ASYMPTOTIC DISTRIBUTIONS OF TWO GOODNESS OF FIT CRITERIA

By PATrICK BILLINGSLEY

Washington, D. C.

1. Results. Let {X;, X,, ... } be a stochastic process in which each random
variable takes as values only the integers 1, 2, - - - | s. To test the null hypothesis
that the process is independent and stationary with P{X, = k} = p, > 0, it
is natural to form the statistic

8 2
(11) Z (nul-nu,. NPy, pu,) ,
Uppeee,uy=1 NPuy *** Pu,
where 7, ...,, is the number of integers m =< n for which (X, - -, Xmir)

is the »-tuple (4, - - - , %,). In Section 2 we show that under the null hypothesis
the distribution function of (1.1) approaches, as n — «, the distribution func-
tion

y—1

(1.2) * K vo1noony2(@/N) # K, (2/v)

where K;(x) is the chi-square distribution with ¢ degrees of freedom and the
first * denotes iterated convolution in the obvious way. Good [1], using different
methods, has obtained this result for the special case in which the p; are all
equal and s is a prime number.

If the p; are estimated by ni/n, there results the statistic

1—-v 2
Mugereu, — W Ny -+ M)
wpyeont,=1 NNy c 0 N,

(1.3)

In Section 3 we show that under the hypothesis that {X,} is stationary and
independent, the distribution function of (1.3) approaches, as n — «, the
distribution function

v—1

(1.4) )\f], K,v—l—)\(._l)Z(x/A) .

In the special case v = 2 this result is implicit in the work of Hoel [2]. Note
that in this case (1.4) becomes K ,_,,2(x).

The means and variances of the distributions (1.2) and (1.4) are easily written
down. It is obvious that if » is fixed and s — o, then these distributions are,
when normed by their means and standard deviations, asymptotically normal.
It is a simple matter to show, using Ljapunov’s condition and the fact that the
distributions are convolutions, that the same thing is true if s is fixed and
v — o, By interpolation in the tables of [3] one can get an approximation to
(1.2) for the case s = 2 and » = 2 and an approximation to (1.4) for the case
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s = 2and » = 3. The paper [3] also deals with the general problem of computing
and approximating the distributions of weighted sums of independent chi-
square-distributed random variables.

The author wishes to thank E. H. Spanier for some essential ideas on the
algebraic aspects of this work.

In his paper “On the serial test for random sequences,” forthcoming in this
journal, I. J. Good shows that the expected value of the statistic (1.1) and the
first moment of its limiting distribution (1.2) have the same value, viz., s’ — 1.

2. Asymptotic distribution of (1.1). In what follows we make use of the theory
of finite dimensional vector spaces. The reader is referred to [4] for the notions
of direct sum (donated here by v), spectral decomposition, etc. We denote an
operator and the matrix which represents it by the same symbol.

Let O, be s’-dimensional Euclidean space with components indexed by the
s v-tuples (w1, -++, u,) with1 < u; £ s. Let

(2.1) Puyeou, = (pul'“puv)ln’

and let z be the random vector in U, with components
2 1/2
Tugerow, = Mugeoouy, = MPureeow, )/ Puyevuy -

Then |z|® is the statistic (1.1). Let M be the s’ by s’ matrix with entries de-
fined by

(¢2] _
Mu1~~-uy.vl“'v. = Ouy, o " Ouyyv, = Pugeeou,Puyeeev, -

For this matrix to be well defined, the »-tuples must be ordered. Which order
is taken is immaterial so long as it is kept constant throughout the argument.
We show first of all that the covariance matrix of z is asymptotically A®,
where A? is the & by s’ matrix with entries defined by
v—1
AL coiviin, = M oren, + Zjl PureerusPoy ipreeoy M oy oeeeoy g

22)

v—1
+ 2 e
Puy_ kg1 uyPoyeeew Upe Uy kVk41°" Yy,
k=1

Let «i8:] be 1 or 0 according as (X;, - -, Xits—1) is the v-tuple (w1, ---, u)
(e, - -, )] or not. Then My...., = D i=1 @ and 7., = > 21 B8:. Let
¢(z, §) = cov (ai, B;). Then ¢(?, j) = 0 if |¢ — j| = » and ¢(4, ¢ + k) is inde-
pendent of 7. Hence, since |c(z, j)| £ 2, we have

cov (nul...,%, S Moger,) = Dormt Dt €(3, J)
= 3016, 0) + Yomr Yoroi (e(Gy i + k) + ¢@ + k, 5))
— iz Dpmn—int (€G, 1 + k) + ¢(@ + k, 1))
= nle(1, 1) + 0=t (e, 1 + k) + ¢ + &, 1))] + 26+°
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with |8] < 1. Hence in the limit cov(n, -« *u,, o, * * ) is

NG
Hm Adyoupogeeen, =

n->0

v—1

Pareers, Prnen l(1, 1) + ; (1,1 + k) + ¢ + k, 1))].

Butfork=1,---,»—1,

C(l, 1 + k) = 6“"-}-l'”l o 5"’1"7—&1’"1 e p“vp"n—b+l cct P, — pf‘l"‘“:le""" .

From this expression and similar ones for ¢(1, 1) and ¢(1 + %, 1), (2.2) follows.
It is an immediate consequence of the multivariate central limit theorem

for v-dependent random variables [5] that the distribution of x approaches that

normal distribution having zero means and having A as covariance matrix.
We proceed now to find the spectral decomposition of A®”. For » > 1 let

£, be the set of ¢ ¢ U, satisfying

(2.3) > Pupeubupeu, =0
wpeu,
and
(24) E Purbugeeru, = Z Pultugu-u,ulc
uy uy

for all (w2, - -+, ). It follows from (2.3) and (2.4) that fork = 1, --- , v and
1: = 1, . o y k’

2.5) 2 Pupeusbureuy, = 2o Pupecuplugyreeuyugeng -
i

Ugeertip

Let £; be the set of ¢ £ U, for which Z.,p,,t,, = (0 and let £y consist of the number
0 alone. For » = 1, define a linear mapping II,: &, = £,-1 by (ILt)u;ecou,_, =
> ububuuy---u,_y - That ¢ € £, implies IL¢ & £,—, can be verified by computation.
For v = 2, define a second linear mapping @,—;: £,-1 — £, by

(2°6) (Qv—lt)ulcnu, = Pultu2~-~u, + Pu,tuyuu,_l - pulu.(nv—-lt)up"u,_l .

If » = 2 the last term in (2.6) is to be omitted. Again a computation shows that
Q,_it e £, if t € £,.1. From these definitions it follows that

2.7) MOt =1t « tefo.
Let £ be the set of ¢ £ £, such that I, = 0. Then
(2.8) £ = & vQ_1(L1).

In factif e £,, thent = (¢t — Q_ILE) + Q_ILE, while t — Q111 ¢ £ and
Q_1ILt £ Q,_1(L,_1). Andift £ L3N Q_1(L,-1), then t = @3’ and 0 = IL,Q,_1t' = ¢
sot = 0.
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If t £ £, then M®¢ = t. From this and (2.5) it follows that

(v—k)
Z p"v—k-q-l"'”vM“k+l"'“yv”l"'”r—kt”l"‘”r
Vyeeev,

= 2 MU uorioy sk o ol)opny_y = (Mg +** Tl upyoees, »

ViV, _k

Using this relation and the symmetric one, we get

r—1
(A(y)t)u‘l...u, = tuln-u, + k}:{ pul...uk(H,_H.l e Hvt)uk+1oo~u,
2.9

y—1

+ bz.l Pu,_H_lu-u,(nv—Hl e Hvt)ul-nu,_k

forte®,. If v 2 3and ¢ e £,1, then by (2.7) and (2.9) we have
r—1

ARy — Q) uyeeou, = Puybugereu, + kZz Pureervy Mkgt + Tom1ugyreeeu,

y=1

+ Pu, tu;- cetUy—y + 1;2 Puy kg1t -u,(IIv—-k-}-l ot Hv—lt)uy Uy
From this, using (2.9) again, one shows by a long but straightforward calcula-
tion that forv = 3
(2.10) AYQ — @ = QA%

on £, .
We next show that for v = 2

(2.11) A® =T + ,Z; Qg Bally --- 10

on £, . The proof goes by induction. The verification being simple for » = 2,
assume (2.11) holds with » replaced by » — 1. Then by (2.10) and (2.7) we
have

AYQ, , = (I + 2 Qe Wl - m) Q1.
k=2
In other words, it follows that (2.11) holds on @,_,(£,_;). Since it obviously

holds on £9, it follows by (2.8) that (2.11) holds on all of &, .
Let o, = £ and forx = 2, -+, v let

(2.12) My = Dy Dpra@osin .

It follows from (2.8) by induction that £, = 9V --- v 9, . Using (2.11) one
easily shows that forA = 1, .-+, »,

(2.13) APt =\ if  team.

Let o £ U, be the vector whose (u1, - -+, u,)-th component is py,...., and let
e, ++-, v1) €V, be the vector whose (u;, ---, w)-th component is
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Purdugwy ** Ouywy_y — Pudurwy *** Ouy_yw,_; - Lot Mo be the manifold generated
by o and the s vectors o(v1, - -, v,—1). By definition £, is the orthogonal
complement of 917, so that

(2.14) Vy = MyvIGV - VI,.

Direct computations show that A”¢ = A”e(vy, -+, v,-1) = 0, so that (2.13)
holds for A\ = 0. Thus each 9, , 0 < A\ = », consists of eigenvectors with eigen-
value . These are all the invariant subspaces, in view of (2.14).

We now compute the dimension of £5. It is easy to show that dim £} =
s — 1. Suppose » = 2. To say that £ & £ is to say that for all u,, -~ - , %

(2.15) > Puluuguyy = 2 Pubugeeruy_yu = O.
Let X be the s’ by s’ matrix with entries

Xuyeouy_ro1000, = Poidugog *°* Oup_y,

and let ¥ be the s’ by s’ matrix with entries

Yul---u,_l.vl-wv, = p‘vyaul.vl e 61‘v—l-”v—l *

The partitioned matrix

is the matrix of the system (2.15), i.e., ¢ lies in £ if and only if ¢ is orthogonal
to each row of Z. In order to find the (column) rank of Z let A and B be column
vectors with s’ components Ay,....,_, and By,....,_, respectively, and let C
be the partitioned vector
A
c=[3]

Now. C is orthogonal to each column of Z if and only if pu,duy..s, =
—pu,Buy--u,_, - Thus if for a set {D.,....,_,} of s’ numbers we let A,,...., =
0u,Duyeeeuy_y a0d Byjecow,_;, = —puDuge.wu,_,, then C is orthogonal to the
columns of Z. Conversely, if C is orthogonal to these columns, it can be cast
in this form. Hence the subspace of 25" '-dimensional space orthogonal to the
subspace generated by the columns of Z has dimension s">. Therefore Z has
rank 28" — ¢ ? and dim £ = (s — 1)°. It now follows by (2.12) and (2.14)
that dim 91 = 8", dim 9, = s — 1, and dim M, = s"(s — 1)* for A =
1,2, ---,»— 1.

We now have the dimensions of the invariant subspaces and hence the multi-
plicities of the eigenvalues of A®. Since the distribution of z is asymptotically
normal with covariance matrix, A%, it follows by an obvious generalization of
the result of Section 24.5 of [6] that the distribution of |z|*, or (1.1), approaches
(1.2), under the null hypothesis.
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3. Asymptotic distribution of (1.3). We assume now that {X,} is independent
and stationary, but we regard the p, as unknown. In fact, let p1, -+, psca
be parameters to be estimated, define p, by p, = 1 — D i=ip:, and let
pu,---u, be & function of py , «- - , p,_s defined by (2.1).

Now it is easy to show that the values p, which maximize

IT Gupeoeu ) ereees
wpu,

are pr = m/n + &, where ¢, = 0(1 /n). And now the reasoning of Section
30.3 of [6] becomes applicable. Let B be the s’ by s — 1 matrix with entries
Buyeiuy = Pure-ou,0051-u, / 90u, 1 S u; £ 8,1 S u < 8. Let y be the random
vector which results from substituting the estimate n, / n for p; in z. Then
ly|* is (1.3). In order that the theorem of Section 30.3 of [6] be directly applicable
it would be necessary that {n,,....,} be a sample from a multinomial universe.
However, since the 2 defined above is asymptotically normal with covariance
matrix A”, since B has rank s — 1 and since Zy,...., = o(n'’*) in probability
(as is easily shown), a perusal of the proof of the theorem referred to shows
that we are in the present case justified in concluding that the distribution of y
approaches that normal distribution with zero means and covariance matrix
AA®A’, where A = I — B(B'B)™'B'.

We now find the spectral decomposition of AA”A’. Let K be the s by s — 1
matrix with entries K,,, where K,, = 6,, if v < sand K,, = —1. Let J

be the s by s matrix with entries

v —1
Jul---u,,u = 2 :1'=l Pul--~u|-_1u.-+1---u,su;,upu .

Then B = JK.

If t £ £, it follows from (2.5) that (J't), = vpu (Il - -+ ILt), . From this it
follows that J’t = Ofort e My v -+« v My . If o(vy, -+, v,-1) is defined as in
Section 2, then, as a direct computation shows, J'o(v1, -+, v,5) = 0. More-
over, (J'c), = v, so that B, = 0. Hence B’t = 0 fort ¢ MoV -+ v M, . Now
the matrix A is symmetric and idempotent, so that, viewed as an operator,
it is a perpendicular projection on the manifold U = {{:At = ¢} =
{t:B(B'B)"'B’t = 0}. It is easy to show that the rank of B(B’B)™'B’ is the
same as that of B, viz.,, s — 1. Hence dim 9t = s* — s + 1. We have shown
that Mo v --+ v M,y C N, and since dim (Moev --- vI,1) = & — s+ 1
(cf. Section 2), we have NMy v --- v IM,; = 9. The manifolds M, , being the
invariant spaces of the symmetric matrix A”, are mutually orthogonal. Hence
9, is the orthogonal complement of 91 and At = 0 for ¢ e 9N, . Therefore
AAPAt = M if t eI with 1 £ X < », while AAYA’t = 0if t e Mo v I, .
Finally dim 91, = & ™s — 1)*forA = 1, ---, » — 1 and dim 9%, v 91, =
S+ s—1.

Thus we have the eigenvalues of AA®A’, with their multiplicities, and it
follows as in Section 2 that the distribution of |y|?, or (1.3), approaches (1.4).
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