1 follows trivially. (Take $P^j = \Omega, j = a^*$; $P^j = \phi$, otherwise.) Thus, we can assume $H(\hat{\pi}) > 0$. Find a partition Q of Ω such that the entropy $H_{\mu}(Q, T)$ of Q with respect to T is less than $H(\hat{\pi})$ and Q contains a set of irrational measure. Let \mathcal{F}_Q be the sub- σ -field of \mathcal{F} generated by $\{T^iQ: i \in Z\}$. Let μ_Q be the restriction of μ to \mathcal{F}_Q . Let T_Q be the automorphism of $(\Omega, \mathcal{F}_Q, \mu_Q)$ induced by T. T_Q is ergodic and aperiodic. The entropy $H(T_Q)$ of T_Q is $H_{\mu}(Q, T) < H(\hat{\pi})$. Thus by Theorem 1.1 of [1], there exists a \mathcal{F}_Q -measurable partition $P = \{P^j: j \in A\}$ such that $\operatorname{dist}_{\mu}(V_0^{m-1}T_Q^{-i}P) = \pi$ and $\{T^iP: i \in Z\}$ generate \mathcal{F}_Q .

Theorem 1 allows us to answer a question posed at the end of [3]. Suppose the invariant distribution π satisfies $\pi(x) > 0$, $x \in A^m$. It was asked at the end of [3] whether there is an ergodic μ on \mathscr{C}^{∞} of entropy zero such that $\mu_m = \pi$. Since π is mixing (π^* is clearly regular), choose (Ω , \mathscr{F} , μ) and $T: \Omega \to \Omega$ so that $\mu \in \mathscr{P}_e$ and $H_{\mu}(T) = 0$. Find the P given by Theorem 1. Using P define an ergodic A-valued process $\{X_i\}$ with the distribution of $\{X_0, \dots, X_{m-1}\}$ equal to π . $\{X_i\}$ has entropy 0, so let μ on \mathscr{C}^{∞} be the distribution of $\{X_i\}$.

We note that Theorem 1 becomes false if we require only that π be ergodic. For by Lemma 1, if μ is mixing, so is π . So if we want to extend Theorem 1 to a π which is ergodic but not mixing, we will have to require that μ be ergodic but not mixing. This question is settled in Theorem 4. If π is not ergodic, then by Lemma 1 there is no ergodic μ which yields the marginal π . Since we want to code at least ergodic μ , there is no point in considering nonergodic π .

Another possible extension of Theorem 1 would be to find P so that $\operatorname{dist}_{\mu}(\ V\ _0^{m-1}T^{-i}P)=\pi$ for all $\mu\in \mathcal{P}_s$. This result we will obtain in Theorem 3. To get Theorem 3, we will need a sharpening of Theorem 1, namely Theorem 2. Also, from Theorem 2 we can get Theorem 1 as a corollary without having to use Theorem 1.1 of [1] to prove Theorem 1 as we did. This is of interest because the proof of Theorem 1.1 of [1] is very difficult. The proof of Theorem 2 we will give will be an easy application of some lemmas from [1].

DEFINITIONS. If π_1 and π_2 are probability distributions on A^m define $|\pi_1 - \pi_2| = \sum_{i \in A^m} |\pi_1(i) - \pi_2(i)|$. If $P = \{P^j : j \in E\}$ and $Q = \{Q^j : j \in E\}$ are two partitions of Ω and $\mu \in \mathcal{P}_s$, let $|P - Q|_{\mu} = \frac{1}{2} \sum_j \mu(P^j \Delta Q^j)$. Define $\mathfrak{M}(\pi)$ to be the set of all invariant probability measures $\tilde{\pi}$ on A^m such that $\tilde{\pi}$ is absolutely continuous with respect to π .

If n > m, and $Q = (i_1, \dots, i_n) \in A^n$, define μ_Q to be the probability measure on A^m such that $\mu_Q(x) = (n - m + 1)^{-1} \sum_{j=1}^{n-m+1} \delta((i_j, \dots, i_{j+m-1}), x), x \in A^m$. $(\delta(i, j))$ denotes the Kronecker delta: $\delta(i, j) = 1$ if i = j; $\delta(i, j) = 0$, $i \neq j$.)

If π is mixing, then since π^* is regular we may find a positive integer L > m and for each $j \ge L$ a map τ_j : $A^{m-1} \times A^{m-1} \to A^j$ such that if $b, b' \in A_{m-1}(\pi)$ then $b\tau_i(b, b')b' \in A(\pi)_{2(m-1)+j}$.

The following lemma we will need later. It is a combination of Lemmas 2.1 and 2.3 of [1].

LEMMA 2. Let $0 < \varepsilon < 1$. Let π be mixing. There exists $h(\varepsilon) > 0$ and a positive integer $N(\varepsilon) > 2m$ such that given $n > N(\varepsilon)$ and any $Q^* \in A_{m-1}(\pi)$, there exist finitely many sequences Q_1, Q_2, \dots, Q_K from $A_n(\pi)$, beginning and ending with Q^* , for which the following holds:

If $\tilde{\pi} \in \mathfrak{N}(\pi)$ and $|\tilde{\pi} - \pi| < h(\varepsilon)$, and if $1 > \varepsilon' > \varepsilon$, there exist nonnegative numbers $\alpha_1, \alpha_2, \cdots, \alpha_K$, such that $\sum_{i=1}^K \alpha_i = \varepsilon'$ and $\pi = (1 - \varepsilon')\tilde{\pi} + \sum_{i=1}^K \alpha_i \mu_{\Omega}$.

LEMMA 3. Let π be mixing. Let $\mu \in \mathcal{P}_e$. Let $0 < \varepsilon < 1$. Then if $P = \{P^j : j \in P\}$ A) is a partition of Ω satisfying $\operatorname{dist}_{u}(\mathsf{V}_{0}^{m-1}T^{-i}P) \in \mathfrak{M}(\pi)$ and $|\operatorname{dist}_{u}(\mathsf{V}_{0}^{m-1}T^{-i}P)|$ $-\pi | < h(\varepsilon/2)$, there exists a partition $\tilde{P} = \{\tilde{P}^j : j \in A\}$ such that $\operatorname{dist}_{\mu}(\vee_{0}^{m-1}T^{-i}\tilde{P})=\pi \ and \ |P-\tilde{P}|_{\mu}<\varepsilon.$

PROOF. Let $\bar{\pi} = \operatorname{dist}_{u}(\bigvee_{i=0}^{m-1} T^{-i}P)$. By a strong form of the Rohlin-Kakutani Theorem [7, page 22], we may find $F \in \mathcal{F}$ and positive integers N_1 and N_2 such

- (a) $\{T^iF: i = 0, \dots, N_1 + N_2 + 2L 1\}$ are disjoint.

(a) {
$$I : I = 0, \dots, N_1 + N_2 + 2L - 1$$
} are disjoint.
(b) $\mu(E \cap F) = \mu(E)\mu(F), E \in \bigvee_{0}^{(N_1 + N_2 + 2L)m} T^{-i}P.$
(c) $\frac{N_1 + N_2 + 2L - (N_1 + N_2 - 2m + 2)\mu(\bigcup_{0}^{N_1 + N_2 + 2L - 1}T^{j}F)}{N_1 + N_2 + 2L - (N_1 - m + 1)\mu(\bigcup_{0}^{N_1 + N_2 + 2L - 1}T^{j}F)}$

$$< \frac{h(\varepsilon/2) - |\overline{\pi} - \pi|}{2}.$$

- $\begin{array}{l} \text{(d)} \ \mu(\cup_{0}^{N_{1}+N_{2}+2L-1}T^{j}F) < 1. \\ \text{(e)} \ (\frac{N_{1}-m+1}{N_{1}+N_{2}+2L})\mu(\cup_{0}^{N_{1}+N_{2}+2L-1}T^{j}F) > \varepsilon/2. \end{array}$

(f)
$$\frac{2L + N_1}{N_1 + N_2 + 2L} < \varepsilon$$
.

(g) $N_1 \ge N(\varepsilon/2)$.

Fix $Q^* \in A_{m-1}(\pi)$. By Lemma 2, pick $Q_1, \dots, Q_K \in A_N(\pi)$ beginning and ending with Q^* so that $|\tilde{\pi} - \pi| < h(\varepsilon/2)$, $\tilde{\pi} \in \mathfrak{M}(\pi)$ and $1 > \varepsilon' \ge \varepsilon/2$ imply the existence of nonnegative $\alpha_1, \dots, \alpha_K$ such that $\alpha_1 + \dots + \alpha_K = \varepsilon'$ and $\pi = (1 - 1)$ $\varepsilon')\tilde{\pi} + \sum_{i=1}^K \alpha_i \mu_{O_i}$

Let $\{X_i'\}_{i=-\infty}^{\infty}$ be the collection of maps from Ω to A such that $X_i'(\omega)=j$ if and only if $T^i\omega\in P^j$. We will define a map $\Psi\colon\Omega\to A^\infty$ such that $T_A\circ\Psi=\Psi\circ T$. At the end of the proof we will have to adjust Ψ to obtain a map $\Psi': \Omega \to A^{\infty}$ such that $T_A \circ \Psi' = \Psi' \circ T$. Then \tilde{P} will be the partition $\tilde{P}^j = \{\omega : \Psi'(\omega)_0 = j\}$.

Let $\omega \in \Omega$. We wish to define $\Psi(\omega)$. Say $\Psi(\omega) = (y_i)_{i=-\infty}^{\infty}$, where now we have to define each $y_i \in A$. Let $\{i_k\}_{k=-\infty}^{\infty}$ be a sequence of integers such that

- (h) $\cdot \cdot \cdot < i_k < i_{k+1} < \cdot \cdot \cdot$
- (i) $\{i_k\} = \{i \in \mathbb{Z}: T^i\omega \in F\}.$

If $m \le n$ are integers, we let $[m, n] = \{m, m + 1, \dots, n\}$. We need to define

 $(y_i: i \in [i_k, i_{k+1} - 1])$ for each $k \in \mathbb{Z}$. To do this, for each k divide $[i_k, i_{k+1} - 1]$ into 4 parts: $A_k = [i_k, i_k + L - 1]$, $B_k = [i_k + L, i_k + L + N_1 - 1]$, $C_k = [i_k + L + N_1, i_k + 2L + N_1 - 1]$, $D_k = [i_k + 2L + N_1, i_{k+1} - 1]$. Note that A_k , B_k , C_k consist of L, N_1 , L consecutive integers, respectively. D_k contains at least N_2 consecutive integers since $i_{k+1} - i_k \ge N_1 + N_2 + 2L$. First, for each k we define $\Psi(\omega)$ over B_k and D_k . For $k \in \mathbb{Z}$, define $(y_i: i \in D_k)$ to be $(X_i'(\omega): i \in D_k)$, and define $(y_i: i \in B_k)$ to be Q_1 . Now we need to define $\Psi(\omega)$ over each A_k and C_k . For each k, let b_1^k , b_2^k , b_3^k , b_4^k be the following 4 blocks from A^{m-1} :

 $b_1^k = \text{last } m - 1 \text{ entries of } \Psi(\omega) \text{ in } D_{k-1}.$

 $b_2^k = \text{first } m - 1 \text{ entries of } \Psi(\omega) \text{ in } B_k$.

 $b_3^k = \text{last } m - 1 \text{ entries of } \Psi(\omega) \text{ in } B_k.$

 $b_4^k = \text{first } m - 1 \text{ entries of } \Psi(\omega) \text{ in } D_k.$

Since $\Psi(\omega)$ was defined over the B_k 's and D_k 's first, b_1^k, \dots, b_4^k are defined. (In fact, $b_2^k = b_3^k = Q^*$.) For each $k \in \mathbb{Z}$, define $(y_i : i \in A_k)$ to be $\tau_L(b_1^k, b_2^k)$ and define $(y_i : i \in C_k)$ to be $\tau_L(b_3^k, b_4^k)$. This completes the definition of $\Psi(\omega) = (y_i)$. Since $\overline{\pi} \in \mathfrak{M}(\pi)$, with probability one $(X_i'(\omega)) \in A_{\infty}(\pi)$ and so with probability

one, $\Psi(\omega) \in A_{\infty}(\pi)$.

If $m \le n$ are integers let $F_m^n = \bigcup_m^n T^i F$. Let $\{Y_i\}_{i=-\infty}^{\infty}$ be the collection of maps from $\Omega \to A$ such that $\{Y_i(\omega)\} = \Psi(\omega)$. We define probability distributions π_1 , π_2 , π_3 on A^m as follows:

$$\pi_1(x) = \mu \Big[\big\{ (Y_0, \cdots, Y_{m-1}) = x \big\} \cap F_{N_1 + 2L}^{N_1 + 2L + N_2 - m} \Big] / \mu \Big[F_{N_1 + 2L}^{N_1 + 2L + N_2 - m} \Big],$$

$$x \in A^m.$$

$$\pi_2(x) = \mu \Big[\{ (Y_0, \cdots, Y_{m-1}) = x \} \cap (F_L^{L+N_1-m})^c \Big] / \mu \Big[(F_L^{L+N_1-m})^c \Big],$$

$$x \in A^m$$

$$\pi_3(x) = \mu \left[\left\{ (Y_0, \cdots, Y_{m-1}) = x \right\} \cap F_L^{L+N_1-m} \right] / \mu \left[F_L^{L+N_1-m} \right], \quad x \in A^m.$$

 $((F_L^{L+N_1-m})^c$ denotes the complement of $F_L^{L+N_1-m}$.) Note that on $F_{N_1+2L}^{N_1+2L+N_2-m}$, we have $(Y_0, \dots, Y_{m-1}) = (X'_0, \dots, X'_{m-1})$. Using this fact and (b), we have $\pi_1 = \overline{\pi}$. Now $(F_L^{L+N_1-m})^c$ is the disjoint union of $F_{N_1+2L}^{N_1+2L+N_2-m}$ and some set G. We have

$$\mu(G) = 1 - (N_1 - m + 1)\mu(F) - (N_2 - m + 1)\mu(F)$$
$$= 1 - \left(\frac{N_1 + N_2 - 2m + 2}{N_1 + N_2 + 2L}\right)\mu(F_0^{N_1 + N_2 + 2L - 1}).$$

Also,

$$\mu\Big[\big(F_L^{L+N_1-m}\big)^c\Big]=1-\bigg(\frac{N_1-m+1}{N_1+N_2+2L}\bigg)\mu\big(F_0^{N_1+N_2+2L-1}\big).$$

Let π_G be the probability measure on A^m such that

$$\pi_G(x) = \mu [\{(Y_0, \cdots, Y_{m-1}) = x\} \cap G] / \mu(G), \qquad x \in A^m.$$

We have $\pi_2 = (1 - \alpha)\pi_1 + \alpha\pi_G$, where $\alpha = \mu(G)/\mu[(F_L^{L+N_1-m})^c]$. By (c), $\alpha < \frac{1}{2}[h(\varepsilon/2) - |\bar{\pi} - \pi|]$. Thus, $|\pi_2 - \pi_1| < \alpha|\pi_G - \pi_1| < h(\varepsilon/2) - |\bar{\pi} - \pi|$, and since $\pi_1 = \bar{\pi}$, we have $|\pi - \pi_2| < h(\varepsilon/2)$. Now π_2 is absolutely continuous with respect to π since for μ -almost all ω , $(Y_i(\omega), \cdots, Y_{i+m-1}(\omega)) \in A_m(\pi)$ for all $i \in Z$.

We now argue that $\pi_3 = \mu_{Q_1}$. For $\omega \in \Omega$, let $\{i_k\}_{k=-\infty}^{\infty}$ be the sequence chosen earlier satisfying (h) - (i). Let $B_k^* = [i_k + L, i_k + L + N_1 - m], \ k \in \mathbb{Z}$. Then, $\bigcup_{k=-\infty}^{\infty} B_k^* = \{i \in \mathbb{Z}: T^i \omega \in F_L^{L+N_1-m}\}$. Thus, for μ -almost all ω , and each $x \in A^m$,

$$\pi_3(x) = \lim_{N \to \infty} \frac{\sum_{k=-N}^{N} \sum_{i \in B_k^*} \delta((Y_i(\omega), \cdots, Y_{i+m-1}(\omega)), x)}{(2N+1)(N_1 - m + 1)} = \mu_{Q_1}(x),$$

since $\Psi(\omega)$ is Q_1 over each B_k , $k \in \mathbb{Z}$. Now μ_{Q_1} is invariant because Q_1 starts and ends with the same sequence in A^{m-1} . We have $\operatorname{dist}(Y_0, \dots, Y_{m-1})$, the probability distribution of (Y_0, \dots, Y_{m-1}) on A^m , given as follows:

$$\operatorname{dist}(Y_0, \cdots, Y_{m-1}) = \mu \left[F_L^{L+N_1-m} \right] \pi_3 + \mu \left[\left(F_L^{L+N_1-m} \right)^c \right] \pi_2.$$

Now dist (Y_0, \dots, Y_{m-1}) and π_3 are invariant and $\mu[(F_L^{L+N_1-m})^c] > 0$ by (d), so π_2 is invariant. Thus, $\pi_2 \in \mathfrak{M}(\pi)$ and $|\pi_2 - \pi| < h(\varepsilon/2)$. Setting $\varepsilon' = \mu[F_L^{L+N_1-m}]$, we have $1 > \varepsilon' > \varepsilon/2$, by (e) and (d). Thus, pick non-negative $\alpha_1, \dots, \alpha_K$ such that $\alpha_1 + \dots + \alpha_K = \varepsilon'$ and $\pi = (1 - \varepsilon')\pi_2 + \sum_{i=1}^K \alpha_i \mu_{Q_i}$. Since T is aperiodic on $(\Omega, \mathfrak{F}, \mu)$, μ must be nonatomic. Thus, we may pick $\{F_1, \dots, F_K\}$, a partition of F, such that $\mu[\bigcup_{j=L}^{L+N_1-m}T^jF_i] = \alpha_i$, $i = 1, \dots, K$. Let $(F_i)_L^{L+N_1-m} = \bigcup_{j=L}^{L+N_1-m}T^jF_i$, $i = 1, \dots, K$. We now define $\Psi' \colon \Omega \to A^{\infty}$. Let $\omega \in \Omega$; we define $(y_i')_{i=-\infty}^{\infty}$ where $(y_i') = \Psi'(\omega)$. Let $\{i_k\}_{k=-\infty}^{\infty}$ be given by (h) - (i). For each k, define $(y_i': i \in B_k)$ to be Q_j where j is the unique integer in the range $1 \le j \le K$ such that $T^{i_k}\omega \in F_i$. Define $y_i' = Y_i(\omega)$, $i \notin \bigcup_k B_k$.

Let $\{Y_i'\}_{i=-\infty}^{\infty}$ be the collection of maps from Ω to A such that $\{Y_i'(\omega)\} = \Psi'(\omega)$, $\omega \in \Omega$. Define the following probability distributions on A^m :

$$\pi'_{i}(x) = \mu \Big[\{ (Y'_{0}, \cdots, Y'_{m-1}) = x \} \cap (F_{i})_{L}^{L+N_{1}-m} \Big] / \alpha_{i},$$

$$i = 1, \cdots, K, x \in A^{m};$$

$$\pi'(x) = \mu \Big[\{ (Y'_{0}, \cdots, Y'_{m-1}) = x \} \cap (F_{L}^{L+N_{1}-m})^{c} \Big] / (1 - \varepsilon'), x \in A^{m}.$$

Now if $T^i\omega \notin F_L^{L+N_1-m}$, then $(Y_i'(\omega), \cdots, Y_{i-m-1}(\omega)) = (Y_i(\omega), \cdots, Y_{i+m-1}(\omega))$. Thus $\pi' = \pi_2$. Also $\pi_i' = \mu_{Q_i}$, $i = 1, \cdots, K$. (Argue as we did to show $\pi_3 = \mu_{Q_i}$.)

Let \tilde{P} be the partition such that $\tilde{P}^j = \{Y_0' = j\}, j \in A$. Then $\operatorname{dist}_{\mu}(\vee_0^{m-1}T^{-i}\tilde{P})$ = $\operatorname{dist}(Y_0', \dots, Y_{m-1}') = (1 - \varepsilon')\pi' + \sum_{i=1}^K \alpha_i \pi_i' = (1 - \varepsilon')\pi_2 + \sum_{i=1}^K \alpha_i \mu_{Q_i} = \pi$. We now estimate $|\tilde{P} - P|_{\mu}$. For μ -almost all ω , $|\tilde{P} - P|_{\mu} = \mu[Y_0' \neq X_0'] =$

$$\lim_{N \to \infty} \frac{\sum_{k=-N}^{N} \sum_{j=i_{k}}^{i_{k+1}-1} \left[1 - \delta(Y_{j}'(\omega), X_{j}'(\omega))\right]}{\sum_{k=-N}^{N} (i_{k+1} - i_{k})}.$$

Since $Y'_j(\omega) = X'_j(\omega)$ for $j \in D_k$, this limit is no bigger than $(2L + N_1)/(2L + N_1 + N_2)$, which is less than ε by (f).

LEMMA 4. Let π be mixing. Let $\mu \in \mathfrak{P}_e$. Let k = 2(m-1) + L. Let $P = \{P^j: j \in A\}$ be a partition of Ω . Let $\varepsilon > 0$. If $|\mathrm{dist}_{\mu}(\vee_0^{m-1}T^{-i}P) - \pi| < \varepsilon/(2k+1)$, there exists a partition $\tilde{P} = \{\tilde{P}^j: j \in A\}$ such that $\mathrm{dist}_{\mu}(\vee_0^{m-1}T^{-i}\tilde{P}) \in \mathfrak{M}(\pi)$ and $|(\vee_0^{m-1}T^{-i}\tilde{P}) - (\vee_0^{m-1}T^{-i}P)|_{\mu} < \varepsilon$.

PROOF. Let $\{Y_i\}_{i=-\infty}^{\infty}$ be the collection of mappings from $\Omega \to A$ such that $Y_i(\omega) = j$ if and only if $T^i\omega \in P^j$. Let $S = \{(Y_0, \cdots, Y_{m-1}) \in A_m(\pi)\}$. Let $F = \bigcap_{j=-k}^k T^{-j}S$. We will define a certain map $\Phi \colon \Omega \to A^{\infty}$ such that $\Phi \circ T = T_A \circ \Phi$. Then \tilde{P} will be the partition $\tilde{P}^j = \{\omega \colon \Phi(\omega)_0 = j\}$. Let $\omega \in \Omega$. We will define a sequence $(x_i)_{i=-\infty}^{\infty}$ to be $\Phi(\omega)$. Let $B(\omega) = \{i \in Z \colon T^i\omega \notin F\}$. Let $D(\omega) = \{i \in B(\omega) \colon i-1 \notin B(\omega)\}$. For each $j \in D(\omega)$, let $C_j(\omega) = [j,n]$, where $C_j(\omega) \subset B(\omega)$ and $n+1 \notin B(\omega)$. We have $B(\omega) = \bigcup_{j \in D(\omega)} C_j(\omega)$, a disjoint union. Define $x_i = Y_i(\omega)$, $i \notin B(\omega)$. For each $j \in D(\omega)$, we define $(x_i \colon i \in C_j(\omega))$. Note that by choice of F, $C_j(\omega)$ has at least k elements. Define $(x_j, \cdots, x_{j+m-2}) = (Y_j(\omega), \cdots, Y_{j+m-2}(\omega)) = b$ and $(x_{n-m+2}, \cdots, x_n) = (Y_{n-m+2}(\omega), \cdots, Y_n(\omega)) = b'$. Define $(x_{j+m-1}, \cdots, x_{n-m+1})$ to be $\tau_r(b, b')$, where r = (n-m+1) - (j+m-1) + 1. This completes the definition of $\Phi(\omega)$.

Let $\{X_i'\}_{i=-\infty}^{\infty}$ be the collection of mappings from $\Omega \to A$ such that $\{X_i'(\omega)\} = \Phi(\omega)$, $\omega \in \Omega$. Let \tilde{P} be the partition such that $\tilde{P}^j = \{X_0' = j\}$. By construction, $\{X_i'(\omega)\} \in A_{\infty}(\pi)$ for every ω . Therefore $\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}\tilde{P}) \in \mathfrak{M}(\pi)$. Note that if $T^i\omega \in F$, then $(X_i', \cdots, X_{i+m-1}') = (Y_i, \cdots, Y_{i+m-1})$. Thus $|(\bigvee_{0}^{m-1}T^{-i}P) - (\bigvee_{0}^{m-1}T^{-i}\tilde{P})|_{\mu} = \mu[(X_0', \cdots, X_{m-1}') \neq (Y_0, \cdots, Y_{m-1})] \leq \mu(F^c) \leq (2k+1)$ $\mu[(Y_0, \cdots, Y_{m-1}) \not\in A_m(\pi)] < (2k+1)[\varepsilon/(2k+1) + \pi[(A_m(\pi))^c]] = \varepsilon$.

Lemmas 3 and 4 give us the following.

THEOREM 2. Let π be mixing. Let $\mu \in \mathcal{P}_e$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $P = \{P^j : j \in A\}$ is a partition of Ω and $|\mathrm{dist}_{\mu}(\vee_0^{m-1}T^{-i}P) - \pi| < \delta$, then there exists a partition $\tilde{P} = \{\tilde{P}^j : j \in A\}$ such that $|\tilde{P} - P|_{\mu} < \varepsilon$ and $\mathrm{dist}_{\mu}(\vee_0^{m-1}T^{-i}\tilde{P}) = \pi$. δ depends only on ε and π and not on P, T, or $(\Omega, \mathcal{F}, \mu)$.

Now, given any $\delta > 0$, and any invariant π on A^m , there exists P such that $|\operatorname{dist}_{\mu}(\vee_0^{m-1}T^{-i}P) - \pi| < \delta$ [5, Lemma 5, page 22]. Thus Theorem 2 implies Theorem 1.

We are now in a position to find a P in Theorem 1 which will yield the marginal distribution π simultaneously for all $\mu \in \mathcal{P}_s$. To do this we need the following ergodic decomposition theorem.

LEMMA 5. There exists a family $\{\mu_{\omega} : \omega \in \Omega\} \subset \mathcal{P}_{e}$ such that

- (a) For any $E \in \mathcal{F}$, the map $\omega \to \mu_{\omega}(E)$ from Ω to the real line is measurable.
- (b) For any $\mu \in \mathcal{P}_s$ and $E \in \mathcal{F}$, $\mu(E) = \int_{\Omega} \mu_{\omega}(E) d\mu(\omega)$.
- (c) For any $\mu \in \mathcal{P}_e$, $\mu\{\omega : \mu_\omega = \mu\} = 1$.

Sketch of Proof. Let T_{Ω} be the shift on $(\Omega^{\infty}, \mathcal{F}^{\infty})$. We have a measurable map $\alpha \colon (\Omega, \mathcal{F}) \to (\Omega^{\infty}, \mathcal{F}^{\infty})$ such that $\alpha(\omega) = (T^{i}\omega)_{i=-\infty}^{\infty}$. Let $\mathcal{P}_{e}(\Omega^{\infty})$ and $\mathcal{P}_{s}(\Omega^{\infty})$ be respectively the sets of T_{Ω} -ergodic, stationary, aperiodic probability measures and T_{Ω} -aperiodic, stationary probability measures on \mathcal{F}^{∞} . α carries \mathcal{P}_{e} into (but not onto) $\mathcal{P}_{e}(\Omega^{\infty})$ and \mathcal{P}_{s} into $\mathcal{P}_{s}(\Omega^{\infty})$. By [6], there is a family $\{\mu_{x} \colon x \in \Omega^{\infty}\} \subset \mathcal{P}_{e}(\Omega^{\infty})$ which satisfies the obvious analogues of (a)–(c) for the space $(\Omega^{\infty}, \mathcal{F}^{\infty})$. Let \mathcal{C} be a countable subfield of \mathcal{F} which generates \mathcal{F} . Let $F = \{\omega \in \Omega \colon \mu_{\alpha(\omega)}[x \in \Omega^{\infty} \colon x_{0} \in C, \text{ some } x_{i} \notin T^{i}C] = 0, C \in \mathcal{C}\}$. Then $F \in \mathcal{F}$. Define $\{\mu_{\omega} \colon \omega \in \Omega\}$ as follows: if $\omega \notin F$, define μ_{ω} to be some fixed element of \mathcal{P}_{e} . If $\omega \in F$, define μ_{ω} so that $\mu_{\omega}(E) = \mu_{\alpha(\omega)}\{x \in \Omega^{\infty} \colon x_{0} \in E\}$, $E \in \mathcal{F}$. We omit the tedious verification that $\{\mu_{\omega} \colon \omega \in \Omega\} \subset \mathcal{P}_{e}$ and (a)–(c) hold.

Fix for the rest of the paper the family $\{\mu_{\omega} : \omega \in \Omega\} \subset \mathcal{P}_{e}$ such that (a)-(c) of Lemma 5 hold. For each $\mu \in \mathcal{P}_{e}$, let $A_{\mu} = \{\omega : \mu_{\omega} = \mu\}$. We have $\mu(A_{\mu}) = 1$ and $\mu'(A_{\mu}) = 0$ for $\mu' \in \mathcal{P}_{e}$, $\mu' \neq \mu$. $\{A_{\mu} : \mu \in \mathcal{P}_{e}\}$ is an uncountable partition of Ω .

LEMMA 6. Let π be mixing. Let $\varepsilon > 0$. Let $\delta > 0$ be given by Theorem 2. Suppose $|\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P) - \pi| < \delta$ for all $\mu \in \mathcal{P}_{e}$. Then for any $\eta > 0$, there exists \tilde{P} such that $|\tilde{P} - P|_{\mu} < \varepsilon$ and $|\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}\tilde{P}) - \pi| < \eta$ for all $\mu \in \mathcal{P}_{e}$.

PROOF. Let $\mathcal{C} \subset \mathcal{F}$ be a countable field which generates \mathcal{F} . Let P_1, P_2, \cdots be an enumeration of all A-indexed partitions whose sets come from \mathcal{C} . Fix $\mu \in \mathcal{P}_e$. By Theorem 2, find P' such that $|P'-P|_{\mu} < \varepsilon$ and $\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P') = \pi$. We may pick P_j so that $|P^j-P'|_{\mu}$ is so small that $|P_j-P|_{\mu} < \varepsilon$ and $|\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P_j) - \pi| < \eta$. Let $A_n = \{\omega \in \Omega \colon |P_n-P|_{\mu} < \varepsilon \text{ and } |\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P_n) - \pi| < \eta\}$. Let $B_n = \{\omega \colon \omega \in A_n, \omega \notin \bigcup_{i=0}^{n-1}A_i\}, n = 1, 2, \cdots$. The B_n 's partition Ω . If for $n = 1, 2, \cdots, P_n = \{P_n^j \colon j \in A\}$, define $\tilde{P} = \{\tilde{P}^j \colon j \in A\}$ so that $\tilde{P}^j = \bigcup_{n=1}^{\infty} (P_n^j \cap B_n)$. Let $\mu \in \mathcal{P}_e$. Then $A_{\mu} \subset B_n \subset A_n$ for a unique n. This implies that for each $j \in A$, $\tilde{P}^j \cap A_{\mu} = P_n^j \cap A_{\mu}$, for that unique n. Consequently, since $\mu(A_{\mu}) = 1$, we have $|\tilde{P} - P|_{\mu} = |P_n - P|_{\mu} < \varepsilon$ and $|\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}\tilde{P}) - \pi| = |\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P_n) - \pi| < \eta$.

LEMMA 7. Given $\delta > 0$, there exists P such that $|\operatorname{dist}_{\mu}(\bigvee_{0}^{m-1}T^{-i}P) - \pi| < \delta$ for all $\mu \in \mathcal{P}_{e}$.

PROOF. A method of proof analogous to that of Lemma 6 will work here.

THEOREM 3. Let π be mixing. There exists P such that $\operatorname{dist}_{\mu}(\vee_{0}^{m-1}T^{-i}P)=\pi$ for all $\mu\in \mathfrak{P}_{s}$.

PROOF. Pick positive numbers $\{\varepsilon_i\}_{i=1}^{\infty}$ so that $\sum_i \varepsilon_i < \infty$. For each ε_i pick the corresponding δ_i given by Theorem 2. We can assume $\delta_i \to 0$. By Lemmas 6 and 7 find a sequence of partitions $\{P_i\}_{i=1}^{\infty}$ such that for all $i=1, 2, \cdots$, and all $\mu \in \mathcal{P}_e$, $|\operatorname{dist}_{\mu}(\bigvee_{j=0}^{m-1} T^{-j}P_i) - \pi| < \delta_i$ and $|P_{i+1} - P_i|_{\mu} < \varepsilon_i$. Letting $P_i = \{P_i^j : j \in A\}$, we have $\sum_{i=1}^{\infty} \mu(P_{i+1}^j \Delta P_i^j) < \infty$ for all $j \in A$, $\mu \in \mathcal{P}_e$. Therefore if we set $E^j = \limsup_{i \to \infty} P_i^j$, it follows that $\lim_{i \to \infty} \mu(P_i^j \Delta E^j) = 0$, $j \in A$, $\mu \in \mathcal{P}_e$. Letting

 $A = \{a_1, \dots, a_k\}$ and defining $P = \{P^j : j \in A\}$ to be the partition such that $P^{a_i} = \{\omega : \omega \in E^{a_i}, \omega \notin E^{a_i}, 1 \le t \le s-1\}, 1 \le s \le k-1,$

we have $|P_i - P|_{\mu} \to 0$ for all $\mu \in \mathcal{P}_e$. We must have $\operatorname{dist}_{\mu}(\vee_0^{m-1}T^{-j}P) = \pi$ for all $\mu \in \mathcal{P}_e$. By Lemma 5, this must hold also for all $\mu \in \mathcal{P}_s$.

DEFINITION. Let N be a positive integer. We say $\mu \in \mathcal{P}_s$ is N-decomposable if there exists $F \in \mathcal{F}$ such that $F, TF, \dots, T^{N-1}F$ are disjoint, $T^NF = F$, and $\mu(\bigcup_{s=0}^{N-1}T^iF) = 1$.

LEMMA 8. Let π be ergodic but not mixing. Let r be the period of π^* . Let $\mu \in \mathcal{P}_s$. Let dist_u($\vee_0^{m-1}T^{-i}P$) = π . Then μ is r-decomposable.

PROOF. This is clear from the proof of Lemma 1(b).

DEFINITION. If $P = \{P^j : j \in E\}$ is a partition of Ω , and if $F \in \mathcal{F}$, then $P \cap F$ is the partition $\{P^j \cap F : j \in E\}$ of F.

THEOREM 4. Let π be ergodic but not mixing. Let r be the period of π^* . Then there exists P such that $\operatorname{dist}_{\mu}(\bigvee_{i=1}^{m-1} T^{-i}P) = \pi$ for all r-decomposable $\mu \in \mathfrak{P}_s$.

PROOF. Find disjoint $C_0, \dots, C_{r-1} \subset A^{m-1}$ such that $\sum_{i=0}^{r-1} \pi\{(i_1, \dots, i_m): (i_1, \dots, i_{m-1}) \in C_i, (i_2, \dots, i_m) \in C_{i+1}\} = 1$, where $C_r = C_0$. Let $F = \bigcap_{i=-\infty}^{\infty} \bigcap_{j=0}^{r-1} \{(X_{ir+j}, \dots, X_{ir+j+m-2}) \in C_j\}$. Let $\nu = \hat{\pi}$. Let ν' be the measure on \mathscr{C}^{∞} such that $\nu'(E) = \nu(E \cap F)/\nu(F)$, $E \in \mathscr{C}^{\infty}$. Recall that $\{Z_i\}_{-\infty}^{\infty}$ is a stationary ergodic Markov process under ν , where $Z_i = (X_i, \dots, X_{i+m-2})$. It follows that $\{U_i\}_{-\infty}^{\infty}$ is a stationary mixing Markov process under ν' , where $U_i = (Z_{ir}, \dots, Z_{ir+r-1})$. It follows that $\{(X_{ir}, \dots, X_{ir+r-1})\}$ is stationary and mixing under ν' since $(X_{ir}, \dots, X_{ir+r-1})$ is a function of U_i . Thus ν' is stationary and mixing relative to T_A' .

Let \mathscr{T}_0 be a countable subfield of \mathscr{T} which generates \mathscr{T} . Let E_1, E_2, \cdots be an enumeration of the sets in \mathscr{T}_0 . Letting I_{E_i} denote the indicator function of E_i , define $F^* \in \mathscr{T}$ to be the set of all $\omega \in \Omega$ such that

- (a) $\lim_{n\to\infty} n^{-1} \sum_{k=1}^{n} I_{E}(T^{kr+j}\omega)$ exists, $0 \le j \le r-1, i=1, 2, \cdots$
- (b) There is a least $i \ge 1$ such that the r numbers $\{\lim_{n\to\infty} n^{-1} \sum_{k=1}^n I_{E_i}(T^{kr+j}\omega): 0 \le j \le r-1\}$ are distinct.
- (c) For the i satisfying (b), $\lim_{n\to\infty} n^{-1} \sum_{k=1}^n I_{E_i}(T^{kr}\omega) > \lim_{n\to\infty} n^{-1} \sum_{k=1}^n I_{E_i}(T^{kr+j}\omega)$, $1 \le j \le r-1$.

It is not hard to see that F^* , TF^* , \cdots , $T^{r-1}F^*$ are disjoint, $T'F^* = F^*$, and $\mu[\bigcup_{0}^{r-1}T^iF^*] = 1$ for every r-decomposable $\mu \in \mathcal{P}_e$. By Lemma 5, $\mu[\bigcup_{0}^{r-1}T^iF^*] = 1$ for all r-decomposable $\mu \in \mathcal{P}_s$.

Let $\hat{Q} = \{\hat{Q}^j : j \in A^r\}$ be the partition of A^{∞} such that $\hat{Q}^j = \{(X_0, \dots, X_{r-1}) = j\}$. Choose a positive integer k such that $kr \ge m + r - 1$. By Lemma 1, since ν' is T_A^r stationary and mixing, $\operatorname{dist}_{\nu'}(\bigvee_{i=0}^{k-1}(T_A^r)^{-i}\hat{Q})$ is a mixing distribution on $(A^r)^k$. By Theorem 3, pick $\hat{P} = \{\hat{P}^j : j \in A^r\}$, a partition of Ω , such that $\operatorname{dist}_{\mu'}(\bigvee_{0}^{k-1}(T^r)^{-i}\hat{P}) = \operatorname{dist}_{\nu'}(\bigvee_{0}^{k-1}(T_A^r)^{-i}\hat{Q})$, for every μ' on \mathcal{F} such that T^r is an

aperiodic automorphism of $(\Omega, \mathcal{F}, \mu')$. Let $P = \{P^j : j \in A\}$ be a partition of Ω such that

$$P^{j} \cap T^{i}F^{*} = T^{i} \left[\bigcup \left\{ \hat{P}^{(k_{1}, \dots, k_{r})} \cap F^{*} : k_{i} = j \right\} \right], j \in A,$$

$$0 \leq i \leq r - 1.$$

Then $(\bigvee_0^{r-1}T^{-i}P)\cap F^*=\hat{P}\cap F^*$. Let $\mu\in\mathfrak{P}_s$ be r-decomposable. We show that $\mathrm{dist}_{\mu}(\bigvee_0^{m-1}T^{-i}P)=\pi$. Define μ' on \mathfrak{F} so that $\mu'(E)=\mu(E\cap F^*)/\mu(F^*)$, $E\in\mathfrak{F}$. Since μ' is concentrated on F^* and $T'F^*=F^*$, we obtain $\mathrm{dist}_{\mu'}(\bigvee_0^{rk-1}T^{-j}P)=\mathrm{dist}_{\mu'}(\bigvee_0^{rk-1}T^{-j}P)$. Since T' is an aperiodic automorphism of $(\Omega,\mathfrak{F},\mu')$, we have $\mathrm{dist}_{\mu'}(\bigvee_0^{rk-1}T^{-j}P)=\mathrm{dist}_{\nu'}(\bigvee_0^{k-1}(T_A')^{-i}\hat{Q})$. Now $\hat{Q}=\bigvee_0^{r-1}(T_A)^{-i}Q$, where $Q=\{Q^j\colon j\in A\}$ is the partition of A^∞ such that $Q^j=\{X_0=j\}$. Thus, $\mathrm{dist}_{\mu'}(\bigvee_0^{rk-1}T^{-j}P)=\mathrm{dist}_{\nu'}(\bigvee_0^{rk-1}T_A^{-j}Q)$. Now $\mathrm{dist}_{\mu}(\bigvee_0^{m-1}T^{-i}P)=r^{-1}\sum_{j=0}^{r-1}\mathrm{dist}_{\mu'}(\bigvee_j^{j+m-1}T^{-i}P)$ and $\pi=\mathrm{dist}_{\nu}(\bigvee_0^{m-1}T^{-i}Q)=r^{-1}\sum_{j=0}^{r-1}\mathrm{dist}_{\nu}(\bigvee_j^{j+m-1}T_A^{-i}Q)$. Since $[j,j+m-1]\subset [0,kr-1],\ 0\leqslant j\leqslant r-1,$ we have $\pi=\mathrm{dist}_{\nu}(\bigvee_0^{m-1}T^{-i}P)$.

Acknowledgment. I would like to thank Professor U. Krengel for pointing out that Theorem 1.1 of [1] answers the question raised at the end of [3], and also Professor N. D. Ylvisaker for bringing [2] to my attention.

REFERENCES

- [1] GRILLENBERGER, C. and KRENGEL, U. (1976). On marginal distributions and isomorphisms of stationary processes. *Math. Z.* 149 131-154.
- [2] HOBBY, C. and YLVISAKER, N. D. (1964). Some structure theorems for stationary probability measures on finite state sequences. Ann. Math. Statist. 35 550-556.
- [3] Kieffer, J. C. (1974). On the approximation of stationary measures by periodic and ergodic measures. *Ann. Probability* 2 530-534.
- [4] KRIEGER, W. (1970). On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc. 149 453-464.
- [5] ORNSTEIN, D. S. (1974). Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press.
- [6] OXTOBY, J. C. (1952). Ergodic sets. Bull. Amer. Math Soc. 58 116-136.
- [7] SHIELDS, P. C. (1973). The Theory of Bernoulli Shifts. Univ. of Chicago Press.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSOURI-ROLLA ROLLA, MISSOURI 65401