$P_{st}(y,\cdot) = \hat{P}_{st}(y,\cdot)$ if $y \not\in M_s$ and $\hat{P}_{rs}(x,M_s) = 0$ for all x it follows that $\hat{P}_{rt} = \hat{P}_{rs} \cdot \hat{P}_{st}$.

REFERENCE

[1] J. L. Doob, Stochastic Processes, John Wiley and Sons, New York, 1953.

A GENERALIZATION OF A THEOREM OF BALAKRISHNAN1

By N. Donald Ylvisaker²

New York University

1. Introduction. Given a stochastic process $\{X(t), t \in T\}$ on some probability space with second moment kernel

$$\mathcal{E}[X(s)\overline{X(t)}] = K(s,t),$$

a characterization is given of the function

$$m(t) = \varepsilon X(t).$$

This characterization includes the result of Balakrishnan [2] for the case of second order stationary, discrete or continuous parameter processes.

2. The characterization. Let T be an abstract set and let K be a positive definite kernel on $T \times T$. A function m on T is said to be an admissible mean value function for the kernel K if there exists a stochastic process $\{X(t), t \in T\}$ on some probability space with

$$\mathcal{E}[X(s)\overline{X(t)}] = K(s,t)$$
 and $\mathcal{E}X(t) = m(t)$.

LEMMA 1. m is an admissible mean value function for the kernel K if and only if $K(s, t) - m(s)\overline{m(t)}$ is positive definite.

PROOF. if $K(s, t) - m(s)\overline{m(t)}$ is a positive definite kernel on $T \times T$, let $\{X(t), t \in T\}$ be a Gaussian process with mean function m and covariance kernel $K(s, t) - m(s)\overline{m(t)}$, ([3], p. 72). Then

$$\begin{split} \varepsilon[X(s)\overline{X(t)}] &= \varepsilon[X(s) - m(s)][\overline{X(t)} - m(t)] + m(s)\overline{m(t)} \\ &= K(s, t). \end{split}$$

Conversely, if m is admissible,

$$\mathcal{E}[X(s) - m(s)][\overline{X(t) - m(t)}] = K(s, t) - m(s)\overline{m(t)}$$

is positive definite.

Received January 4, 1961; revised May 29, 1961.

¹ This research was sponsored by the Office of Naval Research under Contract Number Nonr 266(33), Project Number NR 042-034, while the author was at Columbia University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

² Now at the University of Washington.

To characterize these functions m, we introduce, for a positive definite kernel R on $T \times T$, the corresponding reproducing kernel Hilbert space of functions on T, denoted by H(R), the dependence on the set T having been suppressed. For a kernel R, H(R) is specified by the conditions

- (1) for every $t \in T$, $R(\cdot, t) H(R)$,
- (2) for every $t \in T$ and $f \in H(R)$, $(f, R(\cdot, t))_{H(R)} = f(t)$.

From these conditions, the following lemma is apparent.

Lemma 2. Given a function $m \ (\not\equiv 0)$ on T, $M(s, t) = m(s) \overline{m(t)}$ is positive definite on $T \times T$ and H(M) consists of all multiples of the function m with $||m||_{H(M)} = 1$.

We appeal finally to the following general theorem given in [1].

THEOREM 1. Let R and R* be positive definite kernels on $T \times T$. $R - R^*$ is positive definite if and only if $H(R^*) \subset H(R)$ and for all $f \in H(R^*)$,

$$||f||_{H(R^*)} \ge ||f||_{H(R)}.$$

Returning then to the determination of the functions m for which $K(s, t) - m(s)\overline{m(t)}$ is positive definite on $T \times T$, we have

THEOREM 2. If K is a positive definite kernel on $T \times T$, then $K(s,t) - m(s)\overline{m(t)}$ is positive definite if and only if $m \in H(K)$ and $||m||_{H(K)} \leq 1$.

That is, the admissible mean value functions for a given second moment kernel K are those functions in the unit sphere of the reproducing kernel space H(K).

Theorem 1 of Balakrishnan may be seen to coincide with Theorem 2 above when K has the representation

$$K(s,t) = k(s - t) = \int_{-\infty}^{+\infty} \exp[i(s-t)x] dG(x), \quad -\infty < s, t < +\infty.$$

Then, according to Theorem 4D of [4], the unit sphere of H(K) consists of functions of the form

$$m(t) = \int_{-\infty}^{+\infty} \exp(itx)u(x) dG(x)$$

with

$$||m||_{H(\mathbb{K})}^2 = \int_{-\infty}^{+\infty} |u(x)|^2 dG(x) \le 1.$$

In particular stationary cases, alternative representations are known. Thus, if

$$K(s, t) = \exp[-(s - t)^{2}/2], \quad -\infty < s, t < +\infty,$$

the unit sphere of H(K) consists of analytic functions m for which

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left| \frac{d^n}{dt^n} \left[\exp \left(t^2 / 2 \right) m(t) \right]_{t=0} \right|^2 \le 1.$$

It should be noted that Theorem 2 applies even to stationary kernels which do not possess the spectral representation.

Lastly, a nonstationary example is provided by the Brownian motion kernel. For

$$K(s,t) = \min(s,t), \qquad 0 \le s, t \le 1,$$

the unit sphere of H(K) consists of absolutely continuous functions m for which m(0) = 0, and

$$\int_0^1 |m'(t)|^2 dt \le 1.$$

- [1] Aronszajn, N., "Theory of reproducing kernels," Trans. Amer. Math. Soc., Vol. 68 (1950), pp. 337-404.
- [2] Balakrishnan, A. V., "On a characterization of covariances," Ann. Math. Stat., Vol. 30 (1959), pp. 670-675.
- [3] Doob, J. L., Stochastic Processes, New York, John Wiley and Sons, 1953.
- [4] PARZEN, E., "Statistical inference on time series by Hilbert space methods, I," Tech. Rep. No. 23 (NR-042-993) (1959), Appl. Math. and Stat. Lab., Stanford University

THE OPINION POOL

By M. Stone²

Princeton University

1. Introduction and summary. When a group of k individuals is required to make a joint decision, it occasionally happens that there is agreement on a utility function for the problem but that opinions differ on the probabilities of the relevant states of nature. When the latter are indexed by a parameter θ , to which probability density functions on some measure $\mu(\theta)$ may be attributed, suppose the k opinions are given by probability density functions $p_{\mathfrak{sl}}(\theta)$, \cdots , $p_{\mathfrak{sk}}(\theta)$. Suppose that D is the set of available decisions d and that the utility of d, when the state of nature is θ , is $u(d, \theta)$.

For a probability density function $p(\theta)$, write

$$u[d | p(\theta)] = \int u(d, \theta) p(\theta) d\mu(\theta).$$

The Group Minimax Rule of Savage [1] would have the group select that d minimising

$$\max_{i=1,\dots,k} \left\{ \max_{d' \in D} u[d' \mid p_{si}(\theta)] - u[d \mid p_{si}(\theta)] \right\}.$$

As Savage remarks ([1], p. 175), this rule is undemocratic in that it depends only on the *different* distributions for θ represented in those put forward by the

Received May 1, 1961; revised August 7, 1961.

¹ Prepared in connection with research sponsored by the Office of Naval Research.

² Present address: University College of Wales, Aberystwyth.