A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY
GAUSSIAN SEQUENCE!
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1. Introduction. Let X3, X,, --- be sequence of random variables which are
unbounded above, and let

Z, = max (X1, -+, Xa).

The law of large numbers (LLN) is said to hold for the sequence {Z,} if there
exists a sequence of constants {A4,} such that

(1) Z, — A.—0  in probability.

The necessary and sufficient conditions for the LLN for Z, in the case where
{X,} is a sequence of mutually independent random variables with a common
d.f. F(x) were found by B. V. Gnedenko [2]. In particular, he mentioned that
the standard normal distribution satisfies the conditions and that (1) holds
with

(2) A, = (2log n)t.

The main result of this paper is that if {X, : n = 1} is a stationary Gaussian
process with

EX;=0, EXi=1  EXX:=r;,

then Z, satisfies (1) with 4, given by (2), under the condition that nr, — 0.

Lemma 1 furnishes a condition for a stationary process under which the maxi-
mum behaves (in probability) almost as if the underlying random variables
were mutually independent. Lemma 2 generalizes a result of G. S. Watson [3]
on the tail of a bivariate normal d.f. The results of Lemma 2 are used to show
that the given stationary Gaussian process satisfies the conditions of Lemma 1.

2. Gnedenko’s conditions. It has been shown by Gnedenko [2] that (1) holds
if and only if for every ¢ > 0,

liMpw n(l — F(An + €)) =0
(3)
litpw (1 — F(Ay — €)) = w.

This can be seen from the fact that (1) holds if and only if for every ¢ > 0,

1 = liMpew P{dn — € < Zn < Au + ¢

(4)
= ]jlnn-oo Fm(An + 5) - limn-»oo Fn(An - 6),
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and the equivalence of (3) and (4) follows from the logarithmic expansion of
the terms in the last part of (4).

3. Preliminaries.

Lemma 1. Let {X,: n = 1} be a stationary. sequence, with the marginal d.f.
F(x), which satisfies (3) for some sequence {A,} and for every ¢ > 0; let Z, =
max (X1, + -+, Xa). If for every ¢ > 0,

. 2” A P{X1>A,,—€,Xj>An—€}_
®  lm2 -+ D) PIX, > 4, — ¢ =1

then (1) holds.
ProoF. From the relations

P{Z,> A, + ¢ =—1.D(.fll (X;> An+ ¢

S 3 PIXi> st o = n(l = F(4y + 0)
and from (3) ,!it follows that
P{Z,> A, + ¢ — 0.
The proof of the lemma will be completed by showing that
(6) P{Z, = An — ¢ —0.

Let I(H) denote the indicator function of the event H. It follows from (3),
(5), and the stationarity of the sequence {X,} that

n 2
E Z;I[X.->A,.—e]) 1
w1 — F(4d, —¢)?  n(l — F(4, —¢)
S P{X;>An—6X;> A —¢)
+ g _ 1
n*(1 — F(4, — ¢))? n(l — F(A. — ¢))
2 < s P{Xi>A,—¢X;> A, —¢€l .
tu =i+ XS A, — <] -1
hence,

SIX; > A, — d

PR | _
Lim. w0 —Fd, —o) 1,

-and from (3),

ZII [Xi> Ap— > o in probability.
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~ By the application of the elementary inequality
l—z =€, z =0,

and the bounded convergence theorem, one may now conclude that

P{Z, <A, — ¢l = EH(I—I[X > A, —¢)

=1

.= E{exp [—Z:; IX;, > A, — é]:l} -0

therefore, (6) is verified.
Lemma 2. If X and Y have a bivariate normal distribution with expectations 0,
unit variances, and correlation coefficient r, then

im P{X>e¢Y > 203 =1
T 2r(1 — )t exp{—ﬁ} (14!
uniformly for all r such that |r| < 8, for any 8,0 < & < 1.
Proor.
P{X >¢Y > ¢}

= 2“(—11——-—_72)’ [o[o exP{_2(—11:7) (2 — 2ray + y’)} dzdy.
After the change of variables
z=[wd+r/d+e y=I[(1+r)/d+ec,
the integral becomes
(1 +r)!exp {(—c/(1 4+ 1)}

2x(1 — Nic
f f exp{ 2(}+r)c2( 2rwz+z)} " dwdz.

The first exponent in the integrand is never positive; hence, as ¢ — =, it
follows from the bounded convergence theorem that

exp{ 2(11+r)¢:2 (w* — 2rwz+z)} e " dwdz — 1)

°re 1+6 2 2 —w—z
§'[j; (l—exp[ 50 = 6)c2( +26wz+z)])e dwdz — 0,

where the convergence is independent of 7.
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4. The main result.
THEOREM. Let {X,} be a stationary Gaussian process such that

EX;=0, EXi=1, i=12---,
EX\X; =1y, 1=2,3,-.
If
(7 limp.e n7s = 0,

then Z, — (2 log n)* — 0 in probability.

Remark. The theorem requires that the covariance sequence tend to zero
faster than n~". This holds, e.g., for the Markov process where r, = r** for
some 7 such that 0 < r < 1.

Proor. Condition (7) and the stationarity of the sequence imply that |ra| < 1
for all n; therefore, condition (7) also implies the existence of 2 6,0 < 6 < 1,
such that |r,| < & for all n. To prove the theorem, it will be shown that (5) holds
for A, given by (2).

From Lemma 2 and the well-known asymptotic expression for the tail of the
univariate normal d f.

P{X > ¢} ~ (2r) ¢ exp (—3c"),
it follows that the expression corresponding to the left side of (5) is asymptotic to
[logn] n 2
) ( >+ 2 1>7?(n—j+1)

2 j=[lognl+
(8)

i ] a+r)t

exp [(2 logn — 242 log n)" + &) 7 | Ty
J 2.

since the convergence in Lemma 2 is uniform in r.
The first sum in (8) tends to zero; since
r/(1+r) ad @Q+na-n"?
are increasing functions of r, the first sum is bounded above by
2 : 8 \(A+8) e "
f?“"“’{* TTS}(l——s_)f g =i,
which tends to zero.
The second sum in (8) converges to 1. Since r, — 0, the factors
1+ =)

and r;/(1 4 r;) are uniformly close to 1 and 0, respectively, for sufficiently
large j; furthermore, for j > [log =], from (7),

lri/(1 4+ r;)| 2log n ~ 2|r;| log n < 2|rj|j — 0.
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The entire second sum in (8) is therefore asymptotic to

2 - .
n? f—[§n1+l (n=j+1 -1
6. Concluding remarks. The referee has pointed out that the assumption of
stationarity in the theorem is not critically used; condition (7) may be replaced by

Imp,e nEXXi4n =0 for all ¢,

and the proofs go through without difficulty after a suitable modification of
Lemma 1. The referee’s suggestions were also helpful in the elimination of
unnecessary calculations in an earlier version of the paper.

The author thanks Professor Gisiro Maruyama for valuable suggestions and
Professors E. J. Gumbel and Ronald Pyke for helpful discussions.

REFERENCES

[1] GeFFROY, JEAN, “Contribution a la théorie de valeurs extrémes,” Publ. Inst. Stat.
Univ. Paris, Vol. 7 (1958), pp. 37-123; Vol. 8 (1959), pp. 3-65.

[2] GNEDENKO, B. V., “‘Sur la distribution limite du terme maximum d’une série aléatoire,’’
Ann. Math., Vol. 44 (1943), pp. 423-453.

i3] Warson, G. S., “Extreme values in samples from m-dependent stationary stochastic
processes,” Ann. Math. Stat., Vol. 25 (1954), pp. 798-800.



