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1. Summary. Certain statistical problems in life testing and reliability lead to
the consideration of minimizing and maximizing certain integrals of the form

3 ¢z, F(z))de, F(z) =1 — F(x),

under the assumption that the distribution function F has increasing hazard rate
and that one or two moments are given. The minimizing (maximizing) distribu-
tions for the special cases considered are members of the extremal class considered
by A. Marshall and the author [2]. Bounds on the expected values of the minimum
and maximum order statistics as well as the operating characteristics of replace-
ment policies based on age are obtained under these assumptions.

2. Statistical motivation. For many statistical problems in life testing and
reliability it is natural to assume that the life distribution F(F(0~) = 0) has in-
creasing hazard rate (is IHR). If F has density f, then F is IHR if and only if
f(z)/[1 — F(x)]isnondecreasing in z. In general F is said to be IHR if and only if
In [1 — F(z)] is concave where finite. This property is enjoyed by most of the
commonly used life distributions; e.g.,

Weibull: f(z) = Naz® " exp (—\z%), z =0,
= 0, elsewhere,
fora = 1,x >0, and’
Gamma: f(z) = [(\2"7)/(T(a))] exp (=Az), 20,
=0, elsewhere,

for @ = 1, A > 0. Distributions F for which In [1 — F(z)] is convex on [0, « )
are called DHR for decreasing hazard rate. Properties of distributions with
monotone hazard rate are discussed in [3].

In addition to this assumption, some prior information in the form of the
mean y; , and the variance 0" = py — p’ of the distribution may be known. Since
in the THR case, o/um = 1 with equality only for exponential distribution, an
estimate of the coefficient of variation o/u; may represent the statistician’s belief
in the amount of departure of the failure distribution from exponentiality.

With the mean and variance assumed known we consider the problem of
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minimizing and maximizing certain integrals of the form
(2.1) I ¢(z, F()) de

where F is IHR. Integrals of such functions have been considered by Karlin [7],
Rustagi [11] and others for general distributions. (See [11] for additional refer-
ences.) A related but more specialized problem is that of minimizing (maximiz-
ing) integrals of the form [5 p(x) dF(z) assuming that certain moments of F
are specified, (cf. Theorem 4.1). Assuming no conditions other than the moment
conditions, this problem has been solved by H. P. Mulholland and C. A. Rogers
[10]. Their methods as well as those of many others (e.g. Karlin and Shapley [9])
use the fact that the class of all distributions subject to specified moment con-
ditions are closed under convex combinations. However, the class of IHR dis-
tributions is not closed under convex combinations ([3], p. 381) and, therefore, we
cannot use the classical methods. Instead we consider very special cases using the
methods of [2]. However, we do obtain fairly explicit bounds which can be easily
machine computed. The resul ts of Section 3 follow from a theorem of Ky Fan
and G. G. Lorentz. The main results of the paper are in Section 4.

Integrals such as (2.1) often arise in statistical applications. For example, let
Uy £ U, £ --- £ U, denote n ordered observations from a population with
IHR cdf F. Let W, = U, — U, denote the sample range. Then we may seek to
minimize (maximize)

EW,) = [s[l — F(2)" — (F(z))"] da
where F(z) = 1 — F(z). The integrand is of the form ¢(z, y) where
¢z, y) =1— (1 —y)" =y

is concave in y.

For another example, consider a replacement policy of the form: Replace at
time t or at failure, whichever occurs first. We may then seek to minimize (maxi-
mize) the following integrals:

(i) [6F(z)de, F(z)=1— F(z),
i.e., the expected time between removals for either a failed or nonfailed item.
(ii) fo F(x) de/F(t)

i.e., the expected time between failure removals using a replacement policy based
on ¢. The reciprocal of this quantity occurs as an upper bound on the renewal func-
tion divided by ¢, [5].

(iii) Jo F(z) de/F (1)

i.e., the expected time between planned replacements using a replacement policy
based on i. A related expression is:

(iv) J7 F(z) dx/F(t)
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i.e., the mean residual life of an item aged ¢. Bounds on densities and failure rate
functions will be discussed in a future joint paper with A. Marshall.

3. Bounds on integrals when F is IHR (DHR) with specified mean. If
¢(z, y) is sufficiently smooth the problem of minimizing (maximizing)
[s ¢(z, F(x)) dx is comparatively simple. To do this we first state a more general
result due to Ky Fan and G. G. Lorentz ([6], p. 630). This reference was pointed
out by A. W. Marshall. We consider a system of decreasing bounded functions
fi,g9:where f; <g; %= 1,2, -+ n. Therelation f < g means that

Jof(t) dt < [og(t)dt forall z =0

and
[e 1) di = [3g() dt.
TueoreM 3.1 (Ky Fan and G. G. Lorentz). If
(i) fi,g: are bounded and decreasingi = 1,2, -+ ,m;
(ii) f,,t <g,¢~’i = 1,2’ PR ’n;

(iii) ¢(x, Y1, Yz, ** , Yn) has continuous second derivatives;
(iv) 9°¢/dy:dy; 2 0, 9°¢/dxdy: < 0,4,7 = 1,2, -+, m;
then

f;°¢($,f1,f2, 7fn) dr < f:)od’(xygl’ e 79") dx

when the integrals exist.

Fan and Lorentz actually state this as a corollary and for the interval [0, 1].
The theorem can be extended to [0, « ) by limiting arguments assuming that the
integrals exist.

Note that if F; is THR with mean p; and Gs(z) = ¢ '* then G; < F; (see [8]).
The relation is reversed if F'; is DHR with mean u; . Let

G’M(x) =1, 0< 2 < pg,y
=0) x—i M .

Then we always have F; < G,, . Hence assuming F; is IHR and Conditions
(ii1), (iv) of Theorem 3.1 hold we have

I8 oz, G (2)) da = [3 oz, Fi(z)) dz = [7 é(x, ¢ ™) da.

Let X3, X2, -+, X, denote n independent observations on a random variable
X with IHR distribution F. Let U, £ U, £ -+ £ U, denote the associated
order statistics. Then

ElU, — U] = [¢ {1 = [F(@)]" = [l — F(2)]"} de

Js o(x, F(x)) do

where ¢(2,y) = 1 — 4" — (1 — y)". Theorem 3.1 applies and we have
0 < ElU, — U\ £ m 205 1/k

for sharp upper and lower bounds on the expected range. Intuitively, this in-
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equality tells us that observations on ITHR random variables tend to cluster to-
gether more closely than observations from an exponentially distributed random
variable with the same mean. In a similar manner we obtain sharp upper and
lower bounds on the expected values of the minimum and the maximumob-
servations.

(3.1) wm/n £ BlU\ = [¢ [F(z)]"dz £ m
(3.2) m = B0 = [T — F'(2)]dz £ m 227 1/k.
Inequalities (3.1) and (3.2) also follow from Corollary 3.1.
Cororrary 3.1. If F;(z = 1, 2, -+, n) s THR (DHR) with means u;,t =
1,2, -, m, then
@) J§ e JTim Fu(z) dz 2 (2) [5 aa® J]iw1 Gi(e) dz

for0 = a =1and
(i)  fo ezl — [l Fa@)de £ (2)[5 aa® 1 — i1 Gi()] dz
fora = 1.

This is a straightforward specialization of Theorem 3.1. In a reliability context,
Part (i) says (for & = 1) that the mean life of a series system with IHR
components whose means are u;(7 = 1,2, ---,n) exceeds the mean life
of a series system with exponentially distributed components and means
wi(i =1,2, ---,n). However, just the reverse is true for parallel systems.

Addltlonal propertles of order statistics from IHR (DHR) distributions to-
gether with applications to life testing will appear in a future paper. o

4. Bounds on integrals when F is IHR with specified mean and variance.
Assume now that F is IHR with mean u; and p, specified. In [2] the class of
extremal distributions for bounding F were determined. Two rather special
members of this class are

1 — Gr(z) = exp (—axx), z2< Ty,
= 0, z2zT,
and
1 — Grz) =1, =1 — (- 1=T,,
= exp[—(z — To)(w— 1)77), z 2T,

IIA

where gy and T'; are chosen to satisfy the moment conditions.

The method we now use has been employed by Karlin and Novikoff [8]
among others.

TuareoREM 4.1. If

(i) F s IHR, F(0) =

(ii) w1 = 1 and ps are spectfied,

(iil) p(zx) 7s convex,
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then
Js p(2)0r,(2) dz =[5 p(2)F () dz = [7 p(x)Cr,(z) da.

Proor. We know [2] that F(z) — Gr,(z) has exactly two sign changes, say
at x; and z. . Furthermore, the order of the sign changes is — + —. Define a
line £(x) so that

p(z1) = £(z1) and p(z2) = £(z2).

Since p is convex, p(z) — £(z) changes sign at z; and z, in the order + — .
Therefore, [p(z) — £(2)][F(z) — Gr,(z)] < 0 for all z. Integrating on z we
obtain the upper bound on [g p(2)F(z) dz. The lower bound follows in a similar
way using Gr,(z) instead of Gr,(z).]|

The ordering of sign changes for p(z) — £(x) is of course reversed when p is
concave. Using Theorem 4.1 and letting p(z) = z" for r > 0, one canobtain
improved bounds on p, (r > 2) in terms of u; and ps (¢f. Theorem 4.4 of [3]).

The general problem of bounding integrals of the form

JT ¢(z, F(z)) dz

when F is THR with y; and u. specified seems quite difficult. However, it is pos-
sible to treat many special cases using the properties of the extremal family con-
sidered in [2]. In order to do this we repeat some of the notation in [2]. We can
assume without loss of generality that w; = 1. It follows that u, satisfies
1 é M2 = 2. Let

To=1— (po— 1) and T: = —ao™" log (1 — a),
where ao in [0, 1] and 7; simultaneously satisfy the following equations:
fore ™ de = u = 1, Slae " de = Lus.
In [2] it is shown that solutions exist. Let
G =1{Gr:T = T}
where

I—GT(x)Zl, x<A7
=

= 0, 22T,
and a, A(0 < A £ T) are chosen to satisfy the moment conditions; i.e.,
foll — Gr(z)]de = wm =1, fozll — Gr(z)]de = Lpu,.
Let
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where

lIA

1 — Gr(z) = exp (—ax), z =T,
=exp (—a,T — ax(xz — T), z=T,

and a; < a; are chosen to satisfy the moment conditions as before. It is shown in
[2] that for ¢t = 0

inf [1 — Gz(1)] =1 — F(t) = sup [1 — Gz(?)]

where the extremums are taken over G3 u G4 . These bounds have been tabulated
for selected values of ue(1 < e =< 2), [1].

4.1 Ezxpected time between removals. If X has distribution F, then E[min (X, ¢)]
= [0 F(z) dx. For an age replacement policy this denotes the expected time
between removals using a policy determined by ¢.

TuaeoreM 4.2. If F 1s ITHR, F(0) = 0 and py = 1, ps are specified, then

(1) [6 F(z) dzx = infepeg, [0 Gr(z) dz,
(i) [oF(x)dx £, t < To=1— (w— 1)}

To=T

IIA
lIA

T,

I

lIA

SUP@reg, fé G’T(-’ll) dr, To=t=T,

p,l—]., t;Tl.

IIA

All inequalities are sharp.

Proor. Let F ¢ F — (G3u Gs) where § is the family of all IHR distributions
with preseribed moments g; = 1 and ps . Let 7 > T, and s(T') be the crossing in
(A, T) from above of 1 — Gz by 1 — F. We use crucially the fact that s(T') is
continuous in 7' (see [2]).

CasE 1. ¢ £ s(T1). From the definition of Gz, we can see that F(z) = Gr,(z)
for 0 £ 2 < s(Th) and hence [{ F(z) dz = [ Gr,(z) dx.

CasE 2. ¢ = s(®). F(z) crosses Gr,(z) from above at s() and F(z) <
Gry(z) for z > s( ). Hence [7 F(z) dx < [7 Gry(x) dz implies [¢ F(z) dz =
fé GTo(x) dx'

Casgk 3. s(T,) <t < s(«). Since s(T) is continuous in 7', choose T = T,
and A(0 £ A £ Ty) such that s(T) = t. In this circumstance Gr ¢ Gs . See Fig.
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4.1. Let

It

du(z) =1,
= 0, z >t
and define a line £(z) such that £(z;) = 1 and £(T) = 0. Since clearly
[$:(z) — L(@)]IF (z) — G2(2)] 2 0
for all z,
5 lpue) — L@)F(z) — Gr()ldz = [(F(z)de — [1Gr(2)de = 0.

This proves (i).

To prove (ii) we first note that F(z) £ Gr,(z) = 1for0 < z < Ty and hence
[o F(z)dx < tfort < Ty, is sharp. Also, F(z) = Gr,(z), forz = T, implies
[6F(z)dx £ [6Gr(x)de = w = 1, = Tiis sharp. To complete the proof we
need the function u(7T) defined for Ty < T =< T:. Let w(T) be the crossing in
[T, «] from below of Gr by F; u(T) always exists (see [2]). We use crucially the
fact that w(7T) varies continuously from u(Ty) > Toto u(T:) = Ty .

Cask la. t £ u(Ty). Clearly F(z) < Gr,(z) forz < u(To) implies

JoF(z) de < [§Gry(z) dx.

CaskE 2a. Ty £ uw(Ty) <t < w(T:) = T:. By continuity of 4(7T) we can
choose T such that w(7T) = ¢. In this circumstance Gr e Gy. See Fig. 4.2. If
F(z) £ Gu(z) for x < t, the proof is obvious. Hence suppose F(z) crosses
Gr(z) from above at z; . If 2, = o, the proof is also obvious. Hence suppose

T2 < . Let

I\

‘/’t(x) =

1, T
=0, x>t

t

and construct a line £(z) so that £(z;) = 1 and £(x:) = 0. Since
[¢u(2) — L()]F(z) — Go(2)] £ 0

for all x we have

o [pu(z) — L(2)][F(z) — Gr(zx)lde = [oF(z)dx — [¢Gr(z) dx < 0.




572 RICHARD E. BARLOW

Although the above bounds must be computed numerically, they can be easily
programmed because of the simple form of the extremal distributions.
If u; is the only moment specified (# IHR), then

[§F(z) de = w1l — e,
[6F(z)dz £ t, t < pi,
= m, = m.

All inequalities are sharp. The lower bound follows from the fact that F(zx)
crosses ¢ “'*! at most once and from above. The inequality is clear for small ¢.
If it were ever violated, then a fortiors it would also be violated for t = -+ «
which is impossible.

4.2 Additional bounds. We now present additional bounds on quantities related

to age replacement problems. The mean residual life of an item aged ¢ is
J? F(z) de/F ().

If F is THR, this ratio is necessarily nonincreasing in ¢.
TueEorEM 4.3. If F s THR, F(0) = 0 and w = 1, uz are specified then

(i) [T F(x)dz/F(t) 2 m — 4, t £ To,
2 infopeg, [[7 Gr(2) dz/Gr(1)],  To =t = Ti,
2 0, t> T,

(i) [TF(x)dz/F(t) S m =1, t =0,
< SUDeyeg, L[7 Gr(z) de/Gr(1)], 0 <t < o,
< (m— 1)} t = + .

All inequalities are sharp.

The proof follows by an examination of cases and application of the methods
of Theorem 4.2.

It is easy to show that if only y; is specified (# THR), then the following in-
equalities are sharp.

JPF(x)da/F(t) 2 m —t, =,
z 0, t > w,
I3 F(z) dz/F(t) £ m .

Expected time between failure removals. If an item is replaced either at age ¢
or at failure, whichever occurs first, then the expected time between failure re-
movals will be

[¢ F(x) dx/F(t).
This ratio is nonincreasing in ¢ if F is IHR. This ratio also occurs in a bound on

the renewal function. Suppose F is IHR and N (¢) is the number of renewals
in [0, {] for an associated renewal process. Then it can be shown [5] that

EIN()] £ tF(t)/ [0 F(z) de < t/m .
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It is therefore of some interest to obtain bounds on this ratio.
TrEOREM 4.4. If F s THR, F(0) = 0 and w1 = 1, us are specified, then

(i)  [oF(z)dx/F(t) 2 infageg, [[o Go(z) dx/Gr(2)], t< =1,
2 infopegyygs [Jo Gr(2) da/Gr(8)], wm =t <Th,
= m, t= T,

(i) [ F(x)da/F(t) < =, t<To=1— (u— 1)}
< Supegeg, [[o Gz(x) dz/Go(t)], Ty=t=T
S SUPergegy 1/ Gr(2)], t> Th.

All inequalities are sharp.

We omit the proof.

The asymptotic expected cost per unit time under an age replacement policy
where an item is replaced either at failure or at time ¢ whichever occurs first is
[ef. [7] p. 68]

C(t) = [(Cl - Cz)F(t) + Cz]/ff) F-(x) dx, (01 = 62).

The methods of Theorem 4.4 will also provide sharp bounds on this function.
If only w is specified, (F IHR), then the following inequalities are sharp:

J§F(2) dz/F(t) = w1, for all ¢,
J6F(z) dz/F(t) £ o, t <,
= :U'l/(]- - e—Wt), t> i,

where w depends on ¢ and is determined by [¢e ““dz = u; = 1. The first in-
equality is attained by the exponential. The second inequality is attained by the
degenerate and exponentials truncated on the right.

Ezxpected time between planned replacements. If an item is replaced either at
time ¢ or at failure, whichever occurs first, then the expected time between planned
replacements will be

[¢ F(z) dz/F(1).

This ratio is always nondecreasing in ¢.
TareoreMm 4.5. If F is THR, F(0) = 0 and w1 = 1, u» are specified, then

[eF(z) de/F(t) = t, 0<t=T,,
2 infg,ng, [Js Gr(z) de/Gr(1)], To=t < Ty,
= infg, [[o Gr(2) dx/G (1)), t> T,

s F(z) da/F(t) < supg, [[s Gr(z) de/Ga(1)], 0=<t=T,

lIA

Supg;ng, [f(t) Gr(x) dx/G_T<t)], To<t=T,

1A

©, t> T
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All inequalities are sharp.

We omit details of the proof.

If the only moment specified is the mean w;,(F IHR), then the following in-
equalities are sharp.

fo F(x)de/F(t) = t, t =,
> inf, [[§ Gu(2) da/Gu(t)], t> i,
Jo F(z) dz/F(t) < supo<a<u [Jo Ga(z) dz/Ga(t)], ¢ < m,
' < +ow, 12w,
where
Gu(z) = ™, < T,
=0, = T,_

w and T are chosen to satisfy [§ e “*dz = w and
Ga(z) = 1, 0=z =4,
= exp [_ (x - A)/(l"l - A)]) x éAr

(0 £ A £ w). The proof is similar to previous proofs and uses the methods of
[2], pp. 1258-1261.

Acknowledgment. This paper represents an extension of a previous paper [2]
with Albert Marshall to whom I would like to acknowledge a great indebtedness.
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