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1. Summary. If 8, and 8, are not identically zero ¢-finite invariant measures
for a measurable invertible ergodic transformation S on a measure space, and
Bi(E) > 0 implies B.(E) > 0 for measurable sets E, then 8y = ¢8; for some
constant ¢ > 0 ([4], p. 35). In this paper a corresponding result will be proved
for stationary measures of a Markov process (Theorem 1). Theorem 1 is a
generalization of the corollary of [6], p. 863. In that paper, the authors impose
conditions ensuring that the shift transformation has no wandering sets of
positive measure, and then they use Hopf’s theorem. In Section 3, some new and
known results are seen to follow readily from Theorem 1. The recurrence con-
dition introduced by Harris [5] is discussed, and Theorem 1 is used to give a new
proof of the uniqueness theorem of [5] independent of the existence of stationary
measures, and generalizing the theorem to o-fields which are not necessarily
separable. ‘

2. Introduction. We consider (X, , n = 0), a Markov process on (2, =) having
stationary transition probabilities. « is called a stationary measure for the process
if « is not identically zero, is o-finite and f P(t,-Ya(dt) = a(-) on Z. Let , be
the set of unilateral sequences w = (wo, w1, - -), w, €2 and @ the set of bi-
lateral sequences w = (++:w_y,w,w, -+-). The X, process may be repre-
sented on Q by giving X, the distribution a where « is stationary ([2], p. 190).
The stationarity of o will permit the finiteness assumption to be relaxed. See,
e.g., [6]. The process is strictly stationary [2] since « is stationary, and the in-
duced measure on Qy cylinders, which we call a,, can be extended to a o-field of
Qp sets, to be called Z,.

The strictly stationary process (X., n = 0) may be embedded in a process
(Xn, —0 <m < «), the extended process ([2], p. 456). The extended process
may be represented on ; ; the measure induced by a on €; cylinders will be
denoted by «; and can be extended to a o-field of & sets denoted by =; . Notice
that if £ C @, is defined only by restrictions on w, , n = 0, then oy (E) = ao(E).

Let T be the shift transformation: if w & Qo or @, then (Tw), = w41 . Then
it is easy to see that g and oy defined above are T-invariant: ap(T ' E) = a(E),
or(TE) = o(TE) = au(E) for E ¢ 2y, E ¢ =, respectively. A stationary o
is called ergodic for the process (X, ,n = 0) if the o-field of invariant events is
trivial, that is, if V ¢ 2, and T V and V differ at most by an ag-null set, then
ao(V) = 0 or ag(V’') = 0. If the extended process (X,, —o < n < o) is
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considered instead, the definition of ergodicity changes every “0” subsecript
above to “1”. We will make use of the fact ([2], p. 458) that ¢ « is ergodic for
the process (X.,n = 0), then o is ergodic for the extended process (X,, — o <
n < «), and conversely. This theorem will be tacitly invoked in the sequel.

For any measures m and » on 2, m >> n means that m(E) > 0 whenever
n(E) > 0on 2. m = n means m >>n and n > m. For any set U in any space,
U’ is its complement.

Throughout this paper, if « is any stationary measure or » is any finite measure,
the subscript “0”” appended to « or n always indicates the measure induced by
a or n on Xy, the subscript “1” appended to « always indicates the measure
induced by « on Z; , as described above. It will be understood that the subseript
“1” refers to the extended process.

3. The uniqueness theorem. In this section « and B8 are assumed to be sta-
tionary measures for the process (X, , n = 0).
LemMA 1. For each U ¢ 2,

(1) (V) = [ P(U| X0 = Dl

where the integrand s the conditional probability of U starting at X, = t.

Proor. It is easily verified that the integral is countably additive on Z,. The
proof is concluded by observing that for cylinders the integral defines o .

LEMMA 2. a > implies ag > Bo .

Proor. ap(U) = 0 implies by (1) that P(U | X, = ¢) = 0 a.e. («) and so
P(U|Xo,=1) =0 a.e. (8). Hence Bo(U) = 0.

Notice that « + 8 is also a stationary measure.

LemuMa 3. If a >> 8 and a s ergodic, then 3 and « + B are ergodic.

Proor. Let V and V' be a decomposition of 2, into two invariant sets. Then,
say, (V) = 0, so by Lemma 2, 8,(V) = 0. Since o >> o 4 38, thesamereasoning
shows that (a4 B8)o(V) = a(V) + Bo(V) = 0.

LemMA 4. If a > B and o s ergodic, then ay >> B .

Proor. Suppose that there exists a set N &2, ou(N) = 0 and Bi(N) >
0. Then Us__o "N = V is an invariant set and «(V) =0, 8(V) > 0.
Now, we have that (e + 8)1 = a1 + B10on Z;. But then (a + 8)1(V) > 0 and
(@ + B)1(V') > 0. This contradicts the ergodicity of a« 4 8 proved by Lemma 3.

TuaroreM 1. If o >> 8 and a is ergodic, then 8 = ca for some constant ¢ > 0.

Proor. a; and B; are invariant under the invertible shift 7' which, in the
language of [4], is ergodic. Moreover «; > 8; . We may now use the known result
on invariant measures ([4], p. 35) but for completeness we sketch the brief
remainder of the proof. By the Radon-Nikodym theorem, the invariance of
a1 and B; and a well-known change of variable formula ([7], p. 342) we obtain

(2) au(B) = [ f@er(do) = [ f(Tw)ar(da)
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(3) () = [ | f)en(do).

(2) and (3) imply that f(Tw) = f(w) a.e. (1) and so f is invariant and by
ergodicity reduces to a constant ¢ > 0 a.e. (). Thus 81 = coy and s0 8 = ca.

Exawmpres. Consider the unrestricted random walk on the integers with transi-
tion probabilities

Piia = §
Diit1 = %
pi; = 0 otherwise.

Then a({s}) = 1 for all 4 is a stationary measure as well as 8({2}) = 2° forall 3.
Thus neither « nor 8 are ergodic and there are invariant sets which are not trivial.
This ties in with Blackwell’s result ([1], p. 656) that there are non-trivial in-
variant sets if and only if there is a non-constant bounded solution to the equa-
tion: k; = % kiyq + 3kis.Since k; = 0fors < 0,and for< = 1,k = 2 (1 — (3)%)
is a bounded non-constant solution, there are non-trivial invariant sets.

If piipn = 1 for all 7, p;; = 0 otherwise, we have an example of a process with
a unique stationary measure a({:}) = 1 for-all 7. « is ergodic for the process, but
the process is non-recurrent. :

4. Applications. To apply Theorem 1, we need to have probabilistic sufficient
conditions for ergodicity. ‘i.0.” below means infinitely often. Consider

(C): there exists a o-finite measure m on 2 such that m(E) > 0 implies
P(X,eEio.|Xo=1t) =1 for all ¢ £ Q.

(C) was introduced in [5] where, in case Z is separable, it implies the existence
and uniqueness of a stationary measure o. '

The next theorem is a generalization of Theorem 2 of [6], the proof of which is
only roughly sketched there. Our proof follows those ideas.

TaEOREM 2. Let (C) hold, and let o be stationary for the process (X, , n = 0).
Then a s ergodic.

Proor. Let V C Q be invariant, and let K = {{:P(V | X, = t) > 0}.
If m(K) > 0, we show P(V|X,=1t) = 1 for almost every (m)t e K. For,
assume that there exists a set L € K, with P(V |Xo=1t) <6 < 1 forteL,
m(L) > 0. Without loss of generality, we may suppose that for some ¢ > 0
we also have e £ P(V | X, =t) for t ¢ L. For each fixed ¢ Q, almost every
(with respect to conditional probability starting at z,) sequence o =
(%o, 1, 22, - - ) has infinitely many elements of L appearing, by (C). We then
obtain

PV|Xo=m,m=X1, -, Xpn=2,) = P(V| X, =2,) = PV | X, = z,),
using the Markov property and the stationarity of transition probabilities. By
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the martingale 0-1 law ([2], p. 324) the left-hand side and thus P(V | X, = z,)
converges to 0 or 1 with probability one as n — . For z,¢L, we
have P(V| X, = z,) = ¢ and this is true for infinitely many =n. Thus
lim,.oP(V | Xo = 2,) = 1, a contradiction since P(V | X, = () < dforte L.
We have therefore shown that P(V | X, = ¢) = 1 for almost every ¢ ¢ K. Since
m(K) > 0, it is easy to see, using (C), that P(V|X,=1t) = 1 for every
teQ. Thus ao(V’) = 0. If, on the contrary, m(K) = 0, then a repetition of
the foregoing argument for the set Ky = {t:P(V'| X, = t) > 0} proves that
P(V'| Xo=1t) = 1 for every t£Q, and s0 a(V) = 0.

COROLLARY 1. Assume only that (C') is satisfied for almost all (m)t, and that m
18 stationary. Then m s ergodic.

Proor. mo(V) = [ P(V | Xo = t)m(dt) and the integrand is 0 or 1 a.e. (m)
if V is invariant. -

Corollary 1 is essentially the result of Theorem 2 of [6].

CoroLLARY 2. Under (C), P(X,eEio.|Xo=1%) = 0 for all t or 1 for all ¢,
for each fixed E ¢ Z.

Proor. The events considered are invariant.
- As an application of Theorem 1, we derive a result in [6].

TrEOREM 3. Let o be stationary such that o(E) > 0 implies P(X, € E i.0. | X, =
t) = la.e. (a), and let « > B where 8 is another stationary measure. Then
B8 = ca for some constant ¢ > 0.

Proor. By Corollary 1 above, « is ergodic. Apply Theorem 1.

DeriniTiON. If m is any measure on =, the process is called m-irreducible if
m(E) > 0 implies P(X, ¢ E for some n | X, = t) > 0 for almost all (m)t.

TueorEM 4. Let o be a finile stationary measure and let the process be o-ir-
reducible. Then o s ergodic.
. Proor. Let a(E) > 0. Suppose there exists a set F C E, «(F) > 0 with
P(X, ¢ E for at most finitely many n | Xo = t) > 0 for each teF. Let B =
{wiweQ ; Xu(w) € E for at most finitely many n; Xo(w) € F}. Then

ao(B) = fP(BlXO - Da(d) = fFP(B | Xy = f)aldi > 0.

Let Ey = {wiweQ; Xo(w) eE}. Then ay(E,) = a(E) >0, and B C K,
a(B) > 0, but for each w ¢ B, T"w £ E, for at most finitely many ». This contra-
dicts the strong recurrence theorem of ergodic theory ([4], p. 10). Thus we have
shown that if «(E) > 0, P(X, ¢ Ei.0.| X, = t) = 1 for almost every (a)t e E.
Let £ = {t:P(X,eEio.|Xo=1) = 1}. a(E) = «(E) > 0. Notice also that
E is a closed set, that is, P(t, ) = 1 for every t ¢ E. The assumption of a-ir-
reducibility proves that «(Z) = 1. Indeed, if a(&) > 0, we must
have P(X, ¢ E for some n | Xo = t) > 0 for some ¢ ¢ E, a contradiction because
E is closed. By Corollary 1, « is ergodic.

The next sequence of results will investigate condition (C') which will be
assumed henceforth. Theorem 7 generalizes the uniqueness result of [5]. The
proof of uniqueness in [5] as well as the indication that Theorem 6 holds in
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separable o-fields used the existence theorem and the “process on A” approach
whereas the proofs given here use neither.

Without loss of generality, we may assume that the measure m in (C) is a
probability measure, since, given a o-finite measure, a finite measure with the
same sets of measure zero may always be constructed. Define (S8'm) (E) =
[ P*(t, E) m(dt), k = 1, and (8°m) (E) = m(E).

TaEoREM 5. P(X,eEio.|Xo=1) =0foralltor P(X,eEio.| Xy =1) =
1 for all t according as (S*m) (E) = 0 for allk = 0 or (8*m) (E) > 0 for some
k=0.

Proor. If (8*m) (E) > 0 for some k, then P*(¢, E) = ¢, say, on the set K,
m(K) > 0. By (C), P(X,eK io0.|Xo=1t) = 1forall { £Q, and it then easily
follows that P(X, e Eio.| X, =1t) = 1 for all teQ. If (S*m) (E) = 0 for all
k, P*(t,E) = 0 a.e. (m) for each k and P(X, is neverin E | X, = t) = 1 a..
(m). By the preceding Corollary 2, P(X, € Ei.o. | X, = t) = 0 for all ¢.

Let us notice that « >> m for any stationary «, since P(X, e Eio. | Xo = t) =
1 for all ¢ if m(E) > 0, whereas if a(E) =0, P(X,eEio.| X, =1t) =0 a.e.
(a). Let {a,} be a sequence of positive numbers with sum 1 and define n(-) =
> w0 ax(S*m) (+) on Z. Then, by the preceding theorem, n(E) = 0 or n(E) >
0 according as P(X, ¢ Ei.o. | X, =t) = 0 or 1. Also remark that o >>n if « is
any stationary measure.

THEOREM 6. Let a be stationary. Then o (E) > 0 implies P(X, ¢ Ei.0.| Xy, = t)
= 1 for all &.

Proor. Consider the extended process (X,, —o <n < ). Let V C &,
V = (X, eE for all n). V is invariant and so differs from the event W =
(X, e E for all n = 0) by an ay-null event ([2], p. 459). By the remarks about
n, we may assume that n(E) = 0, otherwise the conclusion of the theorem
follows. Theorem 5 then makes it clear that no(W) = 1. Hence, since a > n,
as in Lemma 2 it is clear that ag > ne, 80 ao(W) > 0. Since W depends only on
n =0, a(W) = ai(W) > 0. This proves that o;(V) > 0 and by ergodicity
a1(V') = 0. Thus a(W’) = 0. But since W = (X, eE for some n = 0),
ao(W') = a(E) > 0, a contradiction. Thus the hypothesis that n(E) = 0 must
be rejected and the theorem is proved.

CoroLLARY 1. For any stationary a, a = n.

COROLLARY 2. If a and 8 are stationary, then o = (.

TuaEOREM 7. There exists at most one stationary measure « for the process.

Proor. By Theorem 2 any stationary measure o is ergodic. If 8 is another
stationary measure, @ = (8 by Corollary 2 above, and, a fortior:, « > 8. Now ap-
ply Theorem 1.
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