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Abstract

We consider the empirical eigenvalue distribution of random real symmetric matrices
with stochastically independent skew-diagonals and study its limit if the matrix size
tends to infinity. We allow correlations between entries on the same skew-diagonal
and we distinguish between two types of such correlations, a rather weak and a
rather strong one. For weak correlations the limiting distribution is Wigner’s semi-
circle distribution; for strong correlations it is the free convolution of the semi-circle
distribution and the limiting distribution for random Hankel matrices.
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1 Introduction

Wigner’s semi-circle law is possibly the most famous principle in random matrix
theory. It states that, for various random matrix ensembles, the empirical eigenvalue
distribution tends to a universal limit if the matrix size tends to infinity. Its proof
started with the pioneering works of Wigner himself [20, 21] and experienced many
generalizations, e.g. by Arnold [2]. For Wigner ensembles it was recently accomplished
under rather mild regularity assumptions in a series of papers by Tao and Vu [18, 19]
and Erdős et al. (see e.g. the survey [8]).

However, one may ask to which extent the independence of the matrix entries, which
is assumed in Wigner ensembles, is necessary for the limiting spectral density to be the
semi-circle. Hence, matrices with a dependence structure of some kind have attracted
attention over the last years and were e.g. studied in [5, 11, 12, 13, 14, 16]. One possible
approach to matrices with correlated real-valued entries is to allow that entries on the
same (skew-)diagonal are correlated, while entries on different (skew-)diagonals are
independent. The most distinct type of such matrices are random Toeplitz matrices
Tn and random Hankel matrices Hn. These matrices appear e.g. as autocovariance
matrices in time series analysis and as information matrices in a polynomial regression
model [3]. Their study was proposed by Bai [3] and later addressed by Bryc, Dembo and
Jiang [7]. It was shown that if the entries have variance one, the empirical eigenvalue
distributions of Tn and Hn converge weakly with probability one to non-random limits,
both differing from the semi-circle distribution. Starting from the results for Toeplitz
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matrices, matrices with independent diagonals have been studied by Friesen and Löwe
[9, 10].

In this paper, we consider real symmetric random matrices with independent skew-
diagonals instead of independent diagonals. We assume that each matrix entry is
centered with the same variance and that the k-th moments are uniformly bounded for
all matrix sizes. Our main results state that the empirical eigenvalue distribution con-
verges weakly, with probability one, to a non-random distribution. Here, we distinguish
two ensembles, one allowing for weak correlations, the other one allowing for strong
correlations.

By weak correlations, we mean that the covariance of two entries on the same skew-
diagonal depends on their distance only and decays sufficiently fast. In this case, we
show that the limiting spectral density is given by the semi-circle. When we consider
a type of rather strong correlations between entries on the same skew-diagonal, we
assume that these correlations depend on the matrix size only and converge as the matrix
size tends to infinity. Here, the limiting spectral distribution is given by a combination of
the semi-circle distribution and the limiting distribution for Hankel matrices.

In our proof, we use the method of moments and we can follow the basic ideas of
[7, 9, 10], while several (technical) difficulties arise for the current ensembles. The main
difference is, of course, the (in)dependence structure of a matrix (an(i, j))1≤i,j≤n:

an(i, j), an(i
′, j′) stoch. independent, if

{
|i− j| 6= |i′ − j′| for ind. diagonals

i+ j 6= i′ + j′ for ind. skew-diag.
. (1.1)

Although these defining relations appear quite similar, the implications are more involved
leading to two major difficulties.

Firstly, some of the calculation in [9, 10] particularly depend on the appearance of the
differences i− j rather than the sums i+ j in (1.1), which necessitates e.g. Lemma 4.4.
In this Lemma it is shown that a certain quantity only vanishes for n→∞ rather than
being zero for all n as in [10]. Secondly, the usual symmetry condition an(i, j) = an(j, i)

affects the matrix ensembles in different ways: For independent diagonals, a n × n
matrix is built from n independent families of random variables (one for each diagonal in
the upper triangular matrix). By the symmetry condition, two respective diagonals are
equal. In the case of independent skew-diagonals, there are 2n− 1 independent families
(one for the upper half of each skew-diagonal) and the symmetry affects entries on the
same skew-diagonal. This necessitates further symmetry considerations (see Lemma 4.3
onward).

For the convenience of the reader, we follow the line of arguments presented in
[9, 10]. We adapt the proofs to the current ensembles and insert new ideas when
necessary. More detailed comments on the differences between the methods in [9, 10]
and the methods in this paper are given in Remark 5.3.

Matrices from the ensembles considered in this paper and in [9, 10] can actually be
generated in several ways. Ensembles with weak correlations along the (skew-)diagonals
can e.g. be built from independent families of stationary Gaussian Markov processes
with mean zero and variance one. One can also fill the independent (skew-)diagonals
with random variables from the Curie-Weiss model with inverse temperature β > 0;
these exhibit the required strong correlations. Details on these examples can be found
in [9, 10].

This paper is organized as follows: In Sec. 2 we introduce our model of matrices
and state our main results (Th. 2.2 and Th. 2.3). In Sec. 3, we introduce the notion
of partitions to model the dependence structure of the matrix entries and derive an
intermediate result for the expected k-th moment of the empirical eigenvalue distribution;
this calculation is completed in Sec. 4. In Sec. 5 we show the required weak convergence
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with probability one. In the case of strong correlations we further show some results for
the limiting distribution.

2 Statement of results

For n ∈ N let an(p, q) with 1 ≤ p ≤ q ≤ n denote real random variables, which are
centered with variance one and the k-th moments are uniformly bounded. Moreover, we
assume that the skew-diagonals are independent. Technically, these assumptions read:

(A1) E(an(p, q)) = 0, E((an(p, q)
2) = 1, 1 ≤ p ≤ q ≤ n

(A2) mk := sup
n∈N

max
1≤p≤q≤n

E
(
|an(p, q)|k

)
<∞

(A3) The families {an(p, q) : p+ q = r} are independent for r = 2, 3, . . . , 2n.

We will consider two types of matrices with different conditions on the covariances of
entries from the same skew-diagonal. These conditions are:

(C1) There exists a function cn : N→ R such that

(i) |Cov(an(p, q), an(r, s))| = cn(|p−r|) = cn(|q−s|) for p ≤ q, r ≤ s with p+q = r+s

(ii)
n−1∑
τ=0

cn(τ) = o(n), n ∈ N

(C2) There exists (cn)n∈N such that for all p, p′, q, q′ ∈ {1, . . . , n} with p+ q = p′ + q′ and
(p, q) /∈ {(p′, q′), (q′, p′)} we have:

Cov(an(p, q), an(p
′, q′)) = cn.

Moreover, the limit c := limn→∞ cn <∞ exists.

Remark 2.1. If (C2) is satisfied, we have 0 ≤ c ≤ 1 (see Remark 2.1 in [9]). Indeed, 0 ≤ c
is a consequence of 0 ≤ V

(∑n
p=1 an(p, p)

)
= n+ n(n− 1)cn and cn ≤ 1 is a consequence

of Hölder’s inequality.

We study the eigenvalues of the symmetric random n × n matrix Xn obtained from
an(p, q)1≤p≤q≤n by rescaling Xn(p, q) = 1√

n
an(p, q), 1 ≤ p ≤ q ≤ n. For the ordered

eigenvalues of Xn, denoted by λ(n)1 ≤ . . . ≤ λ(n)n , we introduce the empirical eigenvalue
distribution

µn(Xn) :=
1

n

n∑
k=1

δ
λ
(n)
k

.

Our main theorems then state the weak convergence of µn under (C1) resp. under (C2).
If (C1) is satisfied, the limiting distribution is Wigner’s semi-circle distribution.

Theorem 2.2. Suppose that (A1)–(A3) and (C1) are satisfied. Then, with probability one,
µn converges weakly to the standard semi-circle distribution µ with density

dµ

dx

1

2π

√
4− x2 χ[−2,2](x). (2.1)

Theorem 2.3. Suppose that (A1)–(A3) and (C2) are satisfied. Then, with probability one,
µn converges weakly to a non-random probability measure νc.

If (C2) is satisfied, we can show further results for vc.

Theorem 2.4. In the situation of Theorem 2.3, the limiting measure vc, 0 ≤ c ≤ 1, is
the free convolution of the measures v0,1−c and v1,c, we write vc = v0,1−c � v1,c. Here,
v0,1−c denotes the rescaled semi-circle with variance 1− c and v1,c the rescaled measure
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for Hankel matrices γH with variance c as derived in [7]. Moreover, vc is a symmetric
measure. If c > 0, vc has an unbounded support, and if 0 ≤ c < 1, its density is smooth.

Remark 2.5. Here, neither the notion of free probability nor of the free convolution is
introduced and the reader is referred to [15] for details on this topic.

3 Preliminaries, notation and combinatorics

Following the suggestions of [7, 9, 10], we will prove Theorems 2.2 and 2.3 by the
method of moments. The k-th moment of the expected empirical distribution µn, i.e.
E
[∫
xkdµn(Xn)

]
, is given by

1

n
E
[
tr(Xk

n)
]
=

1

n
k
2+1

n∑
p1,...,pk=1

E [an(p1, p2)an(p2, p3) . . . an(pk, p1)] . (3.1)

To simplify the notation we set

τn(k) := {(P1, . . . , Pk) : Pj = (pj , qj) ∈ {1, . . . , n}2, qj = pj+1}.

Hence, in (3.1) for Pi = (pi, pi+1) we can write an(Pi) instead of an(pi, pi+1) and we sum
over all (P1, . . . , Pk) ∈ τn(k). Throughout this paper, we identify k + 1 with 1.

In order to display the dependence structure of the matrix entries, we use the notion
of partitions as suggested by [7]. We want to express that an(Pi) and an(Pj) denote
entries on the same skew-diagonal, by i and j being in the same partition block. More
precisely, for a partition π of {1, . . . , k} we call (P1, . . . , Pk) ∈ τn(k) π-consistent if

pi + qi = pj + qj ⇔ i ∼π j. (3.2)

We write i ∼ j instead of i ∼π j if the partition π can be recovered from the context. With

P(k) := {π : π is a partition of {1, . . . , k}},
Sn(π) := {(P1, . . . , Pk) ∈ τn(k) : (P1, . . . , Pk) is π-consistent}, π ∈ P(k),

E

[∫
xkdµn(Xn)

]
=

1

n
k
2+1

∑
π∈P(k)

∑
(P1,...,Pk)∈Sn(π)

E [an(P1)an(P2) . . . an(Pk)] . (3.3)

We will argue that only the pair partitions give a non-vanishing contribution in (3.3).

3.1 Reduction to pair partitions

We observe that in (3.3) terms corresponding to partitions π with more than k
2 blocks,

i.e. #π > k
2 , vanish. Indeed, in this case there is a partition block with a single element i,

i.e. an(Pi) is independent of all the other an(Pj), j 6= i and by (A1) the respective term
equals zero. We claim that for partitions with less than k/2 blocks we have

#Sn(π)

n
k
2+1

= o(1), if #π <
k

2
. (3.4)

This can be seen from the following combinatorial arguments used to determine the
number of (P1, . . . , Pk) in Sn(π):

• Once Pi = (pi, pi+1) is fixed, Pi+1 = (pi+1, pi+2) is determined by the choice of pi+2.

• We start with the choice of P1 = (p1, p2), for which there are at most n2 possibilities.

• We proceed sequentially to determine P2, P3, . . . as follows: To determine Pi, if i
is in the same block of π as some preceding index j ∈ {1, . . . , i − 1}, there is no
choice left, as the indices need to satisfy pj + pj+1 = pi+ pi+1, where pj , pj+1, pi are
already known. Otherwise, there are at most n possible choices. Once P1 is fixed,
there are at most n possibilities for each ‘new’ partition block, i.e. #π − 1 times.
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Hence, we obtain #Sn(π) ≤ n2 · n#π−1 = n#π+1, proving the claim in (3.4). By Hölder’s
inequality and (A2) (uniform boundedness of the moments) we have

|E[an(P1) . . . an(Pk)]| ≤
∏

1≤i≤k

[
E|an(Pi)|k

] 1
k ≤ mk,

and

1

n
E
[
trXk

n

]
=

1

n
k
2+1

∑
π∈P(k)
#π= k

2

∑
(P1,...,Pk)∈Sn(π)

E [an(P1)an(P2) . . . an(Pk)] + o(1). (3.5)

In particular, all odd moments vanish. Moreover, it suffices to consider pair partitions π
in (3.5), i.e. partitions where each block has exactly two elements. Indeed, partitions
with #π = k

2 that are not pair partitions contain a block with a single element and do
hence not contribute to (3.5).

3.2 Partitions and combinatorics

A recurring combinatorial consideration is the following: Suppose we want to deter-
mine the number of possible vectors (P1, . . . , Pk) ∈ Sn(π) for a given pair partition π. We
write Pi = (pi, pi+1), i = 1, . . . , k and state two counting principles:

(CP1) Assume that pi is fixed for some i ∈ {1, . . . , k}. How many choices are there (at
most) for pi+1, . . . , pj+1, if j > i? There are at most n choices for pi+1. Then, we
proceed sequentially for pi+2, pi+3, . . .: for each pl we have at most n choices if
l is not in the same block as any of the i, i + 1, . . . , l − 1. Otherwise there is no
choice and pl is already determined by the requirement of π-consistency. Hence, if
r denotes the number of blocks that are occupied by {i, . . . , j}, we have at most nr

possibilities for Pi, . . . , Pj .

(CP2) Assume pi is fixed, j > i and Pi1 , . . . , Pil with {i1, . . . , il} ∩ {i, . . . , j} = ∅ is fixed.
How many choices are there (at most) for pi+1, . . . , pj+1? Again, we start with the
choice of pi+1: if i+ 1 is not equivalent to any of the i1, . . . , il, there are at most n
possibilities, otherwise pi+1 is already fixed by the π-consistency. For pi+2 there are
at most n possibilities if i+ 2 is not equivalent to any of the indices i+ 1, i1, . . . , il,
otherwise there is no choice. Proceeding sequentially, we have nr−s possibilities to
choose Pi, . . . , Pj if r denotes the number of partition blocks that are occupied by
{i, . . . , j} and s denotes the number of indices in {i, . . . , j} that are equivalent to
any of the i1, . . . , il. In other words, r− s is the number of partition blocks occupied
by {i, . . . , j}, which have an empty intersection with {i1, . . . , il}.

As already indicated pair partitions will be of particular interest for the proof (we denote
the set of pair partitions on {1,. . . , k} by PP(k)). We distinguish between crossing pair
partitions and non-crossing pair partitions. A pair partition is said to be crossing if there
exist indices i < j < l < m with i ∼ l and j ∼ m. We denote the set of crossing pair
partitions by CPP(k) and the set of non-crossing pair partitions by NCPP(k). For a
non-crossing pair partition π ∈ NCPP(k) and (P1, . . . , Pk) ∈ Sn(π) we have:

(NC1) There exist indices i, j ∈ {1, . . . , k} with i ∼ j and j = i+ 1.
(NC2) If i ∼ j and j = i+ 1, we have an(Pi) = an(Pj) and hence E[an(Pi)an(Pj)] = 1. This

is due to the fact that i ∼ i+1 implies that for Pi = (pi, pi+1) and Pi+1 = (pi+1, pi+2)

we have pi = pi+2. By the symmetry of the considered matrix we have an(Pi) =
an(pi+2, pi+1) = an(Pi+1).

(NC3) i ∼ (i+ 1) implies (P1, . . . , Pi−1, Pi+2, . . . , Pk) ∈ τn(k − 2) (this follows from (NC2)).
(NC4) #NCPP(k) = C k

2
, where Ck := 1

k+1

(
2k
k

)
is the k-th Catalan number (see e.g. Lemma

8.9 in [6]).
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4 Calculating the expected moments of the spectral distribution

We return to the expected k-th moment of the spectral distribution given in (3.5).
In the following lemma, we show that summing over all non-crossing pair partitions in
(3.5) equals C k

2
under both (C1) and (C2). The contribution of the crossing partitions is

studied in subsection 4.1 for (C1) and in subsection 4.2 for (C2).

Lemma 4.1 (cf. Lemma 5.2 and 5.3 in [9]). Under (C1) and (C2) we have for k ∈ N even

1

n
E
[
trXk

n

]
= C k

2
+

1

n
k
2+1

∑
π∈CPP(k)

∑
(P1,...,Pk)∈Sn(π)

E [an(P1)an(P2) . . . an(Pk)] + o(1).

Proof. By successively applying (NC1)–(NC3), we have for any π ∈ NCPP(k) and
(P1, . . . , Pk) ∈ Sn(π) that E[an(P1) . . . an(Pk)] = 1. We claim that

lim
n→∞

#Sn(π)

n
k
2+1

= 1, π ∈ NCPP(k). (4.1)

Let (P1, . . . , Pk) be in Sn(π). By (NC1)–(NC3) we have i ∼ i + 1 for some i ∈ {1, . . . , k}
and P ′ := (P1, . . . , Pi−1, Pi+2, . . . , Pk) ∈ τn(k − 2). Moreover, we have P ′ ∈ Sn(π′), where
π′ := π \ {{i, i + 1}} ∈ NCPP(k − 2) and all l ≥ i + 2 are relabeled to l − 2. Thus, all
possible (P1, . . . , Pk) ∈ Sn(π) can be constructed from a choice of P ′ and a choice of pi+1.
For pi+1 there are n − k−2

2 possibilities, as we have to ensure that pi + pi+1 does not
equal any of the (k − 2)/2 values pj + pj+1 for j 6= i, j 6= i+ 1. This implies

#Sn(π)

n
k
2+1

=
#Sn(π

′)

n
k
2

+ o(1).

The claim in (4.1) then follows by induction and the fact that for k = 2 we have #Sn(π) =

{((p, q), (q, p)) : p, q ∈ {1, . . . , n}} = n2. Statement (NC4) completes the proof.

4.1 The expected k-th moment of the spectral distribution under (C1)

In this subsection we assume that (C1) is satisfied and we show that for k even the
expected k-th moment of µn is asymptotically given by C k

2
.

Lemma 4.2 (cf. Lemma 3.3 and 3.4 in [10]). Under (C1), we have for k ∈ N even

lim
n→∞

1

n
E
[
trXk

n

]
= C k

2
.

Proof. By Lemma 4.1 it suffices to show that for each π ∈ CPP(k)

lim
n→∞

1

n
k
2+1

∑
(P1,...,Pk)∈Sn(π)

E [an(P1)an(P2) . . . an(Pk)] = 0.

Let π ∈ CPP(k). We will define partitions π(1), . . . , π(r) by successively deleting blocks of
π such that we arrive at some partition π(r) ∈ CPP(k − 2r), for which adjacent elements
j, j + 1 are in different blocks. Suppose that l ∼π l + 1 for some l ∈ {1, . . . , k}, otherwise
we set r = 0, π(r) = π. Then we obtain π(1) from π by deleting the block {l, l + 1}

π(1) := π \ {{l, l + 1}}

and relabeling all j ≥ l+2 to j− 2. Hence π(1) ∈ CPP(k− 2). Correspondingly, we delete
Pl, Pl+1 from (P1, . . . , Pk) to obtain (see (NC3))

(P1, . . . , Pk)
(1) := (P1, . . . , Pl−1, Pl+2, . . . , Pk) ∈ Sn(π(1)).
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We repeat this procedure to obtain π(2) and (P1, . . . , Pk)
(2), π(3) and (P1, . . . , Pk)

(3), . . .
until we arrive at a partition π(r) ∈ CCP(k − 2r) where none of the blocks contains
adjacent elements. Then (P1, . . . , Pk)

(r) ∈ Sn(π(r)). Since π is a crossing partition, at
least two blocks of π remain after the elimination process and we have r ≤ k

2 − 2. Using
the same arguments as in the proof of Lemma 4.1 leads to the following estimate for
given (Q1, . . . , Qk−2r) ∈ τn(k − 2r):

#{(P1, . . . , Pk) ∈ Sn(π) : (P1, . . . , Pk)
(r) = (Q1, . . . , Qk−2r)} ≤ nr.

By (NC2) we have for (P1, . . . , Pk)
(r) = (Q1, . . . , Qk−2r)

E[an(P1) . . . an(Pk)] = E[an(Q1) . . . an(Qk−2r)]

and hence (with P = (P1, . . . , Pk), Q = (Q1, . . . , Qk−2r))∑
P∈Sn(π)

|E [an(P1) . . . an(Pk)] | ≤ nr
∑

Q∈Sn(π(r))

|E [an(Q1) . . . an(Qk−2r)] |. (4.2)

We choose i ∼π(r) i+ j such that j ≥ 2 is minimal. By Hölder’s inequality we have

|E[an(Qs)an(Qt)]| ≤ (E[an(Qs)
2])1/2(E[an(Qt)

2])1/2 = 1

and hence, as k is even,

|E [an(Q1)an(Q2) . . . an(Qk−2r)] | ≤ |E [an(Qi)an(Qi+j)] | = |Cov(an(Qi), an(Qi+j))| .

Inserting this estimate into (4.2) we obtain (set Q := (Q1, . . . , Qk−2r))∑
Q∈Sn(π(r))

|E [an(Q1)an(Q2) . . . an(Qk−2r)]| ≤
∑

Q∈Sn(π(r))

|E [an(Qi)an(Qi+j)] |.

As before, we denote Ql = (ql, ql+1) for l = 1, . . . , k − 2r, where k − 2r is identified
with 1. If we could use |E [an(Qi)an(Qi+j)] | = cn(|qi − qi+j |), we could calculate the
number of points (Q1, . . . , Qk−2r) ∈ Sn(π

(r)) for given qi, qi+j and finally use (C1) to
obtain

∑n
qi,qi+j=1 cn(|qi − qi+j |) = o(n2). However, this is only valid for qi ≤ qi+1 and

qi+j ≤ qi+j+1 or for qi ≥ qi+1 and qi+j ≥ qi+j+1. Hence, we have to take the ordering
of the qi, qi+1 and qi+j , qi+j+1 into account. We distinguish two types of pairs (Qi, Qi+j):
We call (Qi, Qi+j) positive if sgn(qi − qi+1) = sgn(qi+j − qi+j+1) and negative otherwise.
Then we have

|Cov(Qi, Qi+j)| =

{
cn(|qi − qi+j |), if (Qi, Qi+j) positive

cn(|qi − qi+j+1|), if (Qi, Qi+j) negative
.

We claim the following estimate: For given qi, qi+j there are less than n
k
2−r−1 tuples

(Q1, . . . , Qk−2r) ∈ Sn(π(r)) with (Qi, Qi+j) positive. Similarly, for given qi, qi+j+1 there

are less than n
k
2−r−1 tuples (Q1, . . . , Qk−2r) ∈ Sn(π(r)) with (Qi, Qi+j) negative. We start

with the case (Qi, Qi+j) positive and qi, qi+j fixed. We have n possible choices for qi+1.
By i ∼ i+ j, this determines the value of qi+j+1 (recall qi+j is fixed) and hence Qi, Qi+j
are fixed. Since j is chosen to be minimal, the j − 1 elements in {i+ 1, . . . , i+ j − 1} lie
in j − 1 different partition blocks. Hence, we have n possibilities for each of the j − 2

points qi+2, . . . , qi+j−1. So far, there were n · nj−2 possibilities and we fixed Qi, . . . , Qj+i.
We want to apply counting principle (CP2) to determine the number of possible choices
for the remaining pairs Qi+j+1, . . . , Qk−2r, Q1, . . . , Qi−1. Hence, we have to determine
the number of partition blocks occupied by i+ j + 1, . . . , k − 2r, 1, . . . , i− 1, that have an
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empty intersection with the set {i, . . . , i+j}. From the total of k2−r partition blocks of π(r)

one block is occupied by i and i+ j and the j − 1 blocks occupied by {i+ 1, . . . , i+ j − 1}
each contain one element in {i+ j + 1, . . . , k − 2r, 1, . . . , i− 1} as well. Thus, (CP2)
gives n

k
2−r−1−(j−1) = n

k
2−r−j possibilities to fix Qi+j+1, . . . , Qk−2r, Q1, . . . , Qi−1. Hence,

for fixed qi, qi+j we have a total of n · nj−2n( k
2−r−j) = n

k
2−r−1 possibilities to choose

Q1, . . . , Qk−2r. By (ii) in (C1)

nr
∑

Q∈Sn(π
(r))

Qi,Qi+j positive

|E [an(Qi)an(Qi+j)] | ≤ n
k
2−1

n∑
qi,qi+j=1

cn(|qi − qi+j |) ≤ n
k
2

n−1∑
τ=0

cn(τ) = o(n
k
2+1).

In the case (Qi, Qi+j) negative, we can proceed similarly.

4.2 The expected k-th moment of the spectral distribution under (C2)

Before we proceed to calculate the expected k-th moment of µn under (C2), we state
a combinatorial lemma. Throughout this section we write Pi = (pi, pi+1), i = 1, . . . , k. We
want to pay special attention to pairs Pi, Pj with i ∼ j and

Pi = Pj or Pi = P j := (pj+1, pj). (4.3)

The lemma states that if a block {i, j} of a partition π with (4.3) is crossed by some other
block, the number of points (P1, . . . , Pk) ∈ Sn(π) is of order o(n

k
2+1).

Lemma 4.3 (cf. Lemma 5.4 in [9]). Let k ∈ N, π ∈ PP(k) and i < j with i ∼ j. Set

Sn(π, i, j) := {(P1, . . . , Pk) ∈ Sn(π) : Pi = Pj or Pi = P j}.

If there exist i′, j′ with i′ ∼ j′, i < i′ < j and either j′ < i or j < j′ (i.e. the block {i, j} is
crossed by the block {i′, j′}), we have

#Sn(π, i, j) = o(n
k
2+1).

Proof. To construct (P1, . . . , Pk) ∈ Sn(π, i, j), first choose pi and pi+1, each allowing
for n possibilities. Then Pi is fixed and we choose one of the two possibilities Pi =

Pj or Pi = P j , fixing Pj . Let r denote the number of partition blocks occupied by
{i + 1, . . . , i′ − 1} ∪ {j, . . . , i′ + 1}. By similar arguments as in (CP1) we have less than
nr choices to fix Pi+1, . . . , Pi′−1, Pj , . . . , Pi′+1. Hence, Pi′ is determined by consistency
without any further choice. So far, we fixed Pl for l in r + 2 different partition blocks. By
(CP2) there are at most n

k
2−r−2 choices to fix all remaining points Pl. In total, there are

n
k
2 possibilities to construct (P1, . . . , Pk) ∈ Sn(π, i, j).

We continue by considering the r.h.s. of Lemma 4.1 and observe that for π ∈ CPP(k)
and (P1, . . . , Pk) ∈ Sn(π) the term E [an(P1)an(P2) . . . an(Pk)] is a product of factors

E [an(Pi)an(Pj)] =

{
1, if Pi = Pj or Pi = P j

cn, else
, i ∼ j. (4.4)

Hence, we introduce the following notation for π ∈ CPP(k) and (P1, . . . , Pk) ∈ Sn(π):

m(P1, . . . , Pk) := #{1 ≤ i < j ≤ k : Pi = Pj or Pi = P j} ≤
k

2
,

A(l)
n (π) := {(P1, . . . , Pk) ∈ Sn(π) : m(P1, . . . , Pk) = l}, l ∈ {1, . . . , k

2
}.
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Then we can write for π ∈ CPP(k)

1

n
k
2+1

∑
(P1,...,Pk)∈Sn(π)

E [an(P1)an(P2) . . . an(Pk)] =
1

n
k
2+1

k/2∑
l=0

c
k
2−l
n #A(l)

n (π).

Moreover, we set

B(l)
n (π) := {(P1, . . . , Pk) ∈ Sn(π) : m(P1, . . . , Pk) = l;

Pi = Pj or Pi = P j , i < j ⇒ j = i+ 1 or π|{i+1,...,j−1} is a pair partition}.

By the crossing property of Lemma 4.3 we have

1

n
k
2+1

#
(
A(l)
n (π) \B(l)

n (π)
)
→ 0, n→∞. (4.5)

In order to show that n−(
k
2+1)#B

(l)
n (π) vanishes for almost all values of l, we introduce

the notion of height of a pair partition π ∈ PP(k):

h(π) := #{1 ≤ i < j ≤ k, i ∼ j : j = i+ 1 or π|{i+1,...,j−1} is a pair partition}.

As both Pi = P j and Pi = Pj imply i ∼ j, we have B(l)
n (π) = ∅ for l > h(π). By (4.5) we

have

1

n
k
2+1

k
2∑
l=0

c
k
2−l
n #A(l)

n (π) =
1

n
k
2+1

h(π)∑
l=0

c
k
2−l
n #B(l)

n (π) + o(1). (4.6)

We show that only B(h(π))
n (π) gives a non-vanishing contribution in (4.6).

Lemma 4.4. For k ∈ N, π ∈ PP(k) and l < h(π) we have: lim
n→∞

1

n
k
2+1

#B(l)
n (π) = 0.

Proof. Let π ∈ PP(k) and l < h(π). We estimate the number of (P1, . . . , Pk) ∈ B(l)
n (π).

For l < h(π), there are indices i, j that give a contribution to h(π) but the corresponding
pairs Pi, Pj do not contribute to m(P1, . . . , Pk), i.e. there exist 1 ≤ i < j ≤ k s. t. i ∼ j and

(i) j = i+ 1 or π|{i+1,...,j−1} is a pair partition, (ii) Pi 6= Pj and Pi 6= P j .

In particular, j = i+1 cannot be satisfied, as this implies Pi = P j . Hence, we can assume
j > i+1, π|{i+1,...,j−1} is a pair partition (with (j− i− 1)/2 blocks) and, as a consequence

of (ii), pi+1 6= pj . We observe that #(π|{1,...,k}\{i+1,...,j−1}) =
k
2 −

j−i−1
2 . Then there are n

possibilities to choose pi+1 and by (CP1) we have n
k
2−

j−i−1
2 possibilities to successively

choose pi, pi−1, . . . , p1, pk, . . . , pj . Applying (CP2) to choose pi+2, . . . , pj−1 would amount

to n
j−i−1

2 possibilities, but we claim that there are actually only Cn
j−i−1

2 −1 possibilities.
Recalling that pi+1, pj are already known and distinct, we observe that we have

0 6= pi+1 − pj =
j−i−1∑
s=1

(−1)s(pi+s + pi+s+1). (4.7)

As π|{i+1,...,j−1} is a pair partition, neglecting their sign, each term pi+s+ pi+s+1 appears
exactly twice in the alternating sum in (4.7) and as the sum does not vanish, there are
1 ≤ α, β ≤ j − i− 1 with i+ α ∼ i+ β and (−1)α = (−1)β . Then we have

pi+1 − pj = 2(−1)α(pi+α + pi+α+1) +
∑

s=1,...,j−i−1
s 6=α,β

(−1)s(pi+s + pi+s+1). (4.8)
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For each of the j−i−1
2 − 1 blocks {r, s} ⊂ {i+ 1, . . . , j − 1} \ {i+ α, i+ β} we assign one

of 2n possible values to pr + pr+1 (and hence to ps + ps+1), amounting to (2n)
j−i−1

2 −1

possibilities. Then the sum in (4.8) is fixed and as we already know pi+1, pj , we can
calculate (pi+α + pi+α+1) and hence pi+β + pi+β+1. Knowing pi+1, pj and pl + pl+1,
l = i+1, . . . , j−1, the values of pi+2, . . . , pj−1 are uniquely determined. Hence, there was

a total of n
k
2−

j−i−1
2 +1(2n)

j−i−1
2 −1 = Ci,jn

k
2 possibilities to choose (P1, . . . , Pk) ∈ B(l)

n (π),
where Ci,j denotes some constant, depending on i and j only. Thus, we have

0 ≤ lim
n→∞

1

n
k
2+1

#B(l)
n (π) ≤ lim

n→∞
Ci,j

n
k
2

n
k
2+1

= 0.

So far, we showed that

1

n
k
2+1

∑
π∈CPP(k)

∑
P∈Sn(π)

E [an(P1) . . . an(Pk)] =
1

n
k
2+1

∑
π∈CPP(k)

c
k
2−h(π)
n #B(h(π))

n (π) + o(1).

Observe that we have by Lemma 4.4 and Lemma 4.3

lim
n→∞

1

n
k
2+1

#B(h(π))
n (π) = lim

n→∞

1

n
k
2+1

#

B(h(π))
n (π) ∪

 ⋃
l<h(π)

B(l)
n (π)


= lim
n→∞

1

n
k
2+1

#{(P1, . . . , Pk) ∈ Sn(π) :

Pi = Pj or Pi = P j , i < j ⇒ j = i+ 1 or π|{i+1,...,j−1} is a pair partition}.

= lim
n→∞

1

n
k
2+1

#Sn(π) = pH(π)

In the last line, pH(π) denotes the Hankel volume and the respective convergence is
shown in Lemma 4.8 in [7]. Finally, using cn → c (under (C2)), we have

lim
n→∞

1

n
E
[
trXk

n

]
= C k

2
+

∑
π∈CPP(k)

c
k
2−h(π)pH(π) =

∑
π∈PP(k)

c
k
2−h(π)pH(π) =:Mk,c. (4.9)

The second equality is due to the fact that all statements in subsection 4.2 remain valid
for all pair partitions that are not necessarily crossing.

5 The proofs of Theorem 2.2, Theorem 2.3 and Theorem 2.4

Before we complete the proof of Th. 2.2 and Th. 2.3, we consider the limiting measures.
Under (C1) the limiting measure is µ (see (2.1)), which is uniquely determined by its
moments: the odd moments vanish and the 2k-th moment is given by Ck (see e.g. [1,
Section 2.1.1]). Under (C2), we show that the limiting measure vc is given by∫

xkdvc =

{
0 k odd

Mk,c k even
. (5.1)

By checking the Carleman condition, we see that these moments uniquely determine vc.
From (4.9) and (5.1) we can already deduce that v0 is the semi-circle distribution and

v1 equals the measure γH from [7]. Moreover, vc is symmetric for all c ∈ [0, 1] as all odd
moments vanish and for 0 < c ≤ 1 the support of vc is unbounded. Indeed, as a bounded
support of vc would lead to M2k ≤ C2k, it suffices to verify lim supk→∞(M2k)

1
k = ∞.

This relation is a consequence of c
k
2

∫
xkdγH(d) ≤ Mk and (see Proposition A.2 in [7])

lim supk→∞(
∫
x2kdγH(d))1/k = ∞. We can now prove Th. 2.2 and Th. 2.3, by showing

that µn converges weakly, with probability one, to µ under (C1) resp. to vc under (C2).
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Proof of Th. 2.2 and Th. 2.3. We will use the concentration inequality obtained in Propo-
sition 4.9 in [7], which can easily be extended to the case of matrices with independent
skew-diagonals analogue to Lemma 3.5 in [10]. We have under both (C1) and (C2)

E
[(
tr(Xk

n)− E(tr(Xk
n))
)4] ≤ Cn2, ∀k ∈ N. (5.2)

As µ and vc are uniquely determined by their moments, it suffices to show that 1
n tr(Xk

n)

converges almost surely to E[Y k], where Y denotes a random variable distributed
according to vc (for (C2)) resp. according to µ (for (C1)). By Chebyshev’s inequality and
(5.2) we have for ε > 0, k, n ∈ N

P
(∣∣n−1 tr (Xk

n

)
− E

(
n−1 tr

(
Xk
n

))∣∣ > ε
)
≤ C

ε4n2
.

By the Borel-Cantelli Lemma we obtain 1
n tr(Xk

n) − E
(
1
n tr(Xk

n)
)
→ 0, n → ∞ almost

surely. Together with E
(
1
n tr(Xk

n)
)
→ E[Y k] for n→∞, this completes the proof.

It remains to prove following Lemma about the limiting measure vc.

Lemma 5.1 (cf. Lemma 6.2 in [9]). With the notation of Theorem 2.4 we have vc =

v0,1−c � v1,c for 0 ≤ c ≤ 1. Moreover, vc has a smooth density if 0 ≤ c < 1.

Proof. Recall that v0,1−c denotes the rescaled semi-circle with variance 1− c and v1,c the
rescaled Hankel distribution γH with variance c as derived in [7]. It suffices to show
that the free cumulants of the free convolution of v0,1−c and v1,c coincide with the free
cumulants of vc. We apply the same arguments as in Lemma 6.2 in [9] (replacing pT
by pH), that rely on [7, Lemma A.4] (see also p. 152 in [6]). Similarly, we conclude
(1− c)kκ2k(µ) + ckκ2k(γH) = κ2k(vc), proving vc = v0,1−c � v1,c, 0 ≤ c ≤ 1. Using general
results about the free convolution with the semi-circle distribution provided in [4], we
obtain that vc has a smooth density for 0 ≤ c < 1.

Remark 5.2. The boundedness of the density of vc is not derived here, because the
boundedness of γH is not yet available in the literature. Note that for matrices with
independent diagonals the boundedness of the corresponding density could be derived
in [9], using [4] and the boundedness of γT [17].

As already noted, our line of arguments follows [9, 10] and in the following concluding
remark we comment on the differences between the proofs.

Remark 5.3. The main difference between the current ensembles and those in [9, 10]
is that instead of (3.2) the dependence structure in [9, 10] is given by |pi − qi| = |pj − qj |,
iff i ∼ j. Hence, the validity of all arguments from [9, 10] has to be verified for (3.2).

In the proof of Th. 2.2 (corresponding to the proofs in [10]), we do not/cannot
introduce the sets S∗n(π) ⊂ Sn(π) and all needed relations have to be derived from (3.2)
directly. The lack of S∗n requires the distinction of positive/negative pairs in Lemma 4.2.

The proof of Th. 2.3 (corresponding to [9]) requires more modifications. Again, we
do not introduce the sets S∗n(π), but in this case the implications are more severe. The
most prominent one is that the analogue of [10, Lemma 5.5] is not valid and it has to be
replaced by Lemma 4.4 (i.e. #B(l)

n (π) is not necessarily zero for all n but vanishes in the
limit n→∞), which required new ideas. Moreover, in Sec. 4.2 we have to additionally
consider the pairs P j in the definition of Sn(π, i, j) in Lemma 4.3, in (4.4) and in all

derived terms such as m(P1, . . . , Pk) and B
(l)
n (π). In both cases, the extension to the

almost sure convergence and the proof of Theorem 2.4 follow [9, 10].
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