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Abstract

Freedman’s inequality is a martingale counterpart to Bernstein’s inequality. This result shows that
the large-deviation behavior of a martingale is controlled by the predictable quadratic variation
and a uniform upper bound for the martingale difference sequence. Oliveira has recently estab-
lished a natural extension of Freedman’s inequality that provides tail bounds for the maximum
singular value of a matrix-valued martingale. This note describes a different proof of the matrix
Freedman inequality that depends on a deep theorem of Lieb from matrix analysis. This argument
delivers sharp constants in the matrix Freedman inequality, and it also yields tail bounds for other
types of matrix martingales. The new techniques are adapted from recent work [Tro10b] by the
present author.

1 An Introduction to Freedman’s Inequality

The Freedman inequality [Fre75, Thm. (1.6)] is a martingale extension of the Bernstein inequality.
This result demonstrates that a martingale exhibits normal-type concentration near its mean value
on a scale determined by the predictable quadratic variation, and the upper tail has Poisson-type
decay on a scale determined by a uniform bound on the difference sequence.

Oliveira [Oli10, Thm. 1.2] proves that Freedman’s inequality extends, in a certain form, to the
matrix setting. The purpose of this note is to demonstrate that the methods from the author’s
paper [Trol0b] can be used to establish a sharper version of the matrix Freedman inequality.
Furthermore, this approach offers a transparent way to obtain other probability inequalities for
adapted sequences.

Let us introduce some notation and background on martingales so that we can state Freedman’s
original result rigorously. Afterward, we continue with a statement of our main results and a
presentation of the methods that we need to prove the matrix generalization.
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1.1 Martingales

Let (Q,.7,IP) be a probability space, and let .%, C %, C %, C --- C ¥ be a filtration of the
master sigma algebra. We write IE; for the expectation conditioned on .%,. A martingale is a (real-
valued) random process {Y; : k =0,1,2,...} that is adapted to the filtration and that satisfies two
properties:

Ee Y=Y, and E|Y|<+co fork=1,23,....

For simplicity, we require the initial value of a martingale to be null: Y, = 0. The difference
sequence is the random process defined by

XkZYk_Yk—l fork=1,2,3,....

Roughly, the present value of a martingale depends only on the past values, and the martingale
has the status quo property: today, on average, is the same as yesterday.

1.2 Freedman’s Inequality

Freedman uses a stopping-time argument to establish the following theorem for scalar martin-
gales [Fre75, Thm. (1.6)].

Theorem 1.1 (Freedman). Consider a real-valued martingale {Y} : k = 0,1,2,...} with difference
sequence {X, : k =1,2,3,...}, and assume that the difference sequence is uniformly bounded:

X, <R almost surely fork=1,2,3,....

Define the predictable quadratic variation process of the martingale:
k
Wy = ijl E;_, (XJZ) fork=1,2,3,....

’lhell, for all t > 0 and 0'2 > O,
]P{Hk>OY >t and W, <O'2}<exp _i
K k o2+4Rt/3 ]

When the difference sequence {X,} consists of independent random variables, the predictable
quadratic variation is no longer random. In this case, Freedman’s inequality reduces to the usual
Bernstein inequality [Lug09, Thm. 6].

1.3 Matrix Martingales

Matrix martingales are defined in much the same manner as scalar martingales. Consider a ran-
dom process {Y : k =0,1,2,...} whose values are matrices of finite dimension. We say that the
process is a matrix martingale when Y, = 0 and

E, Y. =Y, and ]E||YkH<+oo fork=1,2,3,....

We write ||-|| for the spectral norm of a matrix, which returns its largest singular value. As before,
we define the difference sequence {X, : k =1,2,3,...} via the relation

Xk:Yk_Yk—l fOrk:].,z,B,....

A matrix-valued random process is a martingale if and only if we obtain a scalar martingale when
we track each fixed coordinate in time.
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1.4 Freedman’s Inequality for Matrices

In the elegant paper [Oli10], Oliveira establishes an analog of Freedman’s result in the matrix set-
ting. He studies martingales that take self-adjoint matrix values, and he shows that the maximum
eigenvalue of the martingale satisfies a tail bound similar to Freedman’s inequality. The uniform
bound R and the predictable quadratic variation {W,} are replaced by natural noncommutative
extensions.

In this note, we establish a sharper version of Oliveira’s theorem [Oli10, Thm. 1.2]. Here and
elsewhere, A, denotes the algebraically largest eigenvalue of a self-adjoint matrix.

Theorem 1.2 (Matrix Freedman). Consider a matrix martingale {Y; : k =0,1,2,...} whose values
are self-adjoint matrices with dimension d, and let {X; : k = 1,2,3,...} be the difference sequence.
Assume that the difference sequence is uniformly bounded in the sense that

Amax(Xi) <R almost surely fork=1,2,3,....

Define the predictable quadratic variation process of the martingale:

k
W, = ijl By (X7) fork=1,2,3,....

Then, for all t > 0 and o2 > 0,

42
P (362 04202 € and o] <%} <d-emp{ -2 L.

We prove Theorem 1.2 in Section 3 as a consequence of Theorem 2.3, a master tail bound for
adapted sequences of random matrices.

Theorem 1.2 offers several concrete improvements over Oliveira’s original work. His theorem [Oli10,
Thm. 1.2] requires a stronger uniform bound of the form ”XkH <R, and the constants in his in-
equality are somewhat larger (but still very reasonable).

As an immediate corollary of Theorem 1.2, we obtain a result for rectangular matrices.

Corollary 1.3 (Rectangular Matrix Freedman). Consider a matrix martingale {Y;, : k =0,1,2,...}
whose values are matrices with dimension d; xd,. Let {X;. : k =1,2,3,...} be the difference sequence,
and assume that the difference sequence is uniformly bounded:

”XkH <R almostsurely fork=1,2,3,....

Define two predictable quadratic variation processes for this martingale:
k
Weolk i= ijl E;_, (XjX;.‘) and
k
Wion 1 = ijl Ej, (X)X;) fork=1,23,....
Then, for all t > 0 and o2 > 0,

IP{EIk >0: ||YkH >t and max{“Wka

Wrow,kH}SO'Z}
\mm)
<(d;+d,)-expyd —————= .

>

o2 +Rt/3
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Proof Sketch. Define a self-adjoint matrix martingale {Z,} with dimension d = d; + d, via

0 Y,
=g o)

Apply Theorem 1.2 to this martingale. See [Tro10b, §2.6 and §4.2] for some additional details
about this type of argument. O

1.5 Tools and Techniques

In his paper [Oli10], Oliveira describes a way to generalize Freedman’s stopping-time argument
to the matrix setting. The main technical obstacle is to control the evolution of the moment
generating function (mgf) of the matrix martingale. Oliveira accomplishes this task by refining an
idea due to Ahlswede and Winter [AW02, App.]. This method, however, does not result in the
sharpest bounds on the matrix mgf.

This note demonstrates that the ideas from [Tro10b] allow us to obtain sharp estimates for the
mgf with minimal effort. Our main tool is a deep theorem [Lie73, Thm. 6] of Lieb.

Theorem 1.4 (Lieb, 1973). Fix a self-adjoint matrix H. The function
A —> trexp(H + log(A))
is concave on the positive-definite cone.

See [Trol0b, §3.3] and [Trol0a] for some additional discussion of this result. We apply Theo-
rem 1.4 through the following simple corollary [Tro10b, Cor. 3.2], which follows instantly from
Jensen’s inequality.

Corollary 1.5. Let H be a fixed self-adjoint matrix, and let X be a random self-adjoint matrix. Then
Etrexp(H + X) < trexp(H + log(E e*)).

By using Lieb’s theorem instead of the Ahlswede-Winter approach, we gain a significant advan-
tage: Our proof of Freedman’s inequality can be generalized in an obvious way to obtain other
probability inequalities. See the technical report [Tro11] for details.

1.6 Roadmap

Section 2 develops a master tail bound for adapted sequences of random matrices, Theorem 2.3.
The proof parallels Freedman’s original argument, but we require Lieb’s theorem to complete one
of the crucial steps. In Section 3, we specialize the main result to obtain Freedman’s inequality for
matrix martingales.

2 Tail Bounds via Martingale Methods

In this section, we show that Freedman’s techniques extend to the matrix setting with minor (but
significant) changes. The key idea is to use Corollary 1.5 to control the evolution of a matrix
version of the moment generating function.
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2.1 Additional Terminology

A sequence {X;} of random matrices is adapted to the filtration when each X, is measurable
with respect to .%,.. We say that a sequence {V,} of random matrices is predictable when each V. is
measurable with respect to .%;_;. In particular, the sequence {I£;_; X, } of conditional expectations
of an adapted sequence {X,} is predictable. A stopping time is a random variable x : O — IN;U{oo}
that satisfies {x <k} c %, fork=0,1,2,...,00.

2.2 The Large-Deviation Supermartingale

Consider an adapted random process {X; : k = 1,2,3,...} and a predictable random process
{V, : k =1,2,3,...} whose values are self-adjoint matrices with dimension d. Suppose that the
two processes are connected through a relation of the form

logE,_, e%% < g(0)-V, for6 >0, 2.1)

where the function g : (0,00) — [0, 00]. The left-hand side should be interpreted as a conditional
cumulant generating function (cgf); see [Trol0b, Sec. 3.1]. It is convenient to introduce the
partial sums of the original process and the partial sums of the conditional cgf bounds:

k
Y,:=0 and Y, := j=1Xf'

k
Wy,:=0 and W, := jlej.

The random matrix W, can be viewed as a measure of the total variability of the process {X;} up
to time k. The partial sum Y is unlikely to be large unless W, is also large.

To continue, we fix the function g and a positive number 6. Define a real-valued function whose
two arguments are self-adjoint matrices:

Go(Y, W) :=trexp (Y — g(6)-W).
We use the function G4 to construct a real-valued random process.
Sk :=5,(0) = Gy(Y,, W,) fork=0,1,2,.... (2.2)

This process is an evolving measure of the discrepancy between the partial sum process {Y;} and
the cumulant sum process {W,}. The following lemma describes the key properties of this random
sequence. In particular, the average discrepancy decreases with time.

Lemma 2.1. For each fixed 6 > 0, the random process {S;(6) : k =0,1,2,...} defined in (2.2) is a
positive supermartingale whose initial value S, = d.

Proof. Itis easily seen that S, is positive because the exponential of a self-adjoint matrix is positive
definite, and the trace of a positive-definite matrix is positive. We obtain the initial value from a
short calculation:

So=trexp (0Y, — g(0)- W,) =trexp(0) =trI=d.
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To prove that the process is a supermartingale, we follow a short chain of inequalities.

By 1S =By trexp (0Y,; — g(0)- Wi+ 0X,)
< trexp (QYk_l —g(0) W, +1ogk;,_; eeX’f)
<trexp (0Y,_; —g(0) - W, +g(6)-V)
=trexp (0Y,_, — g(0) - W)
== Sk—l'

In the second line, we invoke Corollary 1.5, conditional on .%,_;. This step is legal because Y;_;
and W, are both measurable with respect to .#,_;. The next inequality relies on the assump-
tion (2.1) and the fact that the trace exponential is monotone with respect to the semidefinite
order [Pet94, §2.2]. The last equality is true because {W,} is the sequence of partial sums of
{Vi}- O

Finally, we present a simple inequality for the function G4 that holds when we have control on the
eigenvalues of its arguments.

Lemma 2.2. Suppose that A,,.(Y) >t and that A,,,(W) < w. For each 6 > 0,
Go(Y, W) > ft-&®w,
Proof. Recall that g(6) > 0. The bound results from a straightforward calculation:

Go(Y, W) = trefY—8OW > (1 0¥ —g(0)wl

> Jomay (€77 78O = @050 > (015w,

The first inequality depends on the semidefinite relation W < wl and the monotonicity of the trace
exponential with respect to the semidefinite order [Pet94, §2.2]. The second inequality relies on
the fact that the trace of a psd matrix is at least as large as its maximum eigenvalue. The third
identity follows from the spectral mapping theorem and elementary properties of the maximum
eigenvalue map. O

2.3 A Tail Bound for Adapted Sequences

Our key theorem for adapted sequences provides a bound on the probability that the partial sum
of a matrix-valued random process is large. In the next section, we apply this result to establish
a stronger version of Theorem 1.2. This result also allows us to develop other types of probabil-
ity inequalities for adapted sequences of random matrices; see the technical report [Tro11] for
additional details.

Theorem 2.3 (Master Tail Bound for Adapted Sequences). Consider an adapted sequence {X;} and
a predictable sequence {V,} of self-adjoint matrices with dimension d. Assume these sequences satisfy
the relations

logIE,_, e%% < g(0)-V, almost surely for each 6 > 0, (2.3)
where the function g : (0,00) — [0, 00]. In particular, the hypothesis (2.3) holds when

Ey_, e%% < e$OVe  almost surely for each 6 > 0. 2.4)
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Define the partial sum processes

k
Yy :=Zj=1Xj and W := j=1Vj.

Then, for all t,w € R,

P{3k>0: A (Vi) >t and AW ) <w}<d- 6inge—‘“+g<9)'W.
>

Proof. To begin, we note that the cgf hypothesis (2.3) holds in the presence of (2.4) because the
logarithm is an operator monotone function [Bha97, Ch. V].

The overall proof strategy is the same as the stopping-time technique used by Freedman [Fre75].
Fix a positive parameter 6, which we will optimize later. Following the discussion in §2.2, we
introduce the random process Sy := G4(Y;, W)). Lemma 2.1 states that {S,} is a positive super-
martingale with initial value d. These simple properties of the auxiliary random process distill all
the essential information from the hypotheses of the theorem.

Define a stopping time « by finding the first time instant k when the maximum eigenvalue of
the partial sum process reaches the level t even though the sum of cgf bounds has maximum
eigenvalue no larger than w.

kK:=inf{k >0: AV, )=t and A, (W) <w}.
When the infimum is empty, the stopping time k = co. Consider a system of exceptional events:
Ek = {Amax(Yk) Z t and Amax(Wk) S W} fOr k = 0, ]., 2, ceee

Construct the event E := Uziio E, that one or more of these exceptional situations takes place. The
intuition behind this definition is that the partial sum Y, is typically not large unless the process
{X;} has varied substantially, a situation that the bound on W, does not allow. As a result, the
event E is rather unlikely.

We are prepared to estimate the probability of the exceptional event. First, note that k < co on
the event E. Therefore, Lemma 2.2 provides a conditional lower bound for the process {S;} at the
stopping time x:

S, = Gy(Y,, W,) >e? 8w  on the event E.

The stopped process {S,,} is also a positive supermartingale with initial value d, so

d> li{ninf]E[Sk,\K] > li{ninf]E[SkAkllE] > lE[li’{ninfSk,\K]lE] =E[S 1]

The indicator function decreases the expectation because the stopped process is positive. Fatou’s
lemma justifies the third inequality, and we have identified the limit using the fact that k < co on
the event E. It follows that

d>E[S 1;] > P (E)-inf; S, > P(E)- e 8w,

Rearrange the relation to obtain
P(E)<d-e rs@w,

Minimize the right-hand side with respect to 6 to complete the main part of the argument. O
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3 Proof of Freedman’s Inequality

In this section, we use the general martingale deviation bound, Theorem 2.3, to prove a stronger
version of Theorem 1.2.

Theorem 3.1. Consider an adapted sequence {X;} of self-adjoint matrices with dimension d that
satisfy the relations

E1Xe=0 and A (X)) <R almostsurely fork=1,2,3,....

Define the partial sums

k K
Y, = Zj:le and W, := ijl E;_, (X]z) fork=0,1,2,....

Then, for all t > 0 and o2 > 0,

o? Rt
IP{E”(ZO : Arnax(Yk) >t and “Wk” 50'2} < deXp{—E h(;)}

The function h(u) := (1 +u)log(1+u) —u for u > 0.
Theorem 1.2 follows easily from this result.

Proof of Theorem 1.2 from Theorem 3.1. To derive Theorem 1.2, we note that the difference se-
quence {X,} of a matrix martingale {Y,} satisfies the conditions of Theorem 3.1 and that the
martingale can be expressed in terms of the partial sums of the difference sequence. Finally, we
apply the numerical inequality

2
h(u) >

foru>o0,
14+u/3

which we obtain by comparing derivatives. O

3.1 Demonstration of Theorem 3.1

We conclude with the proof of Theorem 3.1. The argument depends on the following estimate for
the moment generating function of a zero-mean random matrix whose eigenvalues are uniformly
bounded. See [Tro10b, Lem. 6.7] for the proof.

Lemma 3.2 (Freedman mgf). Suppose that X is a random self-adjoint matrix that satisfies
EX=0 and A, X)<1.

Then
Ee’™ gexp((e’ -0 —1)-E(X?) for6>0.

The main result follows quickly from this lemma.

Proof of Theorem 3.1. We assume that R = 1; the general result follows by re-scaling since Y is
1-homogeneous and W is 2-homogeneous. Invoke Lemma 3.2 conditionally to see that

Ey_; e < exp (g(@) ey (X,f)) where g(6):=e? —6 — 1.
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Theorem 2.3 now implies that

P {3k > 0: Apgy(¥V) = t and Ao (W) < 02} <d - nf e 0tre(00”,
>

The infimum is achieved when 6 = log(1 + t/o?). Finally, note that the norm of a positive-
semidefinite matrix, such as W, equals its largest eigenvalue. O
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