BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE
ZERO OF A REGRESSION FUNCTION!

By R. H. FARRELL

Cornell University

0. Summary. The problem of determining a bounded length confidence in-
terval for the zero of a regression function R(-) is discussed. In case R(:) =
F(-) — p, F a distribution function, 0 < p < 1, a closed stopping rule is given
for the up-down method of experimentation. For a larger class of regression
functions a closed stopping rule is given for Robbins-Monro type of experimen-
tation. The stopping rule for the Robbins-Monro process depends on prior knowl-
edge of an upper and a lower bound on the zero of R(-). It is shown that given
suitable assumptions about the random variables used in experimentation
finite confidence intervals for the zero of R(-) may be found, such confidence
intervals providing an upper and a lower bound on the zero of R(-) with pre-
specified level of confidence.

1. Introduction. In this paper we discuss the problem of finding bounded
length confidence intervals for the zero of a regression function R. We assume
there is a number A such that for all § ¢ (— «, «), if # < X then R(6) < 0,
if # > X\ then R(8) > 0. A\ will be called the zero of R (R need not be continu-
ous; we do not assume R(A) = 0.)

We will assume given a family of distribution functions {G( -, »), w € Q} where
Q is a finite or infinite open real number interval. Certain knowledge of {G( -, ),
w & Q} is attributed to the experimenter. The exact nature of this knowledge is a
mathematical assumption made about a particular technique of experimentation
and will be specified in detail in later sections.

In general we will assume that for all § &€ (— «, ) that R() ¢ Q. Also we
assume for all § ¢ (— «, ») that R(8) = [ xzdG(z, R(0)), this being the justi-
fication for calling R a regression function. Last we assume that forall § ¢ (— «,
) the experimenter can observe random variables having G(-, R(6)) as dis-
tribution function.

The statistician’s problem is to construct a stochastic process such that given
L > 0and 0 < a < 1, at the termination of experimentation a random inter-
val of length < L has been constructed which covers A with probability =
1 — a. With certain additional assumptions it will be shown how this problem
may be solved using a Robbins-Monro process. In the case € = (0, 1) and
{G(-, w), we D is the family of Bernoulli distribution functions, F a distribu-
tion function, 0 < p < 1, and R(6) = F(#) — p, a closed stopping rule will
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238 R. H. FARRELL

be given for an up-down type of method which solves the above problem if F
has a unique p-point.

In the construction of bounded length confidence intervals for the zero of R
we treat first the problem of finding a finite interval covering the zero of R
with a specified confidence level. In Section 3 we show that finite confidence
intervals of a given confidence level may be constructed if the following addi-
tional assumptions are made:

lim infjp) , o |R(8)| > 0 and {G(:,w),we

is a monotone family of distributions (see below.) We suppose G( -, 0) is known
to the experimenter. The method to obtain finite confidence intervals uses the
properties of certain one sided tests on the parameter » of the monotone family
{G(-, w), we Q. These tests are characterized by having monotone but dis-
continuous power functions. Section 2, without reference to the regression prob-
lem, gives a description of the construction and some of the properties of these
tests.

By a monotone family of distribution functions {G(-, w), w £ 2} we mean a
family with the property that if w e @, o’ € Q, w < o’ thenforallz & (— 0, »),
G(z, v) = G(z, «’). It is easily seen that if for some ¢-finite measure u on the
Borel sets of the real line each G( -, w) is absolutely continuous with respect to
p and if the resulting family of density functions have monotone likelihood
ratios then the family of distribution functions {G(-, ), w £ @} is monotone.
Consequently in a discussion of the up-down method this hypothesis is auto-
matically satisfied.

In Section 4 it is shown, after additional assumptions are made, how by use
of two simultaneous Robbins-Monro processes, a 1 — « confidence interval of
length < L for the zero of R may be constructed. In Section 5 similar results
are given for the up-down method.

In Sections 4 and 5 brief descriptions are given of the two processes. For the
reader who is unfamiliar with these stochastic processes we list here some of
the previous studies. With the exceptions of Farrell [6] and Tapper (see below)
we do not know of other work relating to the subject of this paper.

The Robbins-Monro process is a Markov process which converges to the
zero of R. Under differing assumptions various types of convergence may be
proven. Convergence in L, of the probability space was proven by Robbins and
Monro [9]. Almost everywhere point wise convergence has been proven by Blum
[1]. Asymptotic normality has been studied by Chung [3], Burkholder [2], and
Sacks [10]. For the necessary additional hypotheses the reader should consult
the papers mentioned.

The up-down method is a discrete valued Markov process which with prob-
ability one reaches every (possible) state infinitely often, as follows from the
results of Harris [7]. The use of the up-down method to find LD-50 dosages
was studied by Dixon and Mood [5], that is, determine the median of a regres-
sion function which is a distribution function F. Dixon and Mood assumed F
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is a normal distribution. Derman [4] discusses modifications of the up-down
method which allow estimation of a prespecified p-point of F, where F may be
an arbitrary distribution function. Mrs. Nancy Tapper, Cornell University,
for her doctorial thesis, has been studying closed stopping rules and bounded
length confidence interval procedures for the median of F when an estimate is
known in advance of the amount of increase in F about its median.

It is assumed in Section 3 (and automatically satisfied in the case of the up-
down method) that for each w e @, w = [2dG@(z, w). If R has jump discon-
tinuities it may happen that {G(-, w), w £ Q} contains distributions which are
not observable. In particular if B(A\) = 0 then G(-, 0) is not observable. Yet
the inclusion of this distribution is necessary for our analysis of the problem.
For this reason our statement of the problem differs somewhat from the usual
statement when discussing the Robbins-Monro procedure.

Parts of the material included in this paper appear in the author’s thesis,
Farrell [6]. The author wishes to thank his advisor, Professor D. L. Burkholder,
for his encouragement and for many helpful discussions.

2. One-sided tests. Throughout this section we will assume {G(-, w), w eQ} is
a monotone family of distributions in the meaning of Section 1. We will assume
Q is an open real number interval. {X,, n = 1} will be a sequence of mutually
independent identically distributed random variables, X; having G(-, w) as
distribution function. For n = 1 let S, = X; + -+ + X, . Suppose w: € Q
and {a.,n = 1}, {ba, n = 1} are extended real number sequences such that if
n =1, a, > b,. Values of 4« are allowed for a,, b,. We consider tests of
Hy : w < w; against H; : o > wp having the following form. Let N be the least
integer n such that S, = a,or S, < b, ,N = » ifforalln = 1,b, < 8, < @ .
If S, = b. accept Ho; if S, = an. accept H,. A subscript “w” will be used to
indicate that G(-, w) is the distribution function of X; ; P, and E, will have
corresponding meanings. We will say the test is closed at w if P,(N < «) = 1.
In general the type of one sided test we will consider here will satisfy P,(N < «)
=1. In general the type of one sided test we will consider here will satisfy P,
(N<w)=1forall weQ, o # w; and P,,(N < ) < 1. It will be useful to
define four functions of w, a, 8, a, , B by

B(w) =P0(N< OO)SNébN), a(w) =Pw(N< ©, SNgaN),
andif n = 1,
6"(‘0) = PM(N é n, SN = bN), an(OJ) = P("(N é n, SN ; aN).

It should be remembered that «, 8, a. , 8. are also functions of the boundaries
{an,n = 1} and {b,,n = 1}.

We will now show 8, 8, are nonincreasing, «, a, are non-decreasing, functions
of w. We then show that if [z’ dG(z, w;) < « then, given o/ > 0, 8 > 0,
there exist choices of {a,, n = 1} and {b,, n = 1} such that a(w) < o' and
B(we) = 6.
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Define a function G by G '(a, w) = inf {z | G(x, w) = a}. Since G is right
continuous, G '(a, w) € {z | G(x, w) = a}. As is well known, if Z has a uniform
distribution on (0, 1) then G™'(Z, w) has G(-, ») as distribution function. If
w <  then for all a, @ '(a, w) < G '(a, «') as follows at once from the defini-
tion.

Let {Z,, n = 1} be a sequence of mutually independent random variables
each having a uniform distribution on (0, 1).If » = 1 and w £ @ we set S,(w) =

711G N(Z;,w).Let N, be the least integer n such that S,(w) = @, or S,(w) <
b, with N, = o if foralln = 1, b, < S,(w) < a,. To prove «(-) is nonde-
creasing is then to prove P(N, < «, Sy(w) = ax) is nondecreasing. We omit
“w” as a double subscript as no ambiguity exists. But if w < ' then the event
N, < o, Sy(w) = a. implies the event N, < «, Sy(«’) = ax. Therefore
a(-) is nondecreasing. Similar proofs may be given for the assertions about
B(-), an(+), Bal(-).

Now suppose [ 2°dG(x, w) < © and u = [ 2dG(z, w). As is well known,
with probability one, limn.. |S» — nu|/(n* log (n + 1)) = 0. See for example
Lotve [8], p. 253, Corollary 2. Therefore with probability one,

SUPnz1 |Sn — nul/(n'log (n + 1)) < w;
for with probability one
SUDmznz1 | S — |/ (0 log (n + 1)) < for every m = 1.

Consequently if sup.z1|Ss — nul/ (ntlog (n + 1)) = « on a set of positive
measure the same holds for the lim sup,.. . We may therefore choose a real
number a such that P,, (some n = 1, |S, — nu| = an’log (n + 1)) < min
(o, 8"). We define {a, ,n = 1} and {b, ,n = 1} by a, = nu + an' log (n + 1),
b, = nu — ant log (n + 1). We have therefore proven the following lemma.

LemMa. Suppose Q is an open real number interval, {G( -, w), v € U} a monotone
family of distributions. If wseQ, p = [2dG(z, ws), [ 2*dG(x, w) <  and
a > 0,8 > 0, then there exist real number sequences {a, ,n = 1} and {b, ,n = 1}
such that if w = wy, P, (somen =1, Sy = a,) < o/, P, (somen =21, S, =
b,) < B and lim,.e @n/n = liMm,, bu/n = u. The functions a(:) and B(-)
are monotone.

The results obtained above are sufficient for the remainder of this paper.
We close this section with a few remarks. For each real number a, G '(a, -) isa
nondecreasing function of its second argument. Therefore if v < o/,

fsz(x,w) =BG (%, 0) < BG(Z:,0) = fxda(x, o).

Equality holds if and only if G™(Z;, w) = G '(Z1, ') a.e., that is G(+, w) =
G(-, ). It follows that if for every pair of distinct parameter values the dis-
tributions in {G( -, w), w € Q} are distinct then [ 2dG(z, ») is a strictly increasing
function of w. In the context of the above lemma, if [ zdG(z, w) is a strictly
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increasing function of w and the sequences satisfy lim,., @./n = lim b,/n = u
then if w # w; , Po(N < ) = 1.

In many examples of monotone families of distributions, given sequences
{a@., n = 1} and {b,, n = 1}, the functions a,(-) and B.(-) are continuous in
the parameter « for each n = 1. Since a = limy.w @ a0d B = liMp.w Ba it
follows that «, 8 are lower semicontinuous functions. A lower semicontinuous
nondecreasing function (a) is always left continuous and a lower semicon-
tinuous nonincreasing function (B8) is always right continuous. Given that
@, , B are continuous if n = 1 Farrell [6] has shown « and 8 are continuous
at each w £ Q such that P,(N < =) = 1. He has also shown that if forn > 1,
a, and B, are continuous then a and 8 can each have at most one point of dis-
continuity.

If sufficient moments of G(-, w,) are assumed finite, say [ |z|’dG(z, w),
then sequences {a, , n = 1} and {b., n = 1} may be constructed using the law
of the iterated logarithm.

3. Finite confidence intervals. In the terminology of Section 1 we will assume
that the experimenter knows G(-, 0) and that the family {G(-, w), w e @} is a
monotone family of distributions. In constructing tests of the type considered in
Section 2 the experimenter need not worry that [ z* dG(z, 0) = . For suppose
¢ is a real valued function defined on (— «, ) which is strictly increasing such
that |[¢| < 1. Then the monotone family {G(¢7'(-), w), w &£ @} will serve equally
well to determine a finite confidence interval for the zero of R. We will suppose
then that [ 2’dGQ(z, 0) < .

The experimenter may choose real numbers 6 and observe random variables
having G(-, RB(6)) as their distribution function. If {#,, n = 1} is a strictly
increasing sequence of real numbers such that lim,. 6, = o, then by hypothe-
sis on R, for some 7 , if n = no then B(8,) > 0. Consequently random variables
distributed according to G(-, R(6.)) place more probability near 4+ « than
do random variables distributed according to G(-, 0). We use this idea to con-
struct an upper bound for the zero of R.

THEOREM 1. Let o/ > 0 be given and {a., n = 1} a real number sequence such
that Py (some n =1, S, 2 ax) £ o, and UMy, au/n = 0. Suppose {8, ,
n 2 1} s a strictly increasing sequence of real numbers such that lim,, 6, = .
Let {Yn,n = 1} be a sequence of mutually independent random variables such that
Y. has G(-, R(6,)) as distribution function. Let N be the least integer n such that
2iaYiZ anwithN = o ifforalln 2 1, >ty Yi < an . Then if lim info..
R(0) >0, P(by=2) 21— 0o and P(N < ») = 1.

To prove this theorem we use the ideas of Section 2. We assume A is the zero
of R. Let {Z,,n = 1} be a sequence of mutually independent random variables
each uniformly distributed on (0, 1). If n = 1 let Y% = @ *(Z., R(6,)), and
Si=YI+ -+ Yn Let 0 <34 = liminfy,, R(6). There is an n, > 0
such that if n = n;, Ys = G'(Z., 8/2). By the strong law of large numbers,
with probability one, lim inf,.. (Si/n) = §/2 > 0. The sequence {a, ,n = 1}
constructed according to the lemma of Section 2 satisfies limg.. a./n = 0.
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Therefore P(N < ©) = 1. Let @ = min (0,R(61))

N
P(6y <\) = P8y <\, Sy 2 ay) < P(Oy <\, 2. G (Z:i,w) = ay)
=l

< P(somen =1, 2. G Z:,0) = a,) < o
i=1

Therefore P(fy = N\) = 1 — o'. The proof is complete.

4. Robbins-Monro process. In this section we will show, using the assump-
tions made below, that confidence intervals of length <L and of confidence
level = 1 — a may be constructed for the zero of R. We will suppose the interval
length L and the confidence coefficient 1 — « given in advance. In order to de-
fine certain constants we list the assumptions used before actually defining the
Robbins-Monro process.

I. There is a real number A such that if # < X then B(6) < O while if § > A
then B(8) > 0.

II. The experimenter can observe random variables X; and X7 such that
PXI=A=X) 21— a/2

III. Sup_w<sce |R(6)|/(1 + [6]) = K1 <
IV. If 6 > O then infjp_ 55 |B(6)| > O.

V. A real number sequence {c,,n = 1} is given such that ¢, | O,

o ©
ZC,,,= ®, Zci<00.

n=1 n=1

V1. There is a function V on Q defined by
V(w) = [ (z — )’ dG(z, v); SUPuea V(w) = Ky < .
VIL If 0 eQ, 0 = [2dG(z, w).
VIIL. For every real 8, R(6) ¢ .
IX. The functions R and V are Borel measurable.

In order that the results given here be applicable it is assumed that for each
real § the experimenter can observe a random variable Z(8) having G(-, R(6))
as distribution function. In addition we suppose the experimenter knows upper
bounds for K; and K; . The results of Sections 2 and 3 give a method by which
assumption IT may be satisfied. The results of this section do not assume knowl-
edge of G(-, 0) nor that {G(-, w), w € @} is a monotone family of distributions.

The Robbins-Monro process is defined as follows. Let X; be a random variable.
For each » = 1 let Z, be a random variable having conditional distribution
function G(-, R(X,)) given X;, ---, X.. Define Xp41 = X0 — ¢caZn . It is
well known that assumptions weaker than those above imply that with prob-
ability one, lim,., X, = A. See Blum [1].
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In the following we may assume without loss of generality that A = 0. For
(Xa+1 — N) = (Xn — N) — ¢nZ, where Z, has the conditional distribution
function G(-, R((X» — X) + X))). The regression function R’(6) = R(6 + \)
has its zero at zero.

THEOREM 2. Let An; be the event that for some pair of integers r and s with
n=r<sX,£0and X, = 45. Assume 4c,K; < 1 and c.K, < 6. Then

P(Ans) = (Ko/8) 2 .

Before proving Theorem 2 we will use it for the construction of confidence
intervals. Let X; and X7 be the random variables specified in II. Suppose ¢,
taken so small that 4¢,K; < 1 and ¢,K; < 8. In addition let the sequence
{cn,m 2= 1} be chosen so that K,) o, ci < 8*(a/4). Let {X., n = 1} be
the random variables of a Robbins-Monro process beginning with X; and
{Xm, m = 1} the random variables of a process starting with X¥. As noted
above,

0 = limp,w X» = limm.. XX

with probability one. Let ¢ > 0 be given and N, M respectively be the least
integers n, m such that | X, — Xn| < e. We show that with probability =21 — «
the interval (—45 + X , 46 + Xx) contains 0 (and hence is nondegenerate) .
This is an interval of length <85 4+ e. Observe that

P(fail to cover 0) < P(X; < 0 or X7 > 0)
4+ P(X:20,somen = 1, X, + 45 < 0)

+ P(Xi <0,somem =1, X5 —46>0) < a/2+ o/ + a/4 = «

by virtue of assumption II and Theorem 2.

In order to prove Theorem 2 the arguments which prove almost everywhere
convergence are reexamined. Define forn = 1, un = Xnpy — Xu + cR(X,).
Then if n = 1, un = ca(R(X,) — Z,) and E(u./Xy, ---, Xa) = O.

E(ul) £ K.

The sequence of sums { D 7 u;,n = 1} is a martingale. From the semimartin-
gale inequality it follows that for

j
Zui

t=m

6>0,P < max
m<ign

> a) < (Ko/8) 3 i

Suppose P(A.;) > (K»/8") D 2nci. Then with positive probability there
exists a pair of integers r and s with n < r < s such that X, < 0 (assume A = 0),
Xi>0fori=r+1,---,8 X, = 45, | 1o ci(R(X:) — Z:)| £ 25. Since
X, — X, + DT cR(X) = it ei(R(X:) — Zi) we have that

X, -_— X,- é 28 - CfR(Xf),
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since D izr41¢c:R(X:) = 0. Therefore X, — X, < 26 + ¢.Ki(1 + |X]) =
26 + ¢.Ki(1 + X, — X, — 49). Solving for X, — X, yields

X, — X, = (26 + ¢.Ki(1 — 48))/(1 — ¢ K1) < 38(%) = 4s.

Contradiction. Therefore P(Ans) < (K2/8%) D tanci.

One type of regression function considered by Robbins and Monro [9] was
R(8) = F(#) — p, F a distribution function,0 < p < 1. Foreach f & (— », =),
P(Z(#) =1 —p) = F(6),P(Z(#) = —p) =1 — F(8). Then

K, = supy |F(0) — pl/(1 + [6]) = max (1 — p, p)
and K, < sups F(8)(1 — F(8)) < %. The restrictions on ¢, are 4¢; =< 1 and

¢1 < 8. Then P(Ans) < (38) Dpunci.

6. The up-down method. One technique of finding the 50 per cent lethal
dosage of a drug is the up-down method. The essential features of this method
may be described as follows. For each real number 8, F(6) is the probability of
“killing” if the “dose” 0 is used. A sequence {#, , —® < n < o} is chosen such
that for every integer n, 8,41 > 0, and lims|.e |8] = . The initial experiment
is made at level 6, . If the nth experiment is made at level Oy then the next
experiment is made at level Oy(41y Where N(n 4+ 1) = N(n) + 1 if the in-
dividual lives, N(n 4+ 1) = N(n) — 1 if the individual dies.

A model for this process may be constructed as follows. Let a function g of
two real variables be defined as follows: g(z,y) = —1ifz < yand g(z,y) = 1
if z > y. Let {Z,, n = 0} be a sequence of mutually independent random vari-
ables each uniformly distributed on (0, 1). Define N(0) = 0 and if n = O,
N(n + 1) = N(n) + g(zn ’ F(oN(n)))-

The possible states for this Markov process are the integers m such that
0 < F(8») < 1 together with the greatest integer m satisfying F(6s) = 1,
F(0m-1) < 1and the least integer m satisfying F(0m) = 0, F(6my1) > 0. Let
A be this set of integers. If 0 £ A it is clear that the process changes mono-
tonely until a value in A is reached. From that point, with probability one,
all subsequent values lie in A. We assume in the sequel that 0 ¢ A.

It follows at once from the results of Harris [7] that if ¢ ¢ A then with prob-
ability one N(n) = ¢ infinitely often. Define an integer valued random variable
M(i, n) to be the least integer m such that N(0), --- , N(m) takes the value
1 exactly n times. A direct calculation shows {g(Zu¢m , F(8:)),n = 1} is a
sequence of independent identically distributed random variables such that
P(g(Zuiy , F(8:)) = —1) = F(8:). If ©¢ A then with probability one this
sequence is infinite.

We turn to the construction of confidence intervals for the p-point A, of F.
We suppose if 8§ < A\, then F(8) < p and if 6 > A, then F(8) > p. Let

{Yo.,n = 1}
be a sequence of independent identically distributed Bernoulli random variables
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such that P(Y; = 1) = g. We introduce these random variables only as a device
to describe integer sequences {a@., n = 1} and {b,, n = 1}. According to the
lemma of Section 2 we may choose integer sequences {a, ,n = 1} and {b, , n = 1}
such that if ¢ < p, P(somen = 1, D2, ¥: = as) < a/4 and if ¢ = p then
P(somen = 1, Z?_l Y: £ b,) £ /4. Further lim,., @,/ = limp, ba/n = p
is assumed for these sequences. 1 — « is the desired confidence level.

We now show that while up-down experimentation continues random integers
I and J are determined such that P(8; < \;) 2 1 — a/4 and P(6; = \,) =
1 — a/4. Define random integer sequences {c(n), n = 1} and {d(n),n = 1} a8
follows.

(1) ¢(1) =d@) = 0.

(2) f m = 1, ¢(m + 1) is the least integer n such that N(n) = N(c(m))
and n > ¢(m).

(3) if m = 1, d(m + 1) is the least integer n such that N(n) < N(d(m))

and n > d(m).
It will be seen that N(¢(1)), -+, N(c(m)), ---is the sequence of highest
levels of experimentation reached while N(d(1)), ---, N(d(n)), --- is the

sequence of lowest levels reached.

Since each ¢ ¢ A is reached infinitely often (with probability one), with prob-
ability one, if ¢ ¢ A, for some n = 1, N(¢(n)) = ¢ and with probability one for
some n = 1, N(d(n)) < i. Define integer valued random variables M and M.
M is the least integer n such that

(%).21: (1 = 9(Zwewn , F(Brewn))) Z an.
M is the least integer n such that

B3 (1 — gFnaw , FOrao))) S b

To understand these inequalities recall g takes &1 as its values so that (3) (1 — g)
takes values 0, 1. We suppose M = © or M = o if the required inequality
never holds but show at once P(M < o, M < ») = 1. Assume for definiteness
that 3 < Ay = 6. Then F(6_,) < p < F(6,) and —1e 4, 1 ¢ A. With prob-
ability one, N(c(¢)) eventually reaches values =1 and N(d(¢)) eventually
reaches values < —1. It follows that with probability one

B = 9(Zwein » F(Onewn)))
eventually becomes = (3) (1 — g(Zwewy , F(B))).

{(HA = g(Zxen, F(B))), = 1}

is a sequence of independent identically distributed Bernoulli random variables
such that

P((3H) (1 — g(Zneay , F(01))) = 1) = F(6).
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By the strong law of large numbers and using the assumption limp.e @n/2 = p it
follows that P(M < «) = 1. Similarly P(M < =) = 1.

By an argument similar to that used to prove Theorem 1, if Ox( ) < Ap then
N(c(d)) £ —1fori =1, ---, M so that P(Oxciny < Ap) S a/4. Similarly if
On@ay > Apthen N(d(2)) = O0for¢ = 1, --- , M and P(Oncuyn > Np) = a/4.

Having determined integers I = N(d(M)) < J = N(c(M)) experimenta-
tion is continued at the levels {#;, I < ¢ < J}. Note that if » is the number of
the observation at which the values of M and M are decided then N(n) = I or
N(n) = J. Restriction of experimentation to the interval I < ¢ < J means
that whenever subsequently the value N(n) = I or N(n) = J is reached some
rule is used to choose a value ¢, I < ¢ < J for the next experiment. Otherwise
the method is not changed.

Experimentation is continued until the following conditions are satisfied. Let
P be the total number of observations taken.

(4) If I < ¢ < J, P(4) is the number of N(0), - -+, N(P) taking the value
. Note that observations taken prior to deciding the values I, J are included.

(5) If I < ¢ < J, except possibly one value of 7 in this range,

10)
B2 (1= g(Zucp, F(09)) Z arp 0r = breo -

That is, the outcomes of experiments at level 8; are examined for the frequency
of deaths. This frequency is compared against the sequences {a,, n = 1} or
{b., n = 1}. The condition for stopping includes two consistency conditions
stated next.

(6) UI<i<k<dJand (3) 25 (1 — 9(Zuc.n, F(6:))) Z ar , then
3 2 (1 — 9(Zuan , F(6e)) = arw) -

() I <k<i<Jand (3) 25 (1 — 9(Zuci.» , F(6:))) = bpeiy, then
B DD (1 — g(Zua.»y , F(6:))) < beay - Let I* be the greatest integer ¢ such
that I =7 < J and

PG)

(%)j_zl (1 — 9(Zui,»», F(8:))) = b -

Let J* be the least integer ¢ such that I < ¢ < J and
P(3)

(%) ]Zl (1 = 9(Zuci.» , F(8:))) 2 are -
Then P(Or S A\p < 0n) 21— aand P(J* —I*<2) = 1.
We have assumed that 6_; < A\, < 6 . Observe that
1 — P8 S A\ < 05) < P(6: > Np) + P(8: <))

P(-1)

+ P((3) ;_:1 (1 = 9(Zucr,iy , F(64))) = arcy)

P(0)

+ P((3) Z_} (1 — 9(Zuw.», F(6))) < brw) < 4(a/4) = a.

That J* — I* < 2 follows from conditions (4) to (7). That these conditions
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will be eventually satisfied (with probability one) follows from the strong law
of large numbers together with the hypothesis lim,,, @n/n = liMg.e ba/n = p.
Rremarks. We have given a confidence interval procedure for the up-down
method which retains the essential properties of the method. It should be ob-
served, however, that the only properties of the up-down method that ultimately
enter the probability analysis are that observations are taken only at levels
{6,, —®© < n < =} and that each possible state 7 £ A is reached infinitely often
with probability one. A criticism sometimes made of the up-down method is that
the experimenter is required to take one observation at each step. Although the
procedure described has this characteristic it is not inherent in our procedure.
The probability statements made depend only on the comparisions of sums of
independent Bernoulli random variables against the integer sequences

{an,n = 1} and {b,,n = 1}.

No matter how an integer valued random variable @ is defined, for example,
Py(Yi+ -+ + Yo 2 aq) S Py(somen 21,1+ -+ + Yo 2 an) S a/4if
¢ =< p. The notations are as defined earlier.

The experimenter has the option of defining a procedure as best suits his
needs. The requirements are that he should obtain bounds I < J satisfying
P(6: = N\p £ 0;) =2 1 — /2 and that sufficient experimentation be made at
the levels ¢, I < 7 < J to obtain a consistent set of inequalities 6; = A, or 6; < A,
for all except possibly one ¢ £ (I, J); this consistency is the meaning of require-
ments (6) and (7) above. The levels of experimentation may be chosen by any
rule not depending on the future and consequently any number of observations
may be taken at a given level before moving to a different level. The only re-
quirement is that a sum S based on k observations is to be compared with
a; or b, when making decisions to stop or continue.
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