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We present a version of the Wentzell-Freidlin theory for Markov chains
which includes random perturbations not only of deterministic motions but
also of Markov chains. Some results for the continuous-time case are
obtained as corollaries. In particular, by this method one can treat random
perturbations of degenerate diffusions even when the large deviations
principle fails.

1. Introduction. Let X:, ¢ >0, n=0,1,..., be a family of Markov
chains on a compact metric space M with transition probabilities P¢(x, - ),
x € M, which are Borel measures Borel measurably depending on x and such
that for any open set U c M uniformly in x € M,

(1.1) lin})elog Pi(x,U) = — infL’,p(x,y),
£ ye

where p(x,y) > 0 is a continuous function on M X M. Wentzell and Freidlin
[11] considered diffusion processes X’ generated by operators of the form
L? = ¢L + b, where L is a nondegenerate elliptic differential operator of the
second order and b is a vector field, i.e., a differential operator of the first
order. They studied the asymptotic behavior as ¢ — 0 of invariant measures of
processes X7, of the distribution of exit points of X; from a bounded domain
and of the principal eigenvalue of the operator L° by estimating the probabili-
ties for processes X7 to stay in tube neighborhoods of different curves. We
shall present here a discrete-time version of their results which works both for
diffusion-type random perturbations and for perturbations by means of pro-
cesses with jumps considered in Section 2 of Chapter 5 in [5]. Since the
transition probabilities P*(¢, x, - ) of X} satisfy in these cases some kind of
(1.1), it turns out that their results can be derived from ours by considering
X; only at moments ¢ = kA, £ =0,1,2,..., for some A > 0. We remark that
there now exist viscosity solutions methods (see [3]) which, studying a nonlin-
ear equation for ¢ log P°(¢, x, U), enable one to obtain directly limits of the
sort (1.1) without employing probabilistic large deviations estimates from [11].
Via a more careful analysis one can relax the compactness and the continuity
assumptions on M and p, respectively.

Received April 1988; revised November 1988.

'Partly supported by the U.S. Army Research Office through the Mathematical Sciences
Institute at Cornell University. This work was done while the author visited the Department of
Mathematics at Cornell University.

AMS 1980 subject classifications. Primary 60F10; secondary 60J05, 60J60.

Key words and phrases. Random perturbations, large deviations, attractors.

1676

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

L ®
www.jstor.org



WENTZELL-FREIDLIN THEORY 1677

The general setup via (1.1) does not even presume that the Markov chains
X: are perturbations of something else and, in fact, the study of the asymp-
totic behavior as ¢ —» 0 goes on without this additional precondition. On the
other hand, if the probability measures P®(x, - ) converge in some sense as
¢ — 0 to probability measures P°(x, - ) yielding a Markov chain X? we may
view X as perturbations of X? which generalizes models of random perturba-
tions of deterministic transformations (see [8]). In the continuous-time case
this corresponds to random perturbations of degenerate diffusions studied in
Section 4.4 of [4] and in [1]. In this case X/ is a diffusion generated by an
operator L¢ of the form L° = ¢L + L,, where L is the same as before but L,
now is a second-order elliptic operator whose matrix of coefficients in second
derivatives may degenerate. It is not difficult to see that a version of (1.1)
follows from large deviations estimates established in [4] and [2] under certain
conditions on coefficients of L°. On the other hand, a counterexample in [2]
shows that in this case large deviations estimates may fail though a kind of
relation (1.1) is still valid. This is due to the fact that the probabilities
P(¢,x,U) = P{X; € UlX§ = x} being solutions of the equation dP®/dt = L*P®
(L? acts in x) behave more regularly than probabilities that the paths of X;
belong to a subset of a functional space.

We have in mind also the following model considered in [1]. Suppose that

by,...,b, are vector fields given on a manifold M. Next one considers a
process X; governed by equations of the form

(1.2) dX; = by (X7) dt + eb( X;) dt + %0 (X)) dw(2),

where Y(¢) is a time-homogeneous Markov chain with the states {1,..., &}

independent of the Wiener process w(t), ie., P{Y( + At) =j1YQ}@) =i} =
p;; At + O(A?),i #j. Then the pair (X;,Y(#)) is a Markov process and it
follows from [1] that transition probabilities P*(¢,(x,i),U X {(j) = P{X; € U
and Y(¢) = j|X§ = x and Y(0) = i} satisfy

(1.3) lin(l)slog Pe(t,(x,1),UX {j}) = - inng’j(x,y),
Ed ye
where

i, j _ . t . -1 . 2
T S A N L TS OB 8

Ty, (i, j) is the space of possible paths of the Markov chain Y(¢) starting at i at
time 0 and ending at j at time ¢, and {¢,, 0 < s < ¢} are absolutely continuous
curves so that ¢, = d¢,/ds are defined. If Y(¢) cannot pass from i to j with
positive probability, i.e., T (i, j) is empty for all ¢ > 0 then the limit (1.3)
equals —o, and so we must put BlJ(x,y) = » for any x,y € M and ¢t > 0.
Nevertheless, our methods will go through since Bi/(x,y) can be viewed
formally as continuous on {1,...,%k} X {1,...,k} X M X M because it is
truly continuous on M X M for all i and j such that I, (i, j) # & and
Bii(x,y) = wforall x,y € M if T, (i, j) = &. Anyway all forbidden passages
can be disregarded, and so these infinite values will not appear in estimates.
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As a genuine discrete-time example we shall mention the following model of
perturbations of random transformations. Let wu be a probability measure on
the space of continuous maps of M into itself. Put

(1.4) P(x,U) = [Q(U) du(f),
where a family of probability measures Q: satisfy uniformly in z € M,

(1.5) limelog Q;(U) = — inf r(z,y),
-0 yeU

for any open U, where r(z,y) > 0 is a continuous function. Then (1.1) holds
true with

(1.6) p(x,y) = inf r(fx,y).
fEsupp p

The meaning is that first we apply a random map with the distribution x and
then we perturb it independently by applying, say, a diffusion for the time &.
In the last case r(z, y) will be equal to the square of the distance (correspond-
ing to the diffusion matrix) between z and y. If supp u is just one map we
obtain models of random perturbations of dynamical systems considered in [7]
and [8]. The distribution p above may also depend on ¢ and then, in general,
we shall not have a perturbation of some limiting Markov chain corresponding
to € = 0 but still our results will remain applicable.

This paper has the following structure. In the next section we introduce an
equivalence relation corresponding to the function p(x, y), study the behavior
of the unperturbed Markov chain X (if it can be defined) and derive a version
of the Wentzell-Freidlin lower and upper bounds for probabilities to stay in
tube neighborhoods. In the subsequent two sections we obtain corresponding
results about the asymptotical behavior as ¢ — 0 of invariant measures of X,
of the exit distribution and the mean exit time of X¢ from an open set and of
the biggest eigenvalue of the transition operator of X: corresponding to an
open set.

2. Preliminaries. Let Ay be a function on the N-fold product MY =
M X --- X M defined for ¢ = (&y,...,én_) EMN, £, €M, i=0,..., N -1,
by the formula
N-2

(2.1) An(€) = X p(§,€.1) for N>1land A, =0.
i=0

For any pair of points x,y € M put

(2.2) B(x,y) =inf{lA,(§):n=1,6=(&),....,6,_1), &0 =%, €1 = ¥}

The function B induces a preorder writing y > , % if B(x,y) = 0. This yields a
p-equivalence relation if we write x ~ , ¥y provided x >,y and y >, x. A
p-equivalence class containing x € M will be denoted by [x] ,- It will be called a
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basic p-equivalence class if either p(x, x) = 0 or [x], contains more than one
point.
We have the following easy fact proved in [8], pages 58 and 59.

LemMA 2.1. The function B(x,y) is continuous in both variables, and so
p-equivalence classes are closed sets.

Next, we introduce a partial order among p-equivalence classes saying
[y]l, =, [x], if y >, x. Any maximal in this partial-order p-equivalence class
w111 be called a p-attractor This definition will be justified by Proposition 2.1
and Corollary 2.1 below. Since M is compact then for each x € M there exists
g,(x) — 0 such that

(2.3) Pe®(x, ) — P(x,-) weakly asi — .
Then, clearly, for any open set U,
(2.4) liming"‘(x, U) = P(x,U).

If Un supp P(x,-) # & then P(x,U) > 0, and so (1.1) together with (2.4)
imply inf, . ;; p(x, y) = 0. By the continuity of p it follows that

(2.5) p(x,y) =0 if y € supp P(x, ),
in particular,
(2.6) y =, x if y € supp P(x, ).

From this we conclude that for each x there exists y with p(x,y) = 0 and any
p-attractor [x], is a basic equivalence class such that if y >, x then y € [x],.
The existence of p-attractors follows from the Zorn lemma.

LEMMA 2.2. Let 2, 2,,... be an infinite sequence of points from M such
that p(2;,2,,1) =0 forall k = 0,1,.... Then all limit points of the sequence
29, 21,... belong to one basic equivalence class. In particular, U,{z,} has a
nonempty intersection with one of basic equivalence classes.

Proor. If the whole sequence converges to a point z then passing to the
limit in p(z,,2;,,) = 0 we get p(z,2) = 0 and so [2], is a basic equivalence
class. Suppose now that z, —» z® and 2z, —» 2® as i %, o for some 2@ # z(z)
We can choose these subsequences S0 that ki1 >1;>k;.Then B(z,,z2) =
and B(z;, 2, ) = 0. Since B is continuous then lettmg here i — » we obtam
B(z®, 2?) = B(z‘z), z®M) =0 and so z®, 2® belong to a basic equivalence
class. O

ProrosITION 2.1. Let [x], be a p-attractor having an open neighborhood
G > [x], disjoint from other basic p-equivalence classes except for [x],. Then
there exists an open set U D [x], such that for any open set V O [x], one
can find an integer n(V) > 0 so that for any n > n(V) and each finite se-
quence & = (&, ...,¢&,_1) satisfying £, € U and A,(¢) = 0 one has ¢,_, € V.
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Moreover, if zy,2,,... is an infinite sequence of points from M such that
20 €U and p(z4,2,,1) =0 for all k=0,1,... then dist(z,,[x],) > 0 as

k> w«,
Proor. Remark that
(2.7 {y:p(x,y) =0} c{y:y >, x} c[x],.

Put D; = {y: B(x,y) < 8} which is an open set for each 6 > 0 since B is a
continuous function. We claim that there exists 8, > 0 such that D; c @, and
so D; c G for all & < &,. Indeed, if it were not true then one could choose a
sequence of numbers 8, | 0 and a collection of sequences £ = (¢, ..., &),
with A, (6™) <3, which start at points y, € ¢§” € [x], and end at pomts
z, = Ek _1 & G. Then there would exist a subsequence n; such that y, —y €
[x] and z n T 2E G, and so B(y,z) = 0. Hence z>ye[x] and by 2.7,
z € [x] which is a contradiction. Thus D; < G for some §, > 0. Since
B(x, w) < B(x,y) + B(y, w) then y € D; and B(y, w) = 0 imply w € D;. In
particular, if £, € D; and ¢ = (&, ..., §n 1) satisfies A, (¢) = 0 then ¢, € D,
for all i=0,1,...,n— 1. Now put U = D;,. Take an arbitrary open set
Volx], Vc Da We claim that there exists an integer n(V) > 0 such that
any sequence ¢ = (&,...,¢,_,) satisfying n > n(V), ¢, € D;, and A,(¢) =
must have £,_; € V. Indeed, since N ;. ,D; = [x], we can choose (V) > 0
such that Djy, C V. We shall even show that ¢,_; € D;y, if n > n(V) and
n(V) is large enough If we were not able to choose such n(V) this would mean
that there exist sequences £™ = (£0V,...,¢(") ) with %, —> © as n — o,
A, (™) =0 and ¢™ € D; \ Dy, for all i = 0,1,..., k&, — 1. Choosing first
a subsequence n; — « such that £§"? — z,, from this subsequence choosing
another subsequence n; such that £ - z,, etc., we will end up with an
infinite sequence of pomts 2y € D;, \DS(V) satlsfymg p(2,,2;,.1) = 0 for all
k =0,1,..., which is impossible in view of Lemma 2.2. The last assertion of
Propos1tlon 2.1 follows, as well. O

CoroLLARY 2.1. Let [x], and G D [x], be the same as in Proposition 2.1.
Suppose that for any x € M

(2.8) Pé(x,-) » P%x, ) weaklyase — 0.

Then there exists an open set U D [x], such that for any open set V > [x], one
can find an integer n(V) > 0 so that for any y € U and n > n(V),
(2.9) P(n,y,V) =1,

where P%n,y, ") is the n-step transition probability of a Markov chain X?
whose one-step transition probabilities are P%(z, - ). In particular, if X € U
then with the probability 1,

(2.10) dist(X2,[x],) >0 asn - .
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ProoF. Since by (2.5), p(y,2) = 0 whenever z € supp P%(y, - ) then the
result follows immediately from Proposition 2.1 by the Chapman-Kolmogorov
formula. O

Next, we shall estimate the exit time from a neighborhood of a p-attractor.

LEmMma 2.3. Let K = [x], be a p-attractor satisfying conditions of Proposi-
tion 2.1. Then for any open set V O K there exist numbersr, B,&, > 0 such that
forall N =1,2,... one has

(2.11) Pi{ry\w <N} <NZ%F/°,

provided x € U(K) = {y: dist(y, K) <r}, 0 <& < gy, where
=inf{n: X; € W}.

In particular,

(2.12) Eiryy > 1ef/.

Proor. We shall call a é-chain any finite sequence of points {z,, [
., k} such that z,,; € Wy(z)) = {v: dist(v, W(z))) < 8}, where W(2) =
{v: p(z,v) = 0}.
In the same way as on page 64 of [8] we see that P;{r) ., < N} is bounded
by the sum of multiple integrals along &-chains starting at x and ending
outside V plus the expression

N(N-1)
o sup Pr(z, M\ Wy(2)).
2 zeV
We claim that if r,8 > 0 are small enough then there exists no &-chain
starting inside U.(K) and ending outside V which means that the multiple
integrals in question are 0. Indeed, for otherwise we would have sequences of
numbers r, >0 and §, > 0 as n — « and a sequence of 6n-chains {z{™,
1=0,. k}suchthatz‘”)EU(K)z")EVforalll—O ,k,— 1, and
}(") IS5 M \V Then taking a subsequence n; so that z, - y0 IS M \V as
i — o, from this subsequence choosing another subsequence n;, so that
z}z"v) —1->y_, as j - o, etc., we shall obtain in view of Lemma 2.2 a
sequence of points ...,y_5, ¥_1, %, such that y, € M\ 'V, p(y,, y,,,) = 0 for all
l=-1,-2,-3,..., and dlst(y,, K) -» 0as Il » —. Then it will follow that
¥o > %, which is impossible since [x], is a p-attractor.
Next, it remains to estimate sup, P (z, M\ W(2)). Since, clearly

(2.13) inf inf p(z,v) = y(8) >0,
z2EM veM\W,(2)

then by (1.1),
(2.14) supP*(z, M\ W,,(z)) < e 7@®)V2
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provided ¢ > 0 is small enough. This yields (2.11). We obtain (2.12) noting that
E.;:TM\V = NP:{TM\V > N} > N(l —_ Nze_ﬁ/s)

for N of order 3ef/%. O

Next, one obtains a version of the Wentzell-Freidlin key lower and upper
bounds of the probability for Markov chains X¢ to stay in a small tube near a
fixed sequence of points as in Theorem 1.5.2 and Corollary 1.5.2 of [8].

We shall also need the following lemma.

LemMMA 2.4. Let K be a compact subset of M which does not contain entirely

any infinite sequence of points z,, 2,, 25, ... satisfying p(z,,z,,,) =0 for all
k=0,1,.... Then there exist numbers a = a(K) >0 and N=N(K)>0
such that:

(i) For any sequence & = (&,...,&,_ ) withn >Nand ¢, €K;,i=0,...,
n — 1, one has A,(¢) > (n — N)a.
(ii) There exists e, > O such that for any n > N,

(2.15) Py g > n} < e ~N)/ele,

provided x € K and 0 < € < gy, where 7y, = inf{m > 0: Xt € V).

Proor. We claim that there exists an integer N; > 0 such that any se-
quence £ = (£,..., ¢, ) with A (¢§)=0and ¢, €K foralli =0,...,n—1
must contain less than N; points. Indeed, for otherwise we would have an
infinite collection of sequences ¢ = (¢(,..., &0 ) with k, > © as | - o,
A (D) =0 and £P €K for all i=0,...,k, — 1. Since K is compact we
could choose then similarly to the end of the proof of Proposition 2.1 an
infinite sequence of points 2, z;,... from K satisfying p(z,z2,,,) = 0 for all
k =0,1,..., which contradicts the assumption on K. The rest of the proof is
the same as on pages 73 and 74 of [8], where one has to replace orbits of a map
F by sequences of points {z,} satisfying p(z;, 2,.,,) = 0. O

3. Invariant measures. In this section we shall study the asymptotic

behavior as ¢ — 0 of invariant measures of the Markov chains X?, i.e., of the
probability measures u® on M satisfying

(3.1) w(T) = [ du(x)P(x,T),

for any Borel set I' ¢ M. We shall employ the following well-known result (see
[10], Proposition 5, and [8], pages 70 and 71).

CoroLLARY 3.1. Let X, be a Markov chain in a measurable space (M, #)
with transition probabilities P(x,T') having an invariant probability measure
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w. Let V. M be a measurable set such that
(3.2) sup E 7y < o,
xEM
where 1y = inf {n > 0: X, € V). Then u(V) > 0 and we can define another

Markov chazn X (called the induced Markov chain) on V by its transition
probabilities "P(x, F) x € V, having the form

(3.3) "P(x,T) = P{X, €T},

where T is a measurable subset of V and P{ } denotes the probabzlzty for the
Markov chain X, starting at x. Then the restriction uy of (p.(V)) Iy to Vis
the probability invariant measure of the Markov chain X and for any
measurable set G € M,

Ty—1

@) = (V) [ duy(=)E; T xo(X4)

TV— 1

=fd/.L(x)Ex Y xa( X)),
v k=0

(3.4)

which gives the representation of u via wy, where x denotes the indicator of a
set G.

ReMARK 3.1. The existence of an invariant measure for X, will follow if,
for instance, M is compact and the measures P(x, - ) depend continuously on
x in the weak topology or if these measures have positive densities with
respect to a fixed measure.

Next, we proceed similarly to the original paper of Wentzell and Freidlin
[11]. The arguments below will rely on the following assumption.

AssumpTION 3.1. There exists only a finite number of basic p-equivalence
classes K,,..., K,.

v

By Lemma 2.1 K,,..., K, are compact. Let V; be open sets such that
(3.5) K,cV,cU(K;) = {y:dist(y, K;) <r}.

We shall always take r > 0 above to be small enough so that V,, i = 1,...,,
will be disjoint. Denote V = U 1<isy V, and consider the Markov chain "X¢
introduced in the same way as in Proposmon 3.1 by means of transmon
probabilities YP¢(x,T) = "‘{XEV €I}, where 7y, = inf{n > 0: X €V} and T
is a Borel subset of V. In view of Lemma 2.4(ii) it is clear that (3 2) will then
be satisfied and so Proposition 3.1 is applicable. Since K; and K ; are equiva-
lence classes the value B(x,y) defined by (2.2) remains the same for all x € K,
and y € K}, and it will be denoted by B, ;. Clearly, if i # j then at least one of
the numbers B;; and B}, is positive. It is clear from the definition that K isa
p-attractor if and only 1f B;; > 0 for any j # i.
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fNext one obtains key bounds for the transition probabilities of the Markov
chain "X¢ when ¢ is small in the form

(8.6)  exp(—(By, +B)/e) <"P*(N,x,V;) <exp((—B,, + B)/¢),
provided x € V,, 0 <e<egyand 1 <k,l <v.

The proof of these bounds in our case repeats verbatim the proof of Lemma
1.5.4 on pages 75-80 of [8] for the case of random perturbations of a map F.
The only change one has to do is to replace orbits of the map F appearing on
pages 77 and 79 by sequences of points {z,} such that p(z,, z,, ) = 0 for all k.

Let L be a finite set, whose elements will be denoted by the letters i, j, &,
m, n, etc. Given i € L, a graph consisting of arrows m > n (m #i, m,n € L,
n # m) is called an i-graph if it satisfies the following conditions: Every point
m # i is the origin of exactly one arrow, and the graph has no cycles.

Let L={1,...,v},ieL,

B(i)= min Y B,
£€GW) (1 smyeq
and

L..= {1, €L: B(i) = mlnB(j)}
Now we can formulate the main result of this section.

TueoreM 3.1. Ifi € L, then K, is a p-attractor. Let T c M be a closed
set disjoint with U ;. __K;. Then any invariant probability measures p° of the
Markov chain X satisfy

(3.7 lin});f(l‘) =0,
and so any weak limit of measures u° as ¢ — 0 has support in U ;. L, Ki-

Proor. After preparations of this and the previous sections the proof of
this theorem proceeds verbatim as the proof of Theorem 1.5.4 on pages 83 and
84 in [8] from showing that any K,, i € L_, , is a p-attractor untll formula
(1.5.51) Wthh asserts that the invariant measure u$, = (u®(V))~u® of the
Markov chain Xe satisfies

(3.8) ) w( U ) <ers
jeLmin
for some y > 0 and ¢ > 0 small enough, and so
(3.9) )W U v)-1 ase-o.
iELmin

It remains to show that
(3.10) uw(M\V) >0 ase— 0.

Since any K;, i € L, is a p-attractor then by Lemma 2.3 we can choose
r,B > 0 so that

(3.11) Pry\v, <N} <NZ2e B/,
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for any x € U(K,), i € L,y,, all £ > 0 small enough, and each N =1,2,....
Denote V, = U(K,),i=1,...,v,and V= U,_;_,V,. By Lemma 2.4(ii) there
exist N =N(M\ V) + 1 and a > 0 such that

(3.12) Pe{ry > n} < e n=Ny/ela,

for any x € M and n > N. Finally, by (3.4), (3.8), (3.11) and (3.12) for £ > 0
small enough

Typ—1

w(M\V) = [ du(2)E: ¥ xanw(Xi)
\4 k=0

(3‘13) e eN+1 3 1,-a/3 —y/e( NI
< ¥ [ du(2)E; T xanw(Xp) +3e7/° +e77/%(N + 2)
k=0

ieL Vi

<v(N + 1)3e_3/"3 +1le7/5 + (N + 2)e™/5,

proving (3.10). A more careful analysis enables one to get more precise
estimates of u*(M\ U, _V,) the same as in Theorem 4.1 on page 186 of [5].
O

We obtained Theorem 3.1 without assuming that the Markov chains X, are
perturbations of some other Markov chain X?, but if it is the case then under
the condition below all weak limits of u° as £ — « turn out to be invariant
measures of X? and so Theorem 3.1 describes support of such measures.

ProposiTiON 3.2. Suppose that for any continuous function fon M,

(3.14)  lim sup|[ P*(x,dy) f(y) = [ P*(x,dy) f()| = 0,

e-0 x

where P°(x, - ), x € M, is a family of probability measures on M continuously
dependent on x in the weak topology of measures. Then any weak limit as
e — 0 of invariant measures of Markov chains X with transition probabilities
Pé(x, ) is an invariant measure of the Markov chain X? with transition
probabilities P%(x, - ).

Proor. Suppose that u® —, u then for any continuous function f on M,

Jf(x)du(x) = [[ F(2)P°(x,dy) du(x)

| ffau - [rau

3.15
( ) +f,ff(y)P5i(x,dy) - ff(y)Po(x,dy),d/fi(x)

+| [ F) P, dy) dpsi(x) = [ F(5) P°(x, dy) du(x) |

-0 asg; — 0,
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in view of (3.14) and the fact that [f(y)P°(x, dy) is a continuous function in x.
Thus

(3.16) [£(x) du(x) = [[ f(y)P°(x, dy) du(x),

for any continuous function f, and so w is an invariant measure of the
Markov chain X?. O

Next, we shall see how our discrete-time results imply the corresponding
continuous-time results from [11]. Wentzell and Freidlin dealt with the asymp-
totic behavior of invariant measures of diffusion-type random perturbations.
This model considered on a smooth Riemannian manifold M leads to a
diffusion Markov process X; generated by operators L° = ¢L + b, where L is
an elliptic second-order differential operator and b is a vector field. This means
that transition probabilities P°(¢, x, I') satisfy the parabolic equation dP®/dt =
L°P® with the initial condition P°|,_¢ = x;. The Markov processes X; are
viewed as random perturbations of a flow F’ solving the ordinary differential
equation

dFix
dt

We will not discuss here the specific features of such random perturbations
since the only fact we will need is the following property of transition probabil-
ities similar to (1.1):

=b(Fx), F°x=x.

(3.17) limelog P°(¢,x,U) = — inf B,(x,y),
e—0 yeU
for any x € M and an open set U, where
B,(x,y) = inf  A,(e)
Po=%, =Yy

(3.18)

inf  ['Ib(e,) —¢,)I ds,
®o=2%, py=u’0
where the infimum is taken over absolutely continuous curves ¢, 0 <s < ¢,
on M starting at x and ending at y, ¢, = d¢,/ds denotes the tangent (speed)
vector to ¢,, and || - || denotes certain Riemannian norm in the tangent bundle
constructed by means of diffusion coefficients of X;. The relation (3.17) follows
from more general results which can be found in Chapter 4 of [11] and in
Chapter 14 of [6] but can be proved now also directly by the PDE viscosity
solutions methods.

If we apply our theory to F =F! and X/ considered only for integer
t=20,1,2,..., then the results concerning invariant measures will remain
valid for the continuous-time process X; since the invariant measures of X/
will be, of course, invariant with respect to X:. The only fact needed to be
checked is the coincidence of Assumption 3.1 with the corresponding assump-
tion formulated by Wentzell and Freidlin for the continuous-time case and
that the numbers B,; will be the same both for the discrete- and continuous-
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time cases. In the continuous-time case one calls x and y equivalent (written
x ~ y) if and only if inf, , ;, B/(x, y) = inf,, , By, x) = 0. Our definition of the
equivalence relation which we will denote here by ~; corresponds to the case
when the above infimum is taken only over integers; x ~; ¥ if and only
if infiiepernz0 Ba(%, ¥) = infi o0 By, x) = 0. Denote the equiva-
lence classes containing a point x and corresponding to ~ and ~; by [x]
and [x]?, respectively. Then one has the following result proved on pages 88
and 89 of [8].

PROPOSITION 8.3. For any x € M, [x] = [x]?P.
It remains to establish the following proposition.
ProposITION 3.4. Let K be a basic equivalence class. Then for any pair of

points x,y € M such that either x € K or y € K one has
(3.19) inf B, (x,y) = ingBt(x,y).
t>

integer n >0

Proor. First, it is obvious that the above expression does not depend on
the choice of the point in K. Clearly,

(3.20) inf B, (x,y) > int(;Bt(x,y) =B
t>

integer n>0

It is easy to see that there exist a sequence of numbers ¢, — » and a sequence
of piecewise smooth curves ¢{™, 0 <s <t,, ¢§ = x, ¢{ = y such that

(3.21) A, (¢™)>B ast, > .

]’gﬁﬁne new curves ¢\ = @), 1.1)-1, where [-] denotes the integral part.
en

B[tn]+l(x7y) < f[t ]+1”b(¢’(n) ‘/’s(n)”2 ds

2

[¢,]+1 n t, .(n
=f0 b(¢st3([tn]+1)‘1) - __[t 1+ 1¢§t3([tn]+l)‘1 ds
[¢,]+1 t, 2
—_n - (n) (n)
(3.22) i m) — TR du
(1+a)t, (1+1/a)
[t ] +1 t(‘P ) ([t ] f ”b (")||2du

1
<@+ @A) + (14 S | suplb(o)l?

for any a > 0, where we used the inequality 2(¢,¢) < all€||®> + (1/a)l|1? for
any pair of vectors ¢ and {. Now letting ¢, — « and noting that the left-hand
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side of (3.20) does not exceed the left-hand side of (3.22), we derive in view of
(3.21) that
inf B, (x,y) <(1+a)B.

integer n>0

Since a > 0 is arbitrary this together with (3.23) yields (3.19). O

REMARK 3.2. The same arguments produce the continuous-time result
from its discrete-time counterpart for the more general case (1.2) and (1.3)
described in Introduction, as well, as for other action functionals of similar
structure.

4. Exit problems. In this section M will be a compact subset of a locally
compact metric space S such that M coincides with the closure of its interior
int M.

Let X;,e>0,n=0,1,..., be a family of Markov chains on S with Borel
transition probabilities P*(x, - ), x € S, Borel measurable in x and such that
for any open set U C S uniformly in x € int M, :

(4.1 limelog P*(x,U) = — inf p(x,y),
-0 yeU

where p(x,y) > 0 defined on M X S and for some open set W > M with a
compact closure W the function p(x,y) is continuous on M X W and
p(x,y) = for x € M and y & W. This last condition can be substituted by

(4.2) sup  p(x,y) < inf p(x,y).

xeM,yeW xeM,yeW
In this section we will study the distribution of the exit points X;_ from
int M, where M° = S\ M, and the expectation of 73.. The main results will
be obtained under the condition
(4.3) inf p(x,y) >0,

xeM,yeW\M

which in the case of random perturbations of dynamical systems corresponds
to perturbations of transformations whose orbits enter the set int M.

Let Ay be a function on the N-fold product M¥"1x S =M X --- XM X S
defined by formula (2.1) for any sequence £ = (&,..., &y With & € M if
1=0,...,N—2and £_; €S. For any pair of points x € M and y € S we
define B(x,y) by (2.2), where the infimum is taken over all sequences ¢ =
(£gy -y €D with ég=x, €&, ;=yand §{, eM foralli=1,2,...,n — 2. By
the continuity of the function p the value of B(x,y) will not change if this
infimum is taken over sequences ¢ = (§,,...,£,_ ;) with £, =x, £, ; =y and
(&, eint M for i = 1,...,n — 2. In the same way as in Section 2 the function
B(-, -) induces a preorder and a partial-order >, and a p-equivalence rela-
tion ~, . The definitions of p-equivalence classes, basic p-equivalence classes
and p-attractors remain the same as in Section 2. The conditions (4.2) and
(4.3) ensure that if x € M and y >, x then y € int M. Moreover, by (4.3) and
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the continuity of p there exists § > 0 such that
(4.4) inf{p(x,y): x €M,y € M\ U;(6M)} > 3,

where 0M = M\ int M and Uy(V) = {z: dist(z, V) < 8}. Thus if y>,x€M
then y € M \ Uy,(dM) and so all basic p-equivalence classes must be contained
in M\ U;(0M). We shall work under the following assumption.

AssUMPTION 4.1. There exists only a finite number of basic p-equivalence
classes K,,..., K, in M.

Since by Lemma 2.1 K,,..., K, are compacts then they stay on positive
distance from each other and from dM. Thus we can pick up disjoint open sets
V; Cint M such that (3.5) holds true. We shall denote again by B, ; the value
B(x,y) which is the same for all x € K, and y € K j» and introduce also the
following notation: B,, for B(x,y) with x € K, B,; for B(x,y) with y € K,
(4.5) B,;= inf B, and B, = inf B(x,y).

yeMe yeMe
In view of (4.2) both infimuma in (4.5) are attained at points of W\ M.

We remark that under our conditions the exit time 5. from int M is finite
with probability 1 and, moreover, its expectation is finite, as well. Indeed, if
L = sup, c i, ,cw p(x,y) then by (4.1) if & > 0 is small enough,

(4.6) Pe(x,W\M) = e 2L/¢
for any x € M. Thus, by the Markov property

(4.7) Pi{rge > n} < (1 — e 2L/)",
and so

(4.8) Eirge < e?L/¢,

Later we will obtain a more precise estimate of this expectation.

Denote by 9; the set of points y € M° for which B,, = B;,. In view of the
remark after (4.5), 9, € W\ M and it is a closed set. By Lemma 2.2 any infinite
sequence of points , = (2,2y,...), 2, €M, p(z,,2,,,) =0, k=0,1,..., at-
tracts to one of K; whose index we denote by i( #)- For any x € M we denote
by I(x) the set of indices i( ») for all # starting at x. Consider the set G(9) of
graphs with vertices in the set L ={1,2,...,v,3} consisting of exactly one
arrow emanating from each vertex except for ¢ and having no cycles. Among
such graphs we choose those at which the minimum

(4.9) B=min Y B,
gEG(a)(a—»ﬁ)eg

is attained. In each of them we consider the chain of arrows leading from i to
d. Let j — 9 be the last arrow in this chain. The set of all these Jj in all chosen
above graphs is denoted by R(i).
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THEOREM 4.1. For each x € int M and any open neighborhood U of the set
Hx) = U, cryU jecraydj one has
(4.10) PHX:

€U} >1 ase—0.
Similarly to Theorem 9.1 of [11] and Section 5 of Chapter 6 in [5], the proof
of this theorem relies upon the study of the induced Markov chain X; on

(4.11) V=( U Vi)u(UlmMC)u(UnM”\Ul)U(IWC\U),
l<i<v

which stops at the arrival to M°, where U, D d(x) is an open set such that
U, c U. The one-step transition probabilities of X2 have the form

Pe(x,T) = Pi{X:, €T},

if xeV=U,\V.forxeV\V we put P¢(x,{x}) = 1. For an appropriate N
the N-step transition probabilities P*(N, x,V,) can be estimated by formula
(3.6) if x € V,. Similarly, one can show that

(4.12) exp(—B,, + B)/e) <P(N,x,U; N M) < exp((— By, + B) /¢)
and
(4.13) Pe(N,x, M\ U) < exp(—(By, + v) /¢),

for x € V,, where B > 0 can be made much smaller than y > 0 for appropri-
ately chosen U; and V,, i = 1,...,v. To derive Theorem 4.1 from estimates
(3.6), (4.12) and (4.13), one needs certain results about Markov chains proved
in [11], Lemma 7.3, and [5], Lemma 3.3 of Chapter 6.

After this result the remainder of the proof of Theorem 4.1 is easy and it
proceeds in the same way as in Section 9 of [11] and in Section 5 of Chapter 6
in [5] with simplifications due to the discrete time. The details are left to the
reader.

Let G(x + 9) denote the set of oriented graphs without cycles on the set
L=A{1,...,v,x,0} consisting of v arrows @ — B8 and not containing chains of
arrows leading from x to 3. Put

(4.14) B(x) = min Y. B,.
gEG(x-/-)z?)(a__,B)eG

The following result can be proved in the same way as Theorem 5.3 in Chapter
6 of [5].

THEOREM 4.2. Uniformly in x belonging to any compact subset of int M one
has

(4.15) limelog Eirge = B — B(x),

>0

where B is defined by (4.9).
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If the Markov chain X; is a diffusion process X; considered only at integer
t=20,1,2,... as described in the end of Section 3 with (3.17) and (3.18)
satisfied, then by Proposition 3.4 the functions B(x, y) are the same whether
the infimum of B,(x,y) is taken over nonnegative integers or nonnegative
reals provided x or y belongs to a basic equivalence class. This implies that the
corresponding numbers B,;, B and B(x) defined above will be also the same
for both cases yielding that the asymptotical behavior as ¢ — 0 of the exit
distribution and the mean exit time will be the same whether one considers X/
for all ¢ > 0 or only for integer ¢ > 0.

Next, we shall discuss the eigenvalue problem. Suppose in addition to
(4.1)-(4.3) and Assumption 4.1 that

(4.16) Pé(x,int M) =0 forany x & int M.

Then the operator P° acting on bounded Borel functions f on S by the
formula

(4.17) P, f(x) = fs f(y)Pe(x,dy)

transforms the space (M) of bounded Borel functions on S which are 0
outside of int M into itself. If || - || is the sup-norm on F,(M) then the limit

1
(4.18) A = lim —logll Pl
n—wo N

exists by the standard subadditivity argument, \* < 0, and e* is the spectral
radius of P.. It is easy to see that A° can be obtained in the following way:

1
(4.19) N = lim — log( sup P:{rze > n}),

n—o n x€int M

and so by (4.7), ¥* < 0. If P%(x,0M) =20 for all x €int M and P(x, )
depends continuously on x in the topology of weak convergence, then one can
replace Z(M) by the space €,(M) of continuous functions which are 0
outside of int M. In this case the operator P, is completely continuous and e*
is the absolute value of its principal eigenvalue. If P, is taken from a
semigroup generated by an elliptic operator L° then A° itself is the principal
eigenvalue of L’ i.e., its eigenvalue with the biggest real part.

Adapting methods of [10] and [9] to our discrete-time framework in the
spirit of this paper one derives the following theorem.

THEOREM 4.3. Suppose that (4.1)-(4.3), (4.16) and Assumption 4.1 hold.
Then

(4.20) lim clog(~ ") = —(B® ~ B®),
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where

B® = mci;nk Y. B, k=12,
g<G( )(a-AB)Gg

and G(k) is the set of oriented graphs without cycles with vectors in L =
{1,...,v,0} consisting of one chain of (v — k + 1) arrows.

REMARK 4.1. Suppose that we replace (4.2), (4.3) and Assumption 4.1 by
the condition that M does not contain any basic p-equivalence classes, and so
by Lemmas 2.2 and 2.5 there exists N such that for each x € M one can find a
sequence of points 2y, z,...,2, with n < N such that z,=x, z, € M and
p(2,,2,.1) =0forall k=0,...,n — 1. In this case similarly to Theorem 7.1
of Chapter 6 in [5] one can show that A* - —o as ¢ — 0 and

(4.21) limex® = —Al]im N~ 'min{Ay(£): & = (&,...,Ex_1) € MV}

>0
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