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A NOTE ON “SOME FURTHER RESULTS IN SIMULTANEOUS
CONFIDENCE INTERVAL ESTIMATION”

By S. N. Roy

Institute of Statistics, University of North Caroling

0. Summary. This note gives an explicit proof of a lemma in matrix theory
repeatedly used in [2]; the lemma follows easily from other results, but an ex-
plicit proof of it may not be trivial. This note also gives closer confidence bounds
for one of the several problems discussed in [2].

1. A matrix lemma. A lemma repeatedly used in [2] is the following:
(1.1) Cmin(AB )emin(BC) = all ¢(AC) = cmax(AB™)emax(BC),

where A, C, B (and hence B™*) are symmetric positive definite matrices of order,
say p, each. This follows easily from

(1.2) Cmin(Ml)Cmin'(MZ) < all C(M1M2) = cmax(Ml)cmax(Mil);

where M; and M, are symmetric positive definite matrices.

(a) If M(p X p) is a symmetric positive definite matrix, then there exists
a nonsingular triangular matrix T such that M = TT".

(b) Any nonzero characteristic root of A(p X ¢) X B(g X p) is a character-
istic root of B(g X p) X A(p X ¢), and vice versa.

(c¢) If M(p X p) is symmetric positive definite and @(p X p) is any nonsingu-
lar matrix, then QMQ’ is symmetric positive definite.

(1.2) is proved in [1], (a), (b), and (c) are well-known matrix theorems, and
(b) and (c) are also proved in [3].

Turning now to the proof of (1.1) and using (1.2) and (a), (b), and (c), we
put B = TT' and note that

(1.3) Cmax(AB ™ emax(BC) = Conax (AT 7 T emax(TT'C)
= Cmax(T’_lAT,_l)cmnx(T,CT) g cmax(Ty—lAOT),

ie., =cmax(AC). The other side of the inequality in (1.1) follows in a similar
fashion, and this completes the proof of (1.1).

2. Closer bounds on the ¢(Z,Z;")’s than those given in [2]. If S; and S, stand
for the dispersion matrices of random samples of sizes n; and n, from N (¢, , Z;)
(with ¢ = 1,2), the constants ¢1,(p, 1 — 1,2 — 1) = cioand

coa(py 1 — 1,10 — 1) = coa ’

say, are defined in [2] such that

2.1) Ploa S alle(8187) S e | Z1= 23] =1 — a.
It is well known, [2] and [3], that if Z; &£ Zsand if 1 £ 72+ -+ £ v, stand for
¢(2:27") and D, for a diagonal matrix whose diagonal elements are y1, « - , v,
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then the ¢(Dy 5 SlDl,\/;S;l)’s have the same joint distribution as that of the
¢(818:")’s under the null hypothesis: Z; = 2, . Thus, we have
(2.2) P[Cla é all c(Dl/‘/;v-SlDl/\/;S{l) § Con I 21 # 22] =1 - a.
The statement under the probability symbol is equivalent to
(2.3) c—1~ = all C(SzD\/;SI.lD‘/;) g —l .

1a C2a

Now, noting that S;, 8; (and hence S;"), and D,5S7'D,+ are symmetric
positive matrices and using (1.1), we have

(2>4) cmax(Slsz-l)cmax(S2D\/';S-l_lD\/Ty‘) é Cmax(SlD\/:;SrlD\/?)'

Now, putting S; = UU’ and remembering [1] that if A(p X p) is a matrix with
real roots, then

(2.5) Cmin(44") £ *(4) S cnax(447),
we have
2.6) nx(UU'Dy50 7 U7'Dyy) = Cumnsl(T'Dy50" ) O'D 5T
2 chax(0'Dy/50'7),

i.e., 2 cnex(Dy7); 27p
Combining (2.4) and (2.6), we have

(27) Cmax(SzD\/?Sl_lD«/’i) = 7p/cmmx(S1S2—l),
and, in a similar fashion, we also have
(2-8) cmin(SZDﬁs;lDﬁ) = 'Yl/Cmin(Sls;l)-

Thus, it is easy to check that (2.3) implies

—1 . —1
Cmax(SlS2 ) > all 0(2122—1) > Cmm(SllSz )’
Cle Coq

(2.9)

which is therefore a confidence statement with a probability greater than or

equal to 1 — a.
Now, as to the closeness of these bounds compared to those of [2], we note

the following: Using (1.2), we have
(2.10) Crnax(8187") = Cmax(81) Cmax(S77),
ie., Zcmax(S81)/Cmin(Ss), and

Cnin(S1S7") = Cmin(S1)/Cmax(1Se).
Thus, (2.9) implies
1 cmin(Sy)

(_3—2: Cmax(S2) ’

1 . Cmax (Sl) > —1 >
(2.11) o oo S = all e(Z127") =
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which is therefore a confidence statement with a confidence coefficient greater
than or equal to the confidence coefficient of (2.9). Thus, if (2.3) has a probability
1 — @, (2.9) has a probability 1 — 8 =2 1 — «, and if (2.9) has a probability
1 — B, then (2.11) has a probability 1 — v = 1 — 8. The bounds in (2.11) are
the ones obtained in [2] in a different way.
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A NOTE ON THE NORMAL DISTRIBUTION

By SEYMOUR GEISSER!

National Bureau of Standards

1. It is well known that a necessary and sufficient condition for the inde-
pendence of the sample mean and variance is that the parent population be
normal. This was first shown by R. C. Geary [2], and later Lukaecs [3] gave a
somewhat simpler proof using characteristics functions.

By using the method of Lukacs one can derive a similar theorem concerning
the sample mean and the mean square successive difference.

2. Let z,, -- -, x, be independent and identically distributed with density
f(z) and mean x and variance o°.
Let

n
= —1
r=n ij)
=1

n—k

6/% 2_1(n - k)—l Z (xj-}—k - xj)? k= 1’ 27 s, — 1,
j=1 A

I

The following theorem can be proved:

THEOREM: A necessary and sufficient condition that f(x) be the normal density
is that 8 and % be independent.

Proor: If ; and & are independent, then we follow Lukacs [3] step for step,
replacing

& =n"n — 1) 2 2k — 22 2 zatpil
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