ALTERNATIVE MODELS FOR THE ANALYSIS OF VARIANCE!

BY HENRY SCHEFFE?
University of California, Berkeley

Summary. The terminology is defined and illustrated in Section 1. A little
historical background not very familiar to statisticians is sketched in Section 2.
In Section 3 some difficulties about the formulation of random interactions are
discussed. Section 4 deals with models reflecting a randomization in the experi-
ment to assign the treatment combinations to finite populations of experimental
units.

1. Introduction. A broad survey of the present state of the theory of alternative
models in the analysis of variance would require a monograph and be soon out-
moded. The selective approach of this paper has been determined mainly by the
interests of the writer. His chief interests are in the mathematical models—their
formulation, motivation, and statistical inference in them. The reader is referred
to a useful survey by Crump (1951); he will find little overlap between the two
papers. In these papers there is little attempt to deal with the always important
and often difficult problems of careful tailoring of the models to particular situa-
tions in the physical world; discussions of such problems may be found in the
work of Kempthorne and Wilk cited in the References at the end.

The analysis of variance might be defined as a statistical method for analyzing
observations assumed to be constituted of linear combinations, subject to a
certain restriction to be stated below, of effects. (We use the terminology of
“effects” to include what are usually called the “general mean,” “main effects,”
“interactions,” and ‘“‘errors.”’) The effects—not directly observable quantities—
are more or less idealized formulations of some properties of interest to the in-
vestigator in the phenomena underlying the observations. The purpose of the
analysis is to make inferences about some of the effects, these inferences to be
valid regardless of the magnitudes of certain other effects, which may be present
in the linear combinations, and which we may be more desirous of ‘“‘eliminating”
than “‘assessing.”

The theory of this method naturally has implications about how observations
should be taken or an experiment planned, i.e., about experimental design. The
term ‘‘experimental design’’ is used here in a broad sense to include, for example,
the application described below of variance-components analysis to the non-
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experimental science of astronomy to help decide on how many nights observa-
tions should be taken and how many per night.

The restriction mentioned above is that the coefficients in the linear combina-
tions which give the observations in terms of the effects be integers; usually they
are exclusively 0 and 1. (For an example where some are —1 see Scheffé (1952,
Sec. 7); for an example where some are 2, see Kempthorne (1952, Sec. 6.8). If
more than a few different integers occur as coefficients of the same effect it would
be customary to say we have a case of analysis of covariance or of regression
analysis instead of analysis of variance; it does not seem worthwhile to attempt
to draw sharp dividing lines.)

Each effect is regarded as either an unknown constant or else as a random
variable, the joint distribution of the random variables being in general not as-
sumed completely known. If the effect is treated as an unknown constant it is
called a fized effect or Model 1 effect, otherwise it is called a random effect or
Model 11 effect. (Some writers apply the terminology of “Model II effects” only
to random effects which satisfy certain further distribution assumptions including
independence and normality.) The diversity of models that have been consid-
ered for the analysis of variance arises from the possibilities of treating various
effects as fixed or random and of making various distribution assumptions about
the random effects. For simplicity we shall always assume that all random effects
have finite variance (this might not be necessary in a nonparametric approach).
We may assume all random effects to have zero means by introducing further
fixed effects if necessary. We shall assume that there is at least one set of random
effects equal in number to the number of observations, a different one of which
appears in each observation, which is called a set of errors. There is usually one
fixed effect that appears in every observation; if this is present we shall call it
the additive constant—or the general mean if it is the mean of all the observations
in some sense.

The equations expressing the observations as linear combinations of the ef-
fects will be called the model equations: Together with the distribution assump-
tions on the random effects and possible side conditions on the fixed effects they
determine the model. The model will be called a fizxed-effects model or Model 1
if the only random effects in the model equations are the error terms; it is called
a random-effects model or a variance-components model or Model 11 if all effects,
except the additive constant if there is one, are random effects. A case falling
under neither of these categories is called a mized model.

We now illustrate the terminology. Imagine an experiment in a factory to
study the performance of P machines and @ workers. Suppose that all the
machines, each run by a single worker, produce small parts of the same kind,
that a large number is produced daily on each machine, and that there is con-
siderable day-to-day variation for any worker (for some purposes we will treat
the output as though it were a continuous random variable). Denote by u,, the
“true” daily output of the gth worker on the pth machine; this differs from the
observed output by an “error.” We might regard u,, as an idealized long-term
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daily average for the gth worker on the pth machine after he has reached a
relatively stable period following a learning stage. Our convention on sub-
scripts throughout will be that subscripts p, p’, p” range from 1 to P; q, ¢, q”,
from 1 to @, etc.; and that when a subscript is replaced by a dot it indicates
that the arithmetic mean has been taken over that subscript; thus u, =
D tind/Q, B, = Dop Doq ipe/(PQ). In the familiar way we define the general
mean to be

1.1) N

the main effect for the pth machine to be

(1.2) op = pp. — K.,

the main effect for the gth worker to be

(1.3) By = thq— k.,

and the interaction between the pth machine and the ¢qth worker to be
(1.4) Voa = Mpg = Hp. — Ko T B,

so that

1.5) Bpg = i+ ap + By + Ypa s

where

(1.6) Zp a, =0, Zq B, =0, Zp v¥pq = Oforallg, Eq vpq = 0forall p.

Suppose an experiment is contemplated in which each of the workers is put
for K days on each of the machines. For reasons to become clear later, let us now
change from the subscripts p, ¢ to ¢, j. Then the output of the jth worker the
kth day he is on the 7th machine may be written
1.7) Yige = Mij T €ije
where e;; is the “error.” We shall assume the set of IJK errors {e;} to be
independently distributed with zero means and common variance o; . For some
purposes a normality assumption on the errors may be added. We shall some-
times employ the jargon that the I machines are the “I levels of factor A and
the J workers are the “J levels of factor B” in the experiment.

The formulation of the interactions in the other models causes some difficulties
we wish to postpone; so to keep all the illustrations simple at this point, let us
assume the interactions between machines and workers are zero. With all
vs; = 0 the model equation then becomes

(1.8) Yie = p + a: + B; + e,
and since
(1.9) Dia; =0,

(1.10) 2.iB; =0,
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and E(e;) = 0, therefore u is the general mean in an obvious sense. The effects
are the terms of four kinds on the right of (1.8); all are fixed effects except the
errors, so this is a fixed-effects model.

Suppose the J workers in the experiment could be regarded as a random
sample from a large pool of workers and that we were more interested in making
inferences about this population of workers than about the J individuals in
the experiment. Idealizing the population of workers as infinite and assuming
no interactions we would then be led to the model equation

(1.11) Yie = p + a; + bj + e,

where the random variables {b;}, the worker effects, are independently and
identically distributed. We again assume the errors {e;} to be independently
distributed with zero means and equal variance, and we also assume them
independent of the {b;}. We may without loss of generality assume the {as}
continue to satisfy (1.9), but the {b,} for the J workers in the experiment of
course no longer satisfy the analogue of (1.10). By adding E(b,) to » we may
redefine the {b;} and u so that E(b;) = 0 and u is again the general mean. This
example is one of a mixed model.

It would be appropriate to treat the machine effects also as random if the
machines in the experiment were of the same make and model and could be
regarded as a random sample from some population of machines which is of
primary interest. If this population be also idealized as infinite, the machine
effects are then independently and identically distributed random variables
{a:}, and again we may without loss of generality assume E(a;) = 0. Since the
random sample of workers is assumed to be selected independently of the
random sample of machines, the set of worker effects {b;} is independent of the
set {a;}. We further assume the set of errors {e.;} to be independent of the sets
of effects {a;} and {b;}, and again assume the {e;} to be independent with
zero means and equal variance. We now have the model equation

(1.12) Yije = 1+ a; + bj + e

for a random-effects model or variance-components model. The latter terminology
arises from the relation that the variance of an observation is now

(1.13) cr,z, =i + crf; + of R

where o , 0% , 0%, and o> are the respective variances of the observations, the
machine (factor 4) effects, the worker (factor B) effects, and the errors, and
the three terms on the right of (1.13) are appropriately called the variance
components.

We see that in formulating a model one must ask for each factor whether one
is interested individually in the particular levels occurring in the experiment or
primarily in a population from which the levels in the experiment can be regarded
as a sample: the main effects are accordingly treated as fixed or as random. (It
is conceivable that for two different purposes the same data might be analyzed
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according to two different models in which the same main effects are regarded
as fixed or as random effects.) Interactions between several factors are naturally
treated as fixed if all these factors have fixed effects, and as random if one or
more of these factors have random effects. The difficulty already alluded to
and to be discussed in Section 3 concerns the kind of dependence assumptions
to be made about the random interactions. While the decision as to whether the
main effects of any factor, say A, are to be treated as fixed or random obviously
affects the meaning of the main effects of A and the interactions of sets of factors
including 4, it also affects the meaning of the main effects of the other factors
and of the interactions of sets of factors not including 4 : This is because the
latter main effects and interactions are defined as averages over the levels of 4,
and the decision determines whether these averages are taken over the particular
levels of 4 in the experiment, or over a population of levels, of which the levels
in the experiment are a sample.

The assumption of independent errors made in this section is not appropriate
if the errors arise from the random assignment of experimental units to treat-
ment combinations from finite populations of units; this will be considered in
Section 4.

We shall abide by the notational rule followed in this section of denoting fixed
effects by Greek letters and random effects by Latin letters.

2. Some history. Fixed-effects models in which the covariance matrix of the
errors is known up to a scalar factor are special (because of the restriction on the
coefficients to be integers) cases of the models, sometimes called “linear hy-
pothesis” models, used in the theory of least squares. It is well known that the
theory of least squares was invented independently and published by Legendre
(1806) and Gauss (1809; see also Plackett (1949)) in books on astronomical prob-
lems, so that to these problems we must ascribe the origin of the fixed-effects
models. It is not so well known that astronomers, long before statisticians, also
formulated variance-components models. For the references establishing this I
am indebted to Dr. Churchill Eisenhart.

Very explicit use of a variance-components model for the one—way layout is
made by Airy (1861, Part IV), with all the subscript notation® necessary for
clarity. Suppose that on I nights observations are made with a telescope on the
same phenomenon, J; observations on the 7th night. Airy assumes the following
structure for the jth observation on the 7th night:

2.1) yij = p + ¢ + e,

where u is the general mean or “true” value, and the {c;} and {e;;} are random
effects with the following meanings: He calls ¢; the “constant error,” meaning
it is constant on the ¢th night; we would call it the sth night effect; it is caused

4 To conform to the notation of this paper I have only changed his capital letters (1861,
Sec. 118; Sec. 133 in 3rd ed.) to lower case, and I have added the general mean u since he
writes the equations for the observations minus u instead of for the observations.
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by the ‘“atmospheric and personal circumstances” peculiar to the sth night.
The {e;;} for fixed ¢ we would call the errors about the (conditional) mean
# + c; on the sth night. It is implied by Airy’s discussion that he assumes all
the e;; independently and identically distributed, similarly for the ¢;, that the
{e:;} are independent of the {c;}, and that all have zero means. Let us denote
the variances of the {e;;} and the {c;} by o- and o2 .

To decide about his equivalent of the hypothesis 2 = 0, Airy compares, as
we would, a between-nights measure of variability with a within-nights measure,
but he uses different measures than we would. For brevity suppose all J; = J.
From the observations on the 7th night Airy estimates o, by the r.m.s. (root-
mean-square) estimate—note his use of J — 1 in the denominator—

(2.2) Be = [ 25 (s — 9:)/(J = DI,

and he then takes the arithmetic average of these to get &, = Y .; &..;/I, where
we would use the r.m.s. average. Actually he works with the “probable errors,”
which are a conventional constant, calculated from the normal distribution,
times the r.m.s. estimates. For the between-nights measure he uses not a function
of the between-nights sum of squares J > ; (y;. — ..’ but the corresponding
mean deviation from the mean,

2.3) d= T2 |y —y..|

Under the hypothesis o7 = 0 he calculates an approximate probable error for
d by replacing y.. in (2.3) by x (so the terms in (2.3) become independent) and
the unknown o, by é.. If d is less than the approximate probable error thus
obtained he accepts o7 = 0, if d is large compared with the approximate probable
error (how large Airy does not specify, and he seems to despair of the possibility
of a mathematical criterion), he rejects o> = 0 and estimates o, by a conventional
constant times d. There is no attempt to correct this estimate of o, for bias due
to o, inherent in the relation Var (y;) = oz + J ' ; anyway, under his pro-
cedure Airy’s estimate of J '¢; would be small compared with his estimate of
o: . One wonders whether Airy used the mean deviation to measure the between-
nights variation rather than the r.m.s. measure, as he did in (2.2), because he
found it easier to approximate the probable error of the former.

Chauvenet (1863, Vol. 2, Art. 163, 164), while not writing model equations
like (2.1) with all the subscripts, nevertheless implies such models and utilizes
the consequences, such as Var (y.) = I (o2 + J 'o%) from (2.1). He concludes
from this that there is no practical advantage in increasing J beyond a certain
point in such a case, and credits this idea to Bessel (1820, p. 166), saying that
Bessel thought J = 5 sufficient for a certain situation. Chauvenet’s reference
to Bessel on this specific point (J = 5) is incorrect, but the page he cites does
contain a formula for the probable error of a sum of independent random
variables which could be the basis for such a conclusion. Probably Bessel made
the remark elsewhere.

Fisher’s (1918) basic paper on population genetics, which introduces the



ANALYSIS OF VARIANCE 257

terms ‘‘variance’” and ‘“‘analysis of variance,” employs variance-components
models, and they are of course behind his (1925, Sec. 40) treatment of the
intraclass correlation coefficient. First to add to Fisher’s analysis of variance
tables the very useful column of expected mean squares for variance-components
models appears to have been Tippett (1931, Table XXIV;in (1929) he calculated
but did not table them). While a mixed model is implied by Fisher’s (1935,
Sec. 65) discussion of varietal trials in a randomly selected set of locations, and
by Yates’ (1935a) analysis of the split-plot design, the first explicit model
equation the writer has found for this case is in a paper on mental tests by
Jackson (1939), where the score of the jth individual on the sth trial of a test
is assumed to have the structure (1.11), with the subsecript & suppressed, the
trial effects being treated as fixed and the “individual” effects as random.
Interaction effects which are clearly labeled as random effects were introduced
into the variance components model equation (1.12) by Crump (1946). The
terminology of “Model I” and ‘“Model II” is due to Eisenhart (1947). Basic
work of Tukey will be discussed in Section 3, and of Fisher and Neyman in
Section 4. In textbooks, alternative models for the analysis of variance were
introduced by Mood (1950) and developed at length by Kempthorne (1952),
and Anderson and Bancroft (1952).

3. Treatment of random interactions. The examples of fixed-effects models,
mixed models, and random-effects models given at the end of Section 1 all refer
to an I X J two-way layout with K(K = 1)-observations per cell, where y.;
denotes the kth observation in the %, j-cell. Let us define the usual sums of
squares, namely, those for rows (or 4),

(3.1) 884 = JK3: (i. — y..)%

for columns (or B),

(3.2) 885 = IK>; (4. — y..),

for interactions (or 4 X B),

3.3) 88us = K2 205 Wiz, — yi. — Y5, + 9.0}
for error,

(3.4) 88, = 20 205 2k Win — wii)’

and a “pooled” error sum of squares,

3.5) 88y = S88Sas + S8,

As long as interactions are omitted from the model equations, no great dif-
ferences appear among the three models formulated in connection with (1.8),
(1.11), and (1.12). The expected values of the above sums of squares in the
three models may actually be expressed by the same formulas by the usual
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device of suitably defining the symbols ¢% and % : When the levels of factor A
have random main effects {a.}, as in (1.12), we define

(3.6) o4y = Var (a:);
likewise
3.7) o3 = Var (b))

in (1.11) and (1.12). When the levels of factor 4 have fixed main effects {a},
as in (1.8) and (1.11), we define ¢% to be the following function of the fixed
effects:’

(3.8) o= -1)"2ia;
likewise

(3.9) o5 = (J — 1) ;6

in (1.8). Then for all three models

(3.10) EMS,) = JKo% + o,

(3.11) E(MS;) = IKo% + o,

(3.12) E(MS.45) = E(MS,) = E(MS,.) = o,

where the mean square M S, is defined as the corresponding S8, in (3.1) to
(3.5) divided by the number of d.f. (degrees of freedom), namely, I — 1, J — 1,
I-1)J —1),IJ(K - 1), IJK — 1 —J + 1,for x = A, B, AB, ¢, pe,
respectively. (In statements involving MS, it is assumed that K > 1.)

If we add the normality assumption (namely, that all random effects are
normally distributed) we get exact F-tests of the hypotheses H, :0% = 0 and
Hz:ocs = 0 by employing in the usual way the statistics MS,/MS,. and
M S/MS,. . The power functions however are quite different under the three
models, involving, for example, only central F-distributions under the random-
effects model and only noncentral (this term includes “central’”’) F-distributions,
not central under the alternatives, for the fixed-effects model. These results are
all earily verified by substituting y.5 from the model equations into (3.1) to
(3.5), simplifying, and then applying well-known “linear hypothesis” theory.
When an F-test rejects, one would usually proceed differently in the three
models: thus, if H, is rejected one might use a multiple comparison method on
the {a;} if they are fixed effects, and an interval estimate of ¢’ (an exact solution
is not at present available) or of ¢%/c% if the {a;} are random.

The consequences on statistical inference are much more divergent when
interaction terms are included in the three models. For the fixed-effects model
we denote the interactions by {vy;}, so that the model equation becomes

(3.13) Yiie = b+ ai + B; + vi; + €ijn

5 Bimilar definitions with the denominators increased by unity were used by Daniels
(1939).
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where the {a:}, {8;}, and {v;} satisfy (1.6) with p, ¢ replaced by ¢, j. The
expected mean squares for this model are shown in column (i) of Table 1, where
o5 is defined to be the following function of the fixed interactions,

(3.14) die=T =1 - 17X v,

This is under the assumption that the {e;;} are independently distributed with
zero means and equal variances o, ; if we add the normality assumption we get
the well-known theory of estimation and testing for this model; in particular,
MS4, MSs, and M S, are all tested against M S, .

For the mixed model it seems inescapable (also for the random-effects model)
to regard the interaction between the jth level of the column factor and the
ith level of the row factor as a random effect, since the jth level of the column
factor is chosen at random from a population of levels. Let us denote it by
¢:j , so that we have the model equation

(3.15) Yie = o+ ai + b + ¢ + e
for the mixed model. (Similarly we write the model equation
(3.16) Yije = u+ a; + b; + cij + eijn

for the random-effects model.) What should we assume about the distribution
of the random variables {c;;}? The easiest thing is to assume them independently
and identically distributed, with zero means, and independent of the {e;;}
and the {b;} (and of the {a;} in the random effects model). But the assumption
that the {c;;} are independent of the {b;} (and of the {a;}) is hard to accept:
Thus in the above example of the mixed model for machines and workers, it is
not unreasonable to assume that the J workers are chosen independently from
a population; but then to assume that after a certain worker is included in the
experiment, the interaction between him and any one of the I machines should
be independent of the worker (or at least of the worker’s main effect) and of the
machine seems to violate the very notion of interaction between worker and
machine. (A similar objection would apply in the random-effects model.)
Under this easy but unrealistic assumption on the {c;;} the expected mean

TABLE 1
FExpected values of mean squares
Expected value in
Mean square (i) (ii) (iii)
. Mixed or random-effects model Mixed model with dependent
Fixed-effects model with independent interactions interactions

M8, JKd* + o JKo4 + Koy + o° JKo* + Koy + ot
MSs IKs + afz IKo% + Ko’y p + ot IKa:B + o'fz
M85 Ko + o2 Ko g + o Koap + o
MS. oe oo oh
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squares turn out to be those listed in column (i) of Table 1; here o5 denotes
Var (c;;). The table suggests that in the mixed or random-effects models, unlike
the fixed-effects model, the mean squares for main effects should be tested
against the interaction mean square. It is easy to show these procedures (as
well as testing M S 45 against M S,) give exact F-tests of the respective hypotheses
under the normality assumption (that all random effects are jointly normal).
Again the power in every case involves only noncentral F-distributions (all
central for the random-effects model).

Distribution assumptions on the random interactions {c;;} that seem ac-
ceptable to the writer may be reached by following a trail broken by Tukey®
(1949). Let us consider first the case of a finite number of machines and men,
not all of which are going to be included in the experiment. If u,, is the ‘“true”
output of the qth worker on the pth machine, there is no question about how to
define the main effects {a,}, {B,}, and interactions {vy,,}; they are defined by
equations (1.2), (1.3), and (1.4). Now let us conceive of the mixed model as a
limiting case where the number @ of workers in the population becomes infinite
and only a sample of J workers is included in the experiment, but all the machines
are included, so that p = ¢, P = I. Then the role of u,, is played by m(s, z),
where « labels the worker in the population, and m(z, ) is his “true” output on
the 7th machine. It will be convenient to denote by @ the population distribution
of z, even though it does not enter the calculations directly.”

Clearly the analogue of the resolution (1.5) is

(3.17) m(t, z) = p + a; + b(z) + ci(z),

where

(3.18) p=m(.,.),

(3.19) a; = m(, .) — m(., .),

(3.20) b(x) = m(.,z) — m(., .),

(3.21) ci(xz) = m@, z) — m(, .) — m(., z) + m(., .),

and where replacing 7 by a dot in m(¢, x) signifies that the arithmetic average
has been taken over ¢ for 7 = 1,2, --. , I, and replacing z by a dot means the
expectation has been taken over x with respect to ®. We may call {a;} and
b(x) the main effects in the population, and {c;(z)} the population interactions,
and we note they satisfy the conditions

(322) Yiai=0, E(bx)=0, >.ciz)=0@alz), Elcz)) = 0 (all5).

¢ Tukey did not publish his results in a journal and they were independently found by
Wilk and Kempthorne, and Cornfield.

7 The reader interested in these points will easily supply the mathematical assumptions
under which @ is a probability distribution on a probability space of points z, the I functions
m(z, ) are random variables with finite variance, and also the appropriate assumptions on
the product space of points (y, z) for the random effects model below.
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The random variables b(x), ¢1(x), - - - , cr(x) are not independent; their variances
and covariances are functions of the covariance matrix (¢;;) of the I random
variables {m(z, z)}. If

(3.23) ai = Cov (m(3, z), m(7, x)),

then

(3.24) Var (b(z)) = o..,

(3.25) Cov (ci(z), c#(x)) = 0ir — 0i. — 0r. + 0.,
(3.26) Cov (b(z), ci(x)) = 0i. — o...

Suppose now a random sample of J workers is taken from the population.
If they are labeled by 2, - - - , z, , so that the {z;} are independently distributed
according to @, then the “true” output of the jth worker in the experiment on
the 7th machine will be m(z, z;), which we shall write m;; . We shall assume the
observation y;; to be of the form

(3.27) Yie = Mi; + €,
where the set {e;s} is independent of the set {m;;}. We shall also assume the

{esx]) to be independent with zero means and equal variance of. Writing
b; = b(z;) and ¢;; = ci(x;), we have from (3.27) and (3.17),

(3.28) Yise = p + a;i + b; + ci; + e,

where the {e;;z} are independent of the {b;} and {c;;}, all have zero means, and
the J sets {b;, c1;, - -+ , ¢r;} are independently and identically distributed like
the random vector (b(z), ¢ci(z), - - - , ci(x)) whose covariance matrix is given by
(3.24), (3.25), (3.26), the elements of the underlying covariance matrix (o)
being regarded as unknown parameters.

The appropriate definition of the symbols o3 and o4 is suggested by starting
from the customary definitions for the finite set {u,,}, namely,

(3.29) o= (Q— 1726,

(3.30) das = (I — 1)@ — 7' 2 Xovie,
and going to the limit; the result is

(3.31) oy = Var (b(z)),

(3.32) oas = (I — 1) 2 Var (ci(z)).

For details and discussion of this and the other results we shall now briefly
mention for this model, and for citations of related work, the reader is referred
to Scheffé (1956). With these definitions the expected mean squares are those in
column (iii) of Table 1. Under the normality assumption the tests of the hy-
potheses o5 = 0 and o5 = 0 suggested by the table, namely, those based on
MSs/MS, and MS,s/MS,, turn out to be exact F-tests. However under the
hypothesis 6% = 0 (i.e., 01 = az = +++ = ar = 0), the statistic MS./MS.s °
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suggested by the table does not have an F-distribution; an exact test of this
hypothesis and an associated multiple-comparison method may be based on
Hotelling’s T* statistic.

Appropriate distribution assumptions about the interactions in the random-
effects model may be motivated in a similar way. Let the machines be labeled
by y with population distribution . We assume y and z independent, corre-
sponding to independent choices of machine and worker. Let the random
variable m(y, x) be the “true” output of the worker labeled x on the machine
labeled y. Define the general mean, main effects for machines, main effects for
workers, and interactions, all in the population, respectively by

(3'33) b= m(') ')7

(334) a'(y) = m(y, ') - M(., '))
(3.35) b(x) = m(.,z) — m(., .),
(336) c(y, x) = m(y7 z) - m(y; ) - m(" x) + m(" '))

where replacing = or y by a dot in m(y, z) indicates the expected value has been
taken over z or y with respect to ® or @, respectively. The analogue of (1.5)
is now

3.37) m(y, z) = p + ay) + b(x) + c(y, =).
If the I machines randomly selected for the experiment are labeled by
v, - ,yr, the J workers by z;, +-- , ,, so that the {z;} and {y;} are inde-

pendently distributed according to ® and @, respectively, then the ‘true”
output of the jth worker on the ¢th machine in the experiment will be m(y; , z;).
Write m.; = m(y;, z;), a; = a(y:), b; = b(x;), ¢ij = ¢(y:, ;). Then assuming
as in (3.27) that the errors {e;;} are independent of the {m,;} and are inde-
pendently distributed with zero means and common variance o2, we get the
model equation

(3.38) Yise = p + a;i + bj + cij + eipe,
and may verify that all the random effects have zero means, the a,, -+ , ar,
by, --- , by are independent, and the {¢;;} are uncorrelated with each other and

with the {a;} and {b;}. The expected mean squares are then those in column
(i) of Table 1. If we now add the assumption that all the random effects {a.},
{b;}, {ci;} are jointly normal, this forces the {c:;} to be ¢ndependent of the
{a;} and {b;} as well as among themselves, and we are back to the random-
effects model discussed earlier—with perhaps a little less aversion to the inde-
pendence assumptions on the interactions—or a little more suspicion about the
innocuousness of the normality assumption!

This approach to the random-effects model is easily extended to more factors,
and it is again found that all the random effects in the model equation are un-
correlated. The extension along the above lines (involving T%) of the mixed
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model to more factors is in progress; expected mean squares have already been
given by several writers, including Tukey (1949), Wilk and Kempthorne (1953
1955), and Bennett and Franklin (1954).

In applying models like those discussed in this section one cannot evade the
question as to the effect of the inevitable violations of some of the following
three assumptions made on the errors: (i) independence, (ii) equal variance,
and (iii) normality. Of these, (i) is the most difficult to discuss. The effects on
the F-tests of certain kinds of correlation in the fixed-effects model have been
studied by Daniels (1938) for the one-way layout and by Box (1954) for the two-
way layout, and we merely mention that they can be serious. The effect on point
estimation and tests, of correlation of errors due to the random assignment of
treatment combinations to finite populations of experimental units will be
treated in Section 4. That violation of (ii) should not seriously affect the F-tests
in the case of balanced designs is suggested by approximations by Daniels
(1938) and Horsnell (1953), and exact small-sample calculations by Box (1954).
Such insensitivity of the F-tests to variance heterogeneity would then carry
over to the multiple-comparisons methods associated with the F-test (Scheffé
(1953)), although single inferences using the ¢-distribution and based on the
assumption of variance homogeneity could be extremely misleading. As long as
we limit ourselves to calculating expected mean squares, violation of (iii) is of
course of no effect. Work of many writers? including E. 8. Pearson (1931),
Box (1953), and Box and Andersen (1954) leads to the generalization that non-
normality should have little effect on the validity of inferences about fixed
effects but may play havoc with inferences about random effects. There is
again the comforting consideration that multiple-comparison methods associated
with the F or T tests (Scheffé 1956)) should share with these tests their in-
sensitivity to violation of (iii).

Tukey’s (1949, 1951) and Wilk and Kempthorne’s (1953-1955) extensive
work on alternative models is in a more general form than we have considered,
in that, if a factor appears in the experiment at n levels, the levels are treated
as a random sample (without replacement) from a finite population of N levels.
This would be of interest, for example, in the illustration of machines and men
if it were desired to make inferences about a finite population of N machines
in the factory but it is feasible to include only a sample of n of them in the
experiment. The above treatment of a factor with random main effects is then
included as a limiting case for N — . Tukey regards the case of a factor with
fixed main effects as that where n = N. This imposes & certain symmetry on the
levels which usually does not correspond to the situation where the model is
applied, and was not assumed in the above treatment of the mixed model
associated with (3.28), but which does not affect the expected values of the

8 Extensive moment calculations designed to assess the effects of violations of (ii) and
(iii) on F-tests have been published by David and Johnson (1951a, 1951b, 1951¢, 1952) but
the numerical tables promised by them have not yet appeared, except for Horsnell’s (1953)
paper which utilizes their calculations.
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usual mean squares, which are obviously symmetric in the levels (for further
discussion, see Scheffé (1956)). The rules for calculating expected mean squares
for models where the levels are sampled from finite populations may be found
also in the book by Bennett and Franklin (1954, p. 414). Most of Tukey’s
(1951) work is concerned with moments, higher than the first, of the mean
squares and estimated variance components; in this normality is not assumed,
but the various sets (for each combination of factors) of random interactions
are assumed independent among themselves, of each other, and of the main
effects. Some results on moments have been obtained by Hooke (1954a, 1954b)
for Tukey’s (1949) more realistic formulation of interactions in which the inter-
action between the levels of two factors depends on the levels obtained in the
sampling.

4. Randomization models. An important case of the two-way layout is the
randomized blocks destgn. To this the example of machines and workers we have
carried along thus far is not adapted, and we consider another: Suppose I
treatments of a crop are compared on J blocks of I plots each. The essential
feature of the design is that in each block the I treatments are assigned to the
I plots at random by use of a table of random numbers, or coin tossing, or urn
drawing, etc., the randomizations in the I blocks being independent. For this
design the following model was formulated by Neyman (1935, pp. 110-112,
145-150): In each block number the plots with 7/ = 1,2, --- , I. Let u;;» be
the “true’ yield under the ¢th treatment on the j, 7’ plot (z'th plot of the jth
block); this conceptual quantity is regarded as the expected value #f the ith
treatment were applied in the j, <" plot. In a thought experiment involving a
sequence of repetitions under the same conditions, the observed yields of the
ith treatment in the j, 7’ plot would differ from u.j» on any particular trial by a
technical error e;j ; this is regarded as a random variable and, by definition of
piji 5 E(esj) = 0. The randomization by which the treatments are assigned to
the plots is independent of the set {e;;}. We may write?

(4.1) pijr = p + a;i + B; + vi; + e,

where the general mean p, treatment main effects {«;}, block main effects {8;},
and treatment-block interactions {v;;} are defined in terms of the {u;;.} as in
(1.1) to (1.4), where u,, is replaced by u;;., and

(4.2) €ijir = Rijir — Mij. -

We note the {e;i} satisfy i ee = 0 for all ¢, j. The ;i is the unit (plot)
effect of the 7, 7’ plot specific to the 7th treatment, and within the jth block. If
y:; denotes the observation on the 7th treatment in the jth block in the experi-
ment, then

(4.3) Yii = p+ ai + B + vii + & + eij,

9 Neyman’s notation has been modified to that of this paper; he used a single term
X..(k) for our p + a; , another B;(k), for our 8; + vi; , and his u,;;(k) is our e’



ANALYSIS OF VARIANCE 265

where &;; and e;; are respectively the e;; and e;;» for which ¢/ = 7'(3, j) is the
plot number to which the 7th treatment got assigned in the jth block. Neyman
called the {&;;} the “soil errors”; we shall call them the unit errors. Employing
a convenient notation of Kempthorne (1952), the unit error &; and technical
erTor e;; may be written

(44) éi]' = Zt” di:i'eiji' y €ij = Zi' d::i'eijt" ’

where the {e;;»} are regarded as unknown constants and the (d) are I'J
random variables taking on only the values 0 and 1. Their joint distribution,
determined by the randomization scheme described above for assigning the
treatments to the plots, is evidently the following: For different j the J sets of
I? variables {d%:} are independent. For fixed j, think of the set {d:i»} arranged
in an I X I square with d’; in the sth row and ¢'th column; then the possible
values for the set are the I! ones in which there is exactly one 1 in each row and
column and 0’s elsewhere, and these I! values are taken on with equal proba-
bility. The {di»} are independent of the {e:;~}; because of this and E@dls) = 1/1
it follows from (4.4) that

(4.5) E@;) =0, E(e) =0.

Neyman showed that an unbiased estimate of any treatment difference a; — a.r
is y;. — y«. ; more generally, the same is true for the estimate

(4.6) 6= D i\

of any contrast ¢ = D_; Nai( Qi A; = 0), from (4.3), (4.5), and (1.6).

Denote the sums of squares for treatments, for blocks, and for interactions
(usually called “for error”’) by SS., SSz, and SS4s; they are defined by
(3.1), (3.2), and (3.3) with K = 1 and the subscript & deleted. The calculation
of the expected values of the corresponding mean squares MS,, MSz, and
M85 is greatly simplified if we can assume the set of technical errors {e;;} to
be independently and identically distributed, and independently of the set of
unit errors {&;}. A sufficient condition for this is that the set {e:;#} be inde-
pendently and identically distributed, and this we shall assume—until we
discuss tests below.

Neyman calculated?® E(MS,) and E(MS4s) under some further simplifying
assumptions about the {e;;}. The general values without further assumptions
follow from formulas first given by Kempthorne (1952, p. 148; the technical
errors’’ are assumed negligible there). Resolve the unit effect ;v = pijer — wij.
of the 7, ¢* plot specific to the ¢th treatment into a unit main effect within the

Jjth block,
4.7 Eji = i — B

10 Professor O. Kempthorne pointed out to me a slip in Neyman’s calculation; its effect

is the loss of the term o%p from E(MS,5).
11 Technical errors are included in randomization models by Wilk (1955b).
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plus a treatment-unit interaction within the jth block, -

4.8) Nijer = Mijee — Pogir — Rij. + B4,

and define the symbols o and oy (corresponding to a “units factor” and to its
interaction with the “treatments factor”) as

(4.9) oo =JI - 1) 2o b,

(4.10) G = TN — 1) 305 oo mie
Then with o% , 0%, o%s defined by (3.8), (3.9), (3.14), and
(4.11) o: = Var (e;),

the desired formulas are

(4.12) EMS,4) = Jois + o5 + I''(I — 2)d%0 + o3,
(4.13) EMSs) = Ik + I''(I — 1)dy + oF,
(4.14) E(MS4s5) = ois + ov + I''(I — 2)dav + o7 .

It is easy to derive an expression for the variance of the estimated contrast
(4.6) in terms of the unknown parameters {e;;-} and o2, but there exists no
unbiased estimate of it. An overestimate can however be obtained by estimating
the contrast separately for each block by

(4.15) é; = Zw’)\.’yij ,
and using the sample variance of these J estimates,
(4.16) £= =107 —s)

‘From (4.3), $; = ¢ + 0; + u;, where 6; = > ;\qvi;,and u; = D_Ai(&; + es)),

the u; having zero means, and being independent since they are calculated from
different blocks. Since $ = $., therefore Var (§) = J>2; Var (u;). Then
§’/J is an overestimate of Var ($) in the sense that E(s*/J) = Var (), since
E(/J) = JNJ — 1)) 67 + Var (3). Clearly s*/J is an unbiased estimate
if ks = 0.

The problem of statistical tests under the randomization model associated
with (4.3) is complicated. Let us call normal-theory model that in which the
terms {e;;} in (4.3) are independently normally distributed with zero means
and equal variance ¢ , while the &; are always zero (which is equivalent to all
eijiv = 0). The usual F-test for treatment effects is then a test of the hypothesis
o4 = ois = 0 in the normal-theory model. Its power is usually considered
against alternatives with o%5 = 0, in which case the power can be expressed in
terms of the noncentral F-distribution. The randomization model seems very far
removed from the normal-theory model if the unit effects {e;j} are not small
compared with the o7 characterizing the technical errors. Nevertheless, following
Fisher (1935, Sec. 21) it has become a common belief among statisticians that
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referring the usual F-statistic (in the above case, M.S4/MS45) to the tables
valid under the normal-theory model gives a good approximation in some sense
to the exact test under the randomization model, which we shall describe in a
moment and shall call the permutation test based on the F-statistic. The writer
has had difficulty in trying to formulate clearly the sense in which this approxi-
mation is expected to hold.

The null hypothesis for the permutation test specifies that there is no dif-
ference whatever among the treatments, that is, under the above randomization
model that ¢& = ¢35 = o4v = 0 and the joint distribution of the IJ random
variables {e;;} where ¢ = 7'(Z, j) depends on the assignment of treatments to
plots, is the same for every one of the (I ')’ assignments. This is equivalent to
the hypothesis that the joint distribution of the IJ observations under any of
the assignments is the same for all the assignments.

The permutation test based on the F-statistic is made as follows: Consider
the group G of all m permutations of the observations which leaves their distri-
bution invariant under the null hypothesis (in the above case G consists of the
m = (I!)’ permutations obtained by making all possible I! permutations
within each block). If these m permutations are made on the observations actually
obtained in the experiment and the F-statistic calculated as though the permuted
observations had been obtained, a set of m (in general not distinct) values of F
will be generated. The idea is to reject the hypothesis at the a level of significance
if the value of F actually obtained lies among the am largest of the m values—
some obvious qualifications have to be made because am may not be an integer
and there is trouble about the m values not being distinct (for further details see
Scheffé (1943) or Hoeffding (1952)). For any fixed set of observations there is
thus determined a “significance level” F, for the statistic F so that we reject
if F > F,, but F, is a random variable depending on the outcome of the ex-
periment,and we write F, = F.(y) to indicate this.In most of the potential appli-
cations of the permutation test, the value of F.(y) is extremely tedious to calcu-
late. The evidence that the usual F-test approximates the permutation test is of
three kinds: )

First, numerical examples have been published where for particular sets of
observations it transpires that F,(y) is close to the value in the F-tables; see
for example Eden and Yates” (1933), Fisher (1935, Sec. 21), Welch (1937,
p. 31), Pitman (1938, p. 334), and Kempthorne (1952, p. 132).

Second, there are moment calculations, up to fourth-order moments, made
on a transform of the F-statistic which has the incomplete beta distribution
under the hypothesis in the normal-theory model. These were made for ran-

12 Their results can be regarded as a comparison with values in the F-tables of estimates
of Fo(y) obtained by empirical sampling of the permutation distribution of the F-statistic,
for various levels « and a single set of “observations’ y (not the actual observations but
averages of sets of 8 observations in a uniformity trial in randomized blocks; also, they
use z = 1 log F instead of F. This paper is clarified by a discussion between Yates (1935b,
pp- 164, 165) and Neyman.



268 HENRY SCHEFFE

domized blocks by Welch (1937) and Pitman (1938), who worked under the
above model with the restriction that the technical errors were assumed iden-
tically zero. It is easy to remove this restriction by a conditional probability
argument about the probability of rejecting the hypothesis when true. A measure
of the magnitude of the unit effects {£;»} in the jth block is op; =
(I — 1)) &« . Pitman’s calculations on the first four moments indicate
that if the {o%.;} do not differ too widely for the J blocks, then F,.(y) should
be close to the value in the F-tables. This is for the case of zero technical errors:
under this assumption and the null hypothesis all the parameters can be calcu-
lated exactly from the observations, and in particular o ; becomes

(4.17) I- 1)_121' (yi; — yi.)zo

If we do not assume zero technical errors, then the condition of not too great
difference of the {c%,;} characterizing the blocks is replaced by the same con-
dition on the functions (4.17) of the observations. Welch (1937) and Pitman
(1938) also made moment calculations for the Latin square in the same papers;
the calculation for the first moment had been published earlier by Yates (1933).
The approximation of the F-test to the permutation test for randomized blocks
can be improved by adjusting as follows the numbers of d.f. with which the
F-tables are entered: The first moment of the above-mentioned transform of the
F-statistic in its permutation distribution does not depend on the observations
and is the same as under the normal-theory model and the null hypothesis; the
second moment is determined by the quantities (4.17). If, as suggested by
Welch and Pitman, we choose the numbers of d.f. of an approximating in-
complete beta distribution to give the correct first two moments, this is equivalent
to referring the F-statistic to the F-tables with the same numbers of d.f. This
correction to the numbers of d.f. is given by Box and Andersen (1954), as well
as a similar correction for the one-way layout.

Third, there are some asymptotic calculations. As the number J of blocks
increases with the number I of treatments fixed, the limiting distribution of the
F-statistic under the normal-theory model is chi-square with 7 — 1 d.f. Wald
and Wolfowitz (1944) showed that as J increases with fixed I, if the sequence
of observations satisfies certain restrictions, then the permutation distribution
of the F-statistic has the same limiting form. Hoeffding (1952) proved that as
J increases with fixed I, then under certain assumptions on the sequence of
distributions of the observations, the random variable “significance level”
Fo(y) of the permutation test approaches a constant in probability. With this
he was able to show that the permutation test had in a certain sense asymp-
totically the same power as the usual F-test against alternatives of the normal-
theory model. Of course, what we would like to know more about is the power
of the usual F-test against the alternatives allowed by the randomization model.
An asymptotic calculation similar to Wald and Wolfowitz’s just mentioned was
carried out for the one-way layout by Silvey (1954).

Randomization models have been formulated and expected mean squares
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calculated for many other designs by Kempthorne (1952, 1955), Wilk (1955a,
1955b) and Wilk and Kempthorne (1953-1955, 1955). Fisher (1926) was the
pioneer in emphasizing the importance of randomization and in conceiving
of permutation tests (1925, Sec. 24; 1935, Sec. 21). In introducing randomized
blocks Fisher (1926) did not formulate explicitly a model like Neyman’s, above,
and one might infer he had in mind a more restricted one, in particular with
o4z = 0, since he claims that “One way of making sure that a valid estimate
of error will be obtained is to arrange the plots deliberately at random. . ..”
The mathematical model for the completely randomized experiment was given
by Neyman (1923)" under the restriction of zero technical errors.

The writer has had the benefit of solicited comments on this paper from the
following persons, and has improved the paper by incorporating many of their
suggestions, for which he is very grateful: Professors William G. Cochran, Oscar
Kempthorne, William Kruskal, H. Fairfield Smith, John W. Tukey, and Martin
B. Wilk.
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