THE PRODUCT SEMI-INVARIANTS OF THE MEAN AND A
CENTRAL MOMENT IN SAMPLES

By CeciL C. Craic

The method developed by the author for caj¢ulating the semi-invariants and
product semi-invariants of moments in samples from any infinite population®
is not immediately applicable to the calculation of product semi-invariants of
the mean and a central moment in such samples. In the present paper this
method is adapted for this purpose so that the calculation of these product
semi-invariants becomes routine. As it will be seen, the computing is a little
heavier than in the case of central moments alone for results of equal weight.
A table of results up to weight ten for the mean and the second, third and fourth
central moments is given. The author plans to apply these to a further study
of the sampling characteristics of the coefficient of variation and Fisher’s ¢ in
samples from non-normal populations.

Let a random sample, 1, 22, - -+ , zy of N observations be drawn at random
from an infinite population characterized by the semi-invariants, Ay, A2, Az, - - - .
The sample mean is,

N
T = Z .’E.'/ N )
fam]
and the n-th central moment of the sample is
N
Mma = 2, (@ — &"/N.
fom]

Then the product semi-invariants of order &l of z and m., , Sii(z, m.), are defined
by the formal identity in the parameters ¢ and w:
(S10? + Suw) + -21—'(5100 + Suw)®
(1) .
+g7(S0d + Suw)® + ... = log E(¢*™™*),

in which E denotes the mathematical expectation over the set of all such
samples and

(Sud + Suw)” = Z; 1‘) Sie-i(Z, ma)d .
’-

1“An Application of Thiele’s Semi-invariants to the Sampling Problem;”’ Metron, Vol.
VI1I, part IV (1928), pp. 3-75.
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If we denote E(Z'm.) by My, , we have by definition the further formal identity
in ¢ and w:

E(eéd+mnw) =14+ (Mywd + Maw) + él_i (Mo + Molw)(z) + -

in which (Myd¢ + Muw)® is to be expanded in the same manner as
(S + Sow)®” above.
Let us write

& =x; — T,
and then
(2) E(eévH-m,.w) = E(e(Zz.')t)/lH-(Eﬁ’:)u/N)
(Summations with respect to ¢ and j always run from 1 to N.) Now we define

a new set of product semi-invariants, Ass..., of the sum Zz; and the N &/s, by
means of

(od + Zhoiw) + -%; (wd + Zhoiw)® 4 ¢+ = log B(e7Hes),
in which for example,

3 2)
()\1019 + > Mwu) = Naooo® + 2N1oo Fews

i=1

+ 2Modws + - -+ + Mozowi + Aoowws + Aooozws -

We may set
1 .
N Aij = —N’ 1#)
& = Z ai; T; with
i=1 _N-1
ME TN
Then

E(e(Zz¢)0+26.’w;) — E(eglw.'(t?-{-‘})a;,’w,‘)) — E(ealzl)_E(eazrg) . E(GQNZN),
in which
a =13+ Z @ijwj .
?
It follows then that
(o9 + Zhoie) + %,(xma + Zhw)®

L ot Zhas)® A -ee = M D M g 2
_3_! 10 0N e = A2 2—2—! 3—3—!- ey
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from which
(Mo? + 2haiw) ¥ = A E @+ Z T L
L 1

From this

Akoo...o = Ak{) = ka )
N;m...o = >\h010---0 = .. = 0,

and generally,’

®@) Mmmm=%#mFﬂ“WN—Dﬂ G+b+ -+l =1.

This is the first result to be used in calculating values of S’s. Note that the
value of Aiy,i,...1x is independent of the order in which a given set of I/’s oceur.

Calculation of particular Axi,i,...14’s in terms of N. and the semi-invariants of
the sampled population is both simple and rapid as one may see from a pair
of examples:

Nog = Ag2 = Aoz = -
(suppressing superfluous zeros in the subscripts)

N-1

N A

— Moo TS
= [V D+ (N—-1)] =

Then, too,

N —
A = N ! Ais2.

For a second example:
Mews = S - (N = D'+ (V= ) = (V — 2)]

_ _(N—-2)(N*—3N +3)
= -

k47
Now the semi-invariants, Si;, can be expressed directly in terms of the
product moments, viy,1,...1y Of the sum Zk; and the Né’s. These product mo-

ments are given by the appropriate moment generating function:

ro0sEhee: 1 :
E@™ 75 = 1 + (nod + Zwws) + 57 (o + Do) @ 4 oo

2 As written this result is valid if at least one of the l’s is zero which is always the
case if N, the size of the sample, is greater than I. (Cf. the author’s paper cited above,
p. 17.)
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Then it is seen that,

B0 = 1 4 [ + (Swmidel + -21—, id + (Bvondel® + -+,
in which
o + (Zvo,ni)0]®
= v + 2(v1n + 2100 + Vion + -+ )00 + (020 + Vo020 + o020 + -+ )0’

ete. and by comparison with (1) and (2), we have

(S1? + Suw) + -21—, (Swd + Suw)® + ---

= log {1 + 1—1\7 [rod + (Zvo,m)w] + 2'LN” s + Crom)w]® + -- }
From this
(Swd + Suw)**?
4) . (=1 (p— 1)1k + D vwo® + Ewo,n)o] {108 + Era)e] P}’ - -
Nr+ an-@ne...rlst...
in which

r+s+t+...=p,

the summation extending over all partitions (12°3° ... ) of & + I. This, of
course, is only the usual formula for semi-invariants in terms of moments appro-
priately modified. In particular,

(S8 + Suw)® = 1-\1;2 (08 + Cr0.)6]® — bud + Swomul).

If we write
[rod + Crom)w] = W

® (Su? + Su0)® = & (W = 3WOW + 2")

(S8 + Suw)® = 1—1\,-4 WO — AWOW — 3(WP) + 12WOW* — 6W"].

Now the »41,1,...15’s can be replaced by their values in terms of the Au,1,...15s,
the details of which will be explained below, and it will be evident that any
Vilyly...1y i unaltered by a permutation of the I’s in its subscript. Taking
account of this, the formulae (5) may be written in the expanded forms:

Su(E, m,) = I—lg.[l'ln — Viovon)
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_ 1
Sia(Z, Ms) = == [Van — vavon — 2v1av0 + 2viov0n)

N
_ 1
ST, ma) = N [ren + N — 1)v1an — viovo2n — (N — 1)viobonn

— 2N VinVon + 2N VloV?)n]'

But, with no loss in generality, the origin may be taken at the population mean
so that A, = 0. In this case it will be found that vy = 0 and these formulae
become:

Su(d-i, m,.) = Vl,,/N

Szl(a-f, m,,) = 1—3,—2 [Vzn - 1'20"0»]
Sw(z, m.) = ]-lv—z [rren + (N — 1)v1an — 2Nviav0n]

Sal(j: m,,) = ]%2 [van — vsobon — 3v1nva]

(6)
Sﬂ(i, mn) = ]_3‘7‘3 [V2,2n + (N - l)Vzrm — 2N VonVon — V20Y0,2n

— (N = 1)vagvonn — 2N} + 2Nvapwia)

Sis(Z, mn) = ]% [pu3n + 3N — Dvignn + (N — DV — 2)v10nn
- 3NV1'2"'V0” - 3N (N - 1)”1111&"07& — 3N V1nV0,2n
— 3N (N - l)VanOrm + 6N 2111,,,1'(2),,,].

These formulae are the second result used in the actual calculation of
Sii(Z, m,)’s. One begins with them, putting in the particular value of n for
the central moment in question. If for instance we wish to compute the product
semi-invariants of the mean and variance in samples of N, we begin with the
set of formulae:

Su(z, me) = na/N
1

) Su(Z, mg) = i [vas — vaoveel

S1a(&, ms) = 1—:%2 [pu + (N — L)vioe — 2Nvioreal,

ete.

The second step is to replace the product moments vii,z,...,y Which appear by
their values in terms of the corresponding product semi-invariants. This process
can perhaps be best explained by some examples.
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Consider the complete calculation of Sis(E, mz). From the expression for the
fifth central moment in terms of semi-invariants:

vs = As + 10Ashz,

we can write the corresponding expression for product moments in terms of
product semi-invariants

@) ()@ = (2A3)® + 10(203) @ (2A09)®.

4
Then we get »1i4 by comparing coefficients of %-% and vz by comparing coeffi-
LA
212!
are readily picked out by inspection; for larger indices the use of Hammond
operators reduces this to a mechanical routine.’ In this case we have

cients of in this identity. For an index as low as 5, these coefficients

D;D(14) = (12)(02) + (03)(11).
To the terms on the right the appropriate binomial coefficients must be applied
giving
3(12)(02) + 2(03)(11).
!
The total of these coefficients is 5 = Z'?»I—' , a necessary check. Then multi-

plying these coefficients by 10/5, we have
6M12hoz + 4NosAu

for the required coefficients in the second term in (8). Thus
via = M+ (6M12hoz + 4Nosh1y).

The two terms in parentheses arise from the same term in (8) and would both
give rise to terms in A\g\z insthe final result if A;; werenot identically zero from (3).
In practice all terms in which A is a factor are crossed out as they appear.
Next

D;D,(122) = 2(12)(02) + (111)(011) 4 2(021)(11).

(Mooz = Noz ;No1z = Aoz1.) With the binomial, or multinomial coefficients attached,
the right member is rewritten

6(12)(02) + 12(111)(011) + 12(021)(11).

3 Cf. the author, loc. cit., p. 24.
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The total of these coefficients is 30 = m' . Then multiplying each coeffi-
cient by 10/30, we have
iz = Mz + (M2 + Ao + 4horehn).
Going on with the calculation of S:2(Z, ms):
Vig = Alz, Vo2 = )\02 )

and then we have:

Sua@, m) = 1 (e + (V = Dham)

+ {6Mohoz + (N — 1)(2M2hoz + 4Aimhons) — 2N Ai2hoe} ]

The first set of terms within braces gives rise to terms in As; the second to terms
in Ag\2. Next

N 1)(N12vs_ SN+8) = _Z‘Ai;
e = 20230, o=Vt
o = H DN =2y, M = =22,

This table of values will be of frequent use in further calculations of Si.’s.
Giving the values of both Ay and Xou here, was unnecessary duplication.
Now only the final reduction is to be carried out. We obtain

S, ms) = o LIV = Dhs + 4NAoA.

This result of order 3 and of weight 5 follows a quite mechanical procedure
and is quite brief. The length of the algebraic computations required grows
rapidly as the weight is increased but for weights no greater than 10 undue labor
is not required. For greater weights only time and patience is required to get
results if they are needed. It is to be noted that by this method one may
calculate individual terms in the result without doing any of the work required
for the remaining terms and that one may readily shorten the work by getting
results to a desired degree of approximation with respect to powers of 1 /N.

There follows a table of the results so far calculated.
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Forn = 2:
Su = N]—v— ! A3
So1 = ]-Y—A—,—Tl M
S = NT:1 [(N — 1)Xs + 4NN
Ssl = ]'\LE;—I )\5
N

Sy = '—]{7?5'—1 [(N — 1A + 4N Aadz + D]

Sis = Zizf,;—l [N — 1)"M + 12N(N — DXshe + 4N (BN — T)Aids + 24N"AsA3).

It is not difficult to see that in general

Skl(a-:, mz) = ngéﬁl kk+2
Forn = 3:
s e )\ 2)
(N -1 — 2)
Sn = =m0
s = NV =D (v — v — 200 + N — 20
+ 2IN(N — 2)Aahs + 18N A3
S N -1 - 2)
31 = NS
S = W=DV =D (v v - 200 + VW — DA,
4+ 36N(N — 2)Ashs + 2TN(N — 2)A + 18N MAS + 36N AN
S = VDN = 2) v 1y — 2

NIO
+ 9(N — 1)(3N* — 12N® + 12N* — 5N + 5)Ashe

+ 27N(4N* — 21N® + 36N* — 20N + 3)\)s

4 2IN*(N = 2)*(TN — 11)Aehs + 54N (N — 2)(4N — T)Aehs



Sll =

S =

S =

Sax =

Sez =

N-1
Nt
N-1
N©
N-1

8

N-1
N°©
N-1
N?
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+ 27INY (N — 2)(4N — )N + 54N’ (N — 2)(23N — 50)Nshshe
+ 162N*(N — 2)(BN — 12)A\fx: + 54N°(20N? — 126N + 140)A)3
+ 108N*(5N — 12)M\; + 324N*(5N — 12)AIN]

For n = 4:

[(N® — 8N + 3)As + 6N(N — DXshal
[(N* = 3N + 3\ + 6N(N — 1)(Aade + A3)]

(N — )(N?* — 3N + 3)"N

+ AN(N? — 3N + 3)(7N* — 18N + 15)\hs

+ 4N(N? — 3N + 3)(19N* — 66N + 63)Ne)s

+ 4N(29N* — 195N° + 537N* — 639N + 351)AsMs

+ 12N*(17N°® — 7TIN® 4+ 117N — 69)\s);

+ 24N*(35N° — 173N* + 309N — 189)AsAshe

+ T2NAN — 2))BN — 5\ + 96N (4N* — 9N + 6)Ns)o]

[(N® — 3N + 3)A + 6NN — DNshe + 18N(N — DNkl

(N — 1)(N* — 3N + 3)"\p

+ AN(N® — 3N + 3)(7TN* — 18N + 15)Ashe

+ 8N(N® — 3N + 3)(13N* — 42N + 39)M\s

+ 12N(16N* — 106N° + 285N° — 360N + 180)Ne)s

+ 12N*(17N°® — TIN® + 117N — 69)he\;

+ 4N(20N* — 195N° + 537N* — 693N + 351)X;

+ 48N2%(26N° — 125N° + 213N — 129)Ashs)e

+ 24N%(35N° — 173N* 4 309N — 189)AiX,

+ 24N%(62N° — 326N* + 597N — 369)\\;

+ 96N*(4N? — ON + 6)N\\) + 288N°*(4N* — ON + 6)N ;).
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