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Motivated by the important problem of detecting association between
genetic markers and binary traits in genome-wide association studies, we
present a novel Bayesian model that establishes a hierarchy between mark-
ers and genes by defining weights according to gene lengths and distances
from genes to markers. The proposed hierarchical model uses these weights
to define unique prior probabilities of association for markers based on their
proximities to genes that are believed to be relevant to the trait of interest. We
use an expectation-maximization algorithm in a filtering step to first reduce
the dimensionality of the data and then sample from the posterior distribution
of the model parameters to estimate posterior probabilities of association for
the markers. We offer practical and meaningful guidelines for the selection of
the model tuning parameters and propose a pipeline that exploits a singular
value decomposition on the raw data to make our model run efficiently on
large data sets. We demonstrate the performance of the model in simulation
studies and conclude by discussing the results of a case study using a real-
world data set provided by the Wellcome Trust Case Control Consortium.

1. Introduction. A genome-wide association study (GWAS) aims to deter-
mine the subset of genetic markers that is most relevant to a particular trait of inter-
est. From a statistical perspective, this task is usually framed as a regression prob-
lem where the response variables are measurements of either qualitative traits, for
example, a binary value indicating the presence or absence of a disease, or quanti-
tative traits, for example, a person’s blood pressure, and the explanatory variables
are the number of reference alleles present at each marker, or single nucleotide
polymorphism (SNP), as well as other covariates of interest such as age or smok-
ing status. Many linear models [Balding (2006), Stephens and Balding (2009)]
have been developed to detect associations between SNPs and traits, but they gen-
erally suffer from the “large p, small n” problem where the ratio of the number
of predictors, p, to the sample size, n, is on the order of hundreds to thousands
[West (2003)]. Moreover, other issues such as collinearity in the covariates due to
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linkage disequilibrium [LD, Pritchard and Przeworski (2001)], rare variants, and
population stratification result in inefficient estimation of model parameters and a
loss in statistical power to detect significant associations [Wang et al. (2005)].

A common strategy to overcome the large-p-small-n problem in GWAS is to
forgo analyzing the SNPs jointly and to model instead them independently. Al-
though successful GWAS have employed this strategy [Burton et al. (2007)], mul-
tiple hypothesis testing leads to an increase in the Type I error, and the necessary
correction for this may lead to an overly conservative threshold for statistical sig-
nificance. Strategies such as grouping SNPs based on proximities to genes [Wu
et al. (2010)] or moving windows [Wu et al. (2011)] have been proposed to al-
low for an increase in power by modeling SNPs jointly, but there is no universal
agreement on how to define such windows or groupings. Similarly, other strategies
include replacing a group of highly correlated SNPs with only one of its members
[Ioannidis, Thomas and Daly (2009)], and removing or collapsing rare variants
within a window into a score statistic [Bansal et al. (2010)], but again there is no
agreement on how to choose which SNPs to retain or group. Recent approaches
aim at gaining more power by pooling information across studies through meta-
analysis [Evangelou and Ioannidis (2013)].

Although significant progress has been made on GWAS since 2000, it is still
a relevant and challenging problem with goals such as modeling interactions be-
tween SNPs, genes, and environment effects that await beyond the obstacles al-
ready mentioned [Heard et al. (2010)]. In order to move toward a unifying frame-
work for GWAS that allows for the large-p-small-n problem and the SNP-specific
issues to be addressed simultaneously in a principled manner, we propose a novel
hierarchical Bayesian model that exploits spatial relationships on the genome to
define SNP-specific prior distributions on regression parameters. More specifi-
cally, in our proposed setting we model markers jointly, but we explore a variable
selection approach that uses marker proximity to relevant genomic regions, such
as genes, to help identify associated SNPs. Our contributions are the following:

1. We focus on binary traits which are arguably more common to GWAS, for
example, case control studies, but more difficult to model due to lack of conjugacy.
To circumvent the need for a Metropolis–Hastings step when sampling from the
posterior distribution on model parameters, we use a recently proposed data aug-
mentation strategy for logistic regression based on latent Pólya–Gamma random
variables [Polson, Scott and Windle (2013)].

2. We perform variable selection by adopting a spike-and-slab prior [George
and McCulloch (1993), Ishwaran and Rao (2005)] and propose a principled way
to control the separation between the spike and slab components using a Bayesian
false discovery rate similar to Whittemore (2007).

3. We use a novel weighting scheme to establish a relationship between SNPs
and genomic regions and allow for SNP-specific prior distributions on the model
parameters such that the prior probability of association for each SNP is a function
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of its location on the chromosome relative to neighboring regions. Moreover, we
allow for the “relevance” of a genomic region to contribute to the effect it has on its
neighboring SNPs and consider “relevance” values calculated based on previous
GWAS results in the literature; for example, see MalaCards (2014).

4. Before sampling from the posterior space using Gibbs sampling, we use an
expectation-maximization [EM, Dempster, Laird and Rubin (1977)] algorithm in
a filtering step to reduce the number of candidate markers in a manner akin to
distilled sensing [Haupt, Castro and Nowak (2011)]. By investigating the update
equations for the EM algorithm, we suggest meaningful values to tune the hy-
perprior parameters of our model and illustrate the induced relationship between
SNPs and genomic regions.

5. We derive a more flexible centroid estimator [Carvalho and Lawrence
(2008)] for SNP associations that is parameterized by a sensitivity-specificity
trade-off. We discuss the relation between this parameter and the prior specifi-
cation when obtaining estimates of model parameters.

We start by describing previous work and stating our contributions in Section 2.
In Section 3 we define our Spatial Boost model and the novel relationship between
SNPs and genes. In Section 4 we describe how to fit the model using a combina-
tion of a filtering step that exploits an EM filtering step and Gibbs sampling. We
provide guidelines for the selection of model tuning parameters in Section 5. We
then illustrate the performance of the model on simulated data using real SNPs
in Section 6 and apply the model to a real-world GWAS data set provided by
the Wellcome Trust Case Control Consortium (WTCCC) in Section 7. Finally, we
conclude with a discussion on future extensions to this work in Section 8.

2. Previous and related work. A common solution to large-p-small-n prob-
lems is to use penalized regression models such as ridge regression [Hoerl and
Kennard (1970)], LASSO [Tibshirani (1996)], or elastic net [Zou and Hastie
(2005)]. These solutions can be shown to be equivalent, from a Bayesian perspec-
tive, to maximum a posteriori (MAP) estimators under appropriate prior specifi-
cations. For instance, for LASSO, the L1 penalty can be translated into a Laplace
prior. However, since LASSO produces biased estimates of the model parameters
and tends to select only one parameter in a group of correlated parameters [Zou
and Hastie (2005)], it is not suitable for GWAS.

Techniques like group LASSO, fused LASSO [Tibshirani et al. (2005)], or
sparse group LASSO [Friedman, Hastie and Tibshirani (2010)] further attempt to
account for the structure of genes and markers or linkage disequilibrium by assign-
ing SNPs to groups based on criteria such as gene membership and then placing
additional penalties on the L1 norm of the vector of coefficients for each group, or
on the L1 norm of the difference in coefficients of consecutive SNPs. However, it
is difficult to define gene membership universally since genes have varying lengths
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and may overlap with each other; moreover, the penalty on the L1 norm of the dif-
ference in consecutive SNPs neglects any information contained in the genomic
distance between them.

It may be possible to develop additional, effective penalty terms within models,
such as L1 and L2, to address the issues present in GWAS data in a penalized re-
gression framework, but because genotypes are more correlated for markers that
are close in genomic space due to linkage disequilibrium, the most effective penal-
ties would need to capture the relevance of a particular SNP as a function of its
location on the genome. Moreover, since it is typically easier to study the biologi-
cal function of genes, we are particularly interested in SNPs that lie close to genes
[Jorgenson and Witte (2006)]; as a result, the most desirable penalties would likely
be SNP-specific. We accomplish this by exploiting biological knowledge about the
structure of the genome to set SNP-specific prior distributions on the model param-
eters in a hierarchical Bayesian model.

Researchers have considered hierarchical Bayesian models for variable selec-
tion in GWAS and other large scale problems [e.g. Guan and Stephens (2011),
Zhou, Carbonetto and Stephens (2013)]. Some recent models exploit Bayesian
methods in particular to allow for data-driven SNP-specific prior distributions
[Habier et al. (2011)] which depend on a random variable that describes the pro-
portion of SNPs to be selected. These approaches have adopted a continuous
spike-and-slab prior distribution [George and McCulloch (1993), Ishwaran and
Rao (2005)] on the model parameters, set an inverse-gamma prior distribution on
the variance of the spike component of the prior, and control the difference in the
variance of the spike and slab components of the prior using a tuning parameter.

To incorporate external information in a hierarchical Bayesian model, re-
searchers analyzing a different kind of data, gene expression levels, have recently
considered relating a linear combination of a set of predictor-level covariates that
quantify the relationships between the genes to their prior probabilities of associa-
tion through a probit link function [Peng et al. (2013)]. This formulation leads to a
second-stage probit regression on the probability that any gene is associated with a
trait of interest using a set of predictor-level covariates that could be, for instance,
indicator variables of molecular pathway membership. In our model, we propose a
special case of this formulation tailored for GWAS data where: (i) we use the logit
link instead of the probit link, (ii) the predictor-level covariates are spatial weights
that quantify a SNP’s position on the genome relative to neighboring genes, and
(iii) the coefficients of each of the predictor-level covariates are numerical scores
that quantify the relevance of a particular gene to the trait of interest.

Fitting a penalized model to a large data set (e.g., p ≥ 100,000) is computa-
tionally intense, and thus so is the process of selecting an optimal value for any
tuning parameters. Sidestepping this problem, some researchers have had success
in applying a suite of penalty terms (e.g., LASSO, Adaptive LASSO, NEG, MCP,
LOG) to a prescreened subset of markers [Hoffman, Logsdon and Mezey (2013)]
and investigating the concordance of significant markers across each of the final



GENE-PROXIMITY MODELS FOR GWAS 1221

models. Although a prescreening of markers from a marginal regression would ide-
ally retain almost all of the relevant variables, penalized models such as LASSO
could likely be improved by using a larger number of SNPs than those which pass
an initial screening step (e.g., a genome-wide significance threshold) [Kooperberg,
LeBlanc and Obenchain (2010)].

3. Spatial boost model. We perform Bayesian variable selection by analyz-
ing binary traits and using the structure of the genome to dynamically define the
prior probabilities of association for the SNPs. Our data are the binary responses
y ∈ {0,1}n for n individuals and genotypes xi ∈ {0,1,2}p for p markers per indi-
vidual, where xij codes the number of minor alleles in the ith individual for the
j th marker. For the likelihood of the data, we consider the logistic regression:

(1) yi |xi , β
ind∼ Bern

(
logit−1(

β0 + x�
i β

))
for i = 1, . . . , n.

We note that GWA studies are usually retrospective, that is, cases and controls
are selected irrespectively of their history or genotypes; however, as McCullagh
and Nelder (1983) point out, coefficient estimates for β are not affected by the
sampling design under a logistic regression. Thus, from now on, to alleviate the
notation, we extend xi to incorporate the intercept, xi = (xi0 = 1, xi1, . . . , xip),
and also set β = (β0, β1, . . . , βp).

We use latent variables θ ∈ {0,1}p and a continuous spike-and-slab prior dis-
tribution for the model parameters with the positive constant κ > 1 denoting the
separation between the variance of the spike and the slab components:

(2) βj |θj , σ
2 ind∼ N

(
0, σ 2[

θjκ + (1 − θj )
])

for j = 1, . . . , p.

For the intercept, we set β0 ∼ N(0, σ 2κ) or, equivalently, we define θ0 = 1 and
include j = 0 in (2). In the original spike-and-slab prior distribution, the slab com-
ponent is a normal distribution centered at zero with a large variance or even a
diffuse uniform distribution, and the spike component is a degenerate distribu-
tion at zero [Mitchell and Beauchamp (1988)]. This setup results in exact vari-
able selection through the use of the θj ’s, since θj = 0 would imply that the j th
SNP’s coefficient is exactly equal to zero. Here we use the continuous version of
the spike-and-slab distribution [George and McCulloch (1993), Ishwaran and Rao
(2005)] that became more popular by avoiding the spike discontinuities at zero,
and thus allowing for a relaxed form of variable selection that lends itself easily to
an EM algorithm (see Section 4.1).

For the variance σ 2 of the spike component in (2) we adopt an inverse Gamma
prior distribution, σ 2 ∼ IG(ν, λ). We expect σ 2 to be reasonably small with high
probability in order to enforce the desired regularization that distinguishes selected
markers from nonassociated markers. Thus, we recommend choosing ν and λ so
that the prior expected value of σ 2 is small.
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FIG. 1. Gene weight example: for the j th SNP at position sj = 1000 and two surrounding genes
a and b spanning (980,995) and (1020,1030), we obtain, if setting φ = 10, weights of wj,a = 0.29
and wj,b = 0.02, respectively.

In the prior distribution for θj , we incorporate information from relevant ge-
nomic regions. The most common instance of such regions are genes, and so we
focus on these regions in what follows. Thus, given a list of G genes with gene
relevances (see Section 3.2 for some choices of definitions), r = [r1, r2, . . . , rG],
and weights, wj (φ) = [wj,1,wj,2, . . . ,wj,G], the prior on θj is

(3) θj
ind∼ Bern

(
logit−1(

ξ0 + ξ1wj (φ)�r
))

for j = 1, . . . , p.

The weights wj are defined using the structure of the SNPs and genes and aim to
account for gene lengths and their proximity to markers as a function of a spatial
parameter φ, as we see in more detail next.

3.1. Gene weights. To control how much a gene can contribute to the prior
probability of association for a SNP based on the gene’s length and distance to
that SNP, we introduce a range parameter φ > 0. Consider a gene g that spans
genomic positions gl to gr , and the j th marker at genomic position sj ; the gene
weight wj,g is then

wj,g =
∫ gr

gl

1√
2πφ2

exp
{
−(x − sj )

2

2φ2

}
dx.

Generating gene weights for a particular SNP is equivalent to centering a Gaussian
curve at that SNP’s position on the genome with standard deviation equal to φ and
computing the area under that curve between the start and end points of each gene.
Figure 1 shows an example. As φ → 0, the weight that each gene contributes to
a particular SNP becomes an indicator function for whether or not it covers that
SNP; as φ → ∞, the weights decay to zero. Intermediate values of φ allow then
for a variety of weights in [0,1] that encode spatial information about gene lengths
and gene proximities to SNPs. In Section 5.1 we discuss a method to select φ.

According to (3), it might be possible for multiple, possibly overlapping, genes
that are proximal to SNP j to boost θj . To avoid this effect, we take two precau-
tions. First, we break genes into nonoverlapping genomic blocks and define the
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relevance of a block as the mean gene relevance of all genes that cover the block.
Second, we normalize the gene weight contributions to θj in (3), wj (φ)�r, such
that maxj wj (φ)�r = 1. This way, it is possible to compare estimates of ξ1 across
different gene weight and relevance schemes.

3.2. Gene relevances. We allow for the further strengthening or diminishing
of particular gene weights using gene relevances r. If we set r = 1G and allow for
all genes to be uniformly relevant, then we have a “noninformative” case. Alterna-
tively, if we have some reason to believe that certain genes are more relevant to a
particular trait than others, for instance, on the basis of previous research or prior
knowledge from an expert, then we can encode these beliefs through r. In par-
ticular, we recommend using either text-mining techniques [e.g., Al-Mubaid and
Singh (2010)] to quantify the relevance of a gene to a particular disease based on
citation counts in the literature or relevance scores compiled from search hits and
citation linking the trait of interest to genes [e.g., MalaCards (2014)].

4. Model fitting and inference. The ultimate goal of our model is to per-
form inference on the posterior probability of association for SNPs. However,
these probabilities are not available in a closed form, and so we must resort to
Markov chain Monte Carlo techniques such as Gibbs sampling to draw samples
from the posterior distributions of the model parameters and use them to estimate
P(θj = 1|y). Unfortunately, these techniques can be slow to iterate and converge,
especially when the number of model parameters is large [Cowles and Carlin
(1996)]. Thus, to make our model more computationally feasible, we propose first
filtering out markers to reduce the size of the original data set in a strategy similar
to distilled sensing [Haupt, Castro and Nowak (2011)], and then applying a Gibbs
sampler to only the remaining SNPs.

To this end, we design an EM algorithm based on the hierarchical model above
that uses all SNP data simultaneously to quickly find an approximate mode of the
posterior distribution on β and σ 2 while regarding θ as missing data. Then, for the
filtering step, we iterate between (1) removing a fraction of the markers that have
the lowest conditional probabilities of association and (2) refitting using the EM
procedure until the predictions of the filtered model degrade. In our analyses we
filtered 25% of the markers at each iteration to arrive at estimates β∗ and stopped
if maxi |yi − logit−1(x�

i β∗)| > 0.5. Next, we discuss the EM algorithm and the
Gibbs sampler, and offer guidelines for selecting the other parameters of the model
in Section 5.

4.1. EM algorithm. We treat θ as a latent parameter and build an EM al-
gorithm accordingly. If �(y, θ, β, σ 2) = logP(y, θ, β, σ 2), then for the M-steps

on β and σ 2 we maximize the expected log joint Q(β,σ 2;β(t), (σ 2)
(t)

) =
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E
θ |y,X;β(t),(σ 2)

(t)[�(y, θ, β, σ 2)]. The log joint distribution �, up to a normalizing
constant, is

�
(
y, θ, β, σ 2) =

n∑
i=1

yix�
i β − log

(
1 + exp

{
x�
i β

})

− p + 1

2
logσ 2 − 1

2σ 2

p∑
j=0

β2
j

(
θj

κ
+ 1 − θj

)
(4)

− (ν + 1) logσ 2 − λ

σ 2 ,

and so, at the t th iteration of the procedure, for the E-step we just need 〈θj 〉(t) .=
E

θ |y;β(t),(σ 2)
(t)[θj ]. But since

〈θj 〉 = P
(
θj = 1|y, β, σ 2) = P(θj = 1, βj |σ 2)

P(θj = 0, βj |σ 2) + P(θj = 1, βj |σ 2)
,

then

(5) logit〈θj 〉 = log
P(θj = 1, βj |σ 2)

P(θj = 0, βj |σ 2)
= −1

2
logκ − β2

j

2σ 2

(
1

κ
− 1

)
+ ξ0 + ξ1w�

j r

for j = 1, . . . , p and 〈θ0〉 .= 1.
To update β and σ 2, we employ conditional maximization steps [Meng and Ru-

bin (1993)], similar to cyclic gradient descent. From (4) we see that the update for
σ 2 follows immediately from the mode of an inverse gamma distribution condi-
tional on β(t):

(6)
(
σ 2)(t+1) =

1
2

∑p
j=0 (β

(t)
j )

2
(
〈θj 〉(t)

κ
+ 1 − 〈θj 〉(t)) + λ

p+1
2 + ν + 1

.

The terms in (4) that depend on β come from the log likelihood of y and from
the expected prior on β , β ∼ N(0,�(t)), where

�(t) = Diag
(

σ 2

〈θj 〉(t)/κ + 1 − 〈θj 〉(t)
)
.

Since updating β is equivalent here to fitting a ridge-regularized logistic regres-
sion, we exploit the usual iteratively reweighted least squares (IRLS) algorithm
[MacCullagh and Nelder (1989)]. Setting μ(t) as the vector of expected responses
with μ

(t)
i = logit−1(x�

i β(t)) and W(t) = Diag(μ
(t)
i (1 − μ

(t)
i )) as the variance

weights, the update for β is then

(7) β(t+1) = (
X�W(t)X + (

�(t))−1)−1(
X�W(t)Xβ(t) + X�(

y − μ(t))),
where we substitute (σ 2)

(t)
for σ 2 in the definition of �(t).
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Rank truncation of design matrix. Computing and storing the inverse of the

(p + 1)-by-(p + 1) matrix X�W(t)X + (�(t))
−1

in (7) is expensive since p is
large. To alleviate this problem, we replace X with a rank truncated version based
on its singular value decomposition X = UDV �. More specifically, we take the
top l singular values and their respective left and right singular vectors, and so, if
D = Diag(di) and ui and vi are the ith left and right singular vectors, respectively,
then

X = UDV � =
n∑

i=1

diuiv�
i ≈

l∑
i=1

diuiv�
i = U(l)D(l)V

�
(l),

where D(l) is the lth order diagonal matrix with the top l singular values and
U(l) (n-by-l) and V(l) ((p + 1)-by-l) contain the respective left and right singular
vectors. We select l by controlling the mean squared error: l should be large enough
such that ‖X − U(l)D(l)V

�
(l)‖F /(n(p + 1)) < 0.01.

Since X�W(t)X ≈ V(l)D(l)U
�
(l)W

(t)U(l)D(l)V
�
(l), we profit from the rank trun-

cation by defining the (upper) Cholesky factor Cw of D(l)U
�
(l)W

(t)U(l)D(l) and

S = CwV �
(l) so that

(
X�W(t)X + (

�(t))−1)−1 ≈ (
S�S + (

�(t))−1)−1

(8)
= �(t) − �(t)S�(

Il + S�(t)S�)−1
S�(t)

by the Kailath variant of the Woodbury identity [Petersen and Pedersen (2012)].
Now we just need to store and compute the inverse of the lth order square matrix
Il + S�(t)S� to obtain the updated β(t+1) in (7).

4.2. Gibbs sampler. After obtaining results from the EM filtering procedure,
we proceed to analyze the filtered data set by sampling from the joint posterior
P(θ, β, σ 2|y) using Gibbs sampling. We iterate sampling from the conditional dis-
tributions [

σ 2|θ,β,y
]
,

[
θ |β,σ 2,y

]
and

[
β|θ, σ 2,y

]
until assessed convergence.

We start by taking advantage of the conjugate prior for σ 2 and draw each new
sample from

σ 2|θ,β,y ∼ IG

(
ν + p + 1

2
, λ + 1

2

p∑
j=0

β2
j

(
θj

κ
+ 1 − θj

))
.

Sampling θ is also straightforward: since the θj are independent given βj ,

θj |β,σ 2,y
ind∼ Bern

(〈θj 〉) for j = 1, . . . , p,
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with 〈θj 〉 as in (5). Sampling β , however, is more challenging since there is no
closed-form distribution based on a logistic regression, but we use a data augmen-
tation scheme proposed by Polson, Scott and Windle (2013). This method has been
noted to perform well when the model has a complex prior structure and the data
have a group structure, and so we believe it is appropriate for the Spatial Boost
model.

Thus, to sample β conditional on θ , σ 2, and y, we first sample latent variables
ω from a Pólya–Gamma distribution,

ωi |β ∼ PG
(
1,x�

i β
)
, i = 1, . . . , n,

and then, setting � = Diag(ωi), � = Diag(σ 2(θjκ +1−θj )), and Vβ = X��X+
�−1, sample

β|ω,θ,σ 2,y ∼ N
(
V −1

β X�(y − 0.5 · 1n),V
−1
β

)
.

We note that the same rank truncation used in the EM algorithm from the previous
section works here, and we gain more computational efficiency by using an identity
similar to (8) when computing and storing V −1

β .

4.3. Centroid estimation. To conduct inference on θ , we follow statistical de-
cision theory [Berger (1985)] and define an estimator based on a generalized Ham-
ming loss function H(θ, θ̃) = ∑p

j=1 h(θj , θ̃j ),

θ̂C = arg min
θ̃∈{0,1}p

Eθ |y
[
H(θ, θ̃)

]
(9)

= arg min
θ̃∈{0,1}p

Eθ |y
[ p∑

j=1

h(θj , θ̃j )

]
.

We assume that h has symmetric error penalties, h(0,1) = h(1,0), and that
h(1,0) > max{h(0,0), h(1,1)}, that is, the loss for a false positive or negative
is higher than for a true positive and true negative. In this case, we can define
a gain function g by subtracting each entry in h from h(1,0) and dividing by
h(1,0) − h(0,0):

g(θj , θ̃j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, θj = θ̃j = 0,

0, θj 
= θ̃j ,

γ
.= h(1,0) − h(1,1)

h(1,0) − h(0,0)
, θj = θ̃j = 1.

Gain γ > 0 represents a sensitivity-specificity trade-off; if h(0,0) = h(1,1), that
is, if true positives and negatives have the same relevance, then γ = 1.
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Let us define the marginal posteriors πj
.= P(θj = 1|y). The above estimator is

then equivalent to

θ̂C = arg max
θ̃∈{0,1}p

Eθ |y
[ p∑

j=1

g(θj , θ̃j )

]

= arg max
θ̃∈{0,1}p

p∑
j=1

(1 − θ̃j )(1 − πj ) + γ θ̃j θj

= arg max
θ̃∈{0,1}p

p∑
j=1

(
πj − 1

1 + γ

)
θ̃j ,

which can be obtained position-wise,

(10) (θ̂C)j = I

(
πj − 1

1 + γ
≥ 0

)
.

The estimator in (9) is known as the centroid estimator; in contrast to maximum
a posteriori (MAP) estimators that simply identify the highest peak in a posterior
distribution, centroid estimators can be shown to be closer to the mean than to a
mode of the posterior space, and so offer a better summary of the posterior distribu-
tion [Carvalho and Lawrence (2008)]. Related formulations of centroid estimation
for binary spaces in (10) have been proposed in many bioinformatics applications
in the context of maximum expected accuracy [Hamada and Asai (2012)]. More-
over, if γ = 1, then θ̂C is simply a consensus estimator and coincides with the
median probability model estimator of Barbieri and Berger (2004).

Finally, we note that the centroid estimator can be readily obtained from MCMC
samples θ(1), . . . , θ (N) since we just need to estimate the marginal posterior prob-
abilities π̂j = ∑N

s=1 θ
(s)
j /N and apply them to (10).

5. Guidelines for selecting prior parameters. Since genome-wide associa-
tion is a large-p-small-n problem, we rely on adequate priors to guide the inference
and overcome ill-posedness. In this section we provide guidelines for selecting hy-
perpriors κ in the slab variance of β , and φ, ξ0, and ξ1 in the prior for θ .

5.1. Selecting φ. Biologically, some locations within a chromosome may be
more prone to recombination events and consequently to relatively higher linkage
disequilibrium. LD can be characterized as correlation in the genotypes, and since
we analyze the entire genome, high correlation in markers within a chromosome
often results in poor coefficient estimates for the logistic regression model in (1).
To account for potentially varying spatial relationships across the genome, we ex-
ploit the typical correlation pattern in GWAS data sets to suggest a value for φ that
properly encodes the spatial relationship between markers and genes in a particu-
lar region as a function of genomic distance. To this end, we propose the following
procedure to select φ:
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FIG. 2. Example of selection of φ: when using the proposed values of |ρi,j | to fit the sample corre-
lation magnitudes, we obtain an optimal choice of φ = 13,530 for a random window.

1. Divide each chromosome into regions such that the distance between the
SNPs in adjacent regions is at least the average length of a human gene, or 30,000
base pairs [Technology Department Carnegie Library of Pittsburgh (2002)]. The
resulting regions will be, on average, at least a gene’s distance apart from each
other and may possibly exhibit different patterns of correlation.

2. Merge together any adjacent regions that cover the same gene. Although the
value of φ depends on each region, we want the meaning of the weights assigned
from a particular gene to SNPs in the Spatial Boost model to be consistent across
regions. As a practical example, by applying the first two steps of the preprocessing
procedure on chromosome 1, we obtain 1299 windows of varying sizes ranging
from 1 to 300 markers.

3. Iterate over each region and select a value of φ that best fits the magnitude
of the genotype correlation between any given pair of SNPs as a function of the
distance between them. We propose using the normal curve given in the definition
of the gene weights to first fit the magnitudes, and then using the mean squared
error between the magnitudes in the sample correlation matrix of a region and the
magnitudes in the fitted correlation matrix as a metric to decide the optimal value
of φ. In particular, given two SNPs located at positions si and sj , we relate the
magnitude of the correlation between SNPs i and j to the area

|ρi,j |(φ) = 2�

(
−|si − sj |

φ

)
,

where � is the standard normal cumulative function.
Figure 2 shows an example of application to chromosome 1 based on data from

the case study discussed in Section 6. We note that the mean squared error criterion
places more importance on fitting relatively larger magnitudes close to the diagonal
of the image matrix, and so there is little harm in choosing a moderate value for φ

that best fits the magnitudes of dense groups of correlated SNPs in close proximity.
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5.2. Selecting ξ0 and ξ1. According to the centroid estimator in (10), the j th
SNP is identified as associated if πj ≥ (1 + γ )−1. Following a similar criterion,
but with respect to the conditional posteriors, we have P(θj = 1|y, β, σ 2) = 〈θj 〉 ≥
(1 + γ )−1, and so, using (5),

logit〈θj 〉 = −1

2
logκ + ξ0 + ξ1w�

j r + β2
j

2σ 2

(
1 − 1

κ

)
≥ − logγ.

After some rearrangements, we see that, in terms of βj , this criterion is equivalent
to β2

j ≥ σ 2s2
j with

(11) s2
j

.= 2κ

κ − 1

(
1

2
logκ − ξ0 − ξ1w�

j r − logγ

)
,

that is, we select the j th marker if βj is more than sj “spike” standard deviations
σ away from zero.

This interpretation based on the EM formulation leads to a meaningful criterion
for defining ξ0 and ξ1: we just require that minj=1,...,p s2

j ≥ s2, that is, that the

smallest number of standard deviations is at least s > 0. Since maxj=1,...,p w�
j r =

1,

min
j=1,...,p

s2
j = 2κ

κ − 1

(
1

2
logκ − ξ0 − ξ1 − logγ

)
≥ s2,

and so

(12) ξ1 ≤ 1

2
logκ − ξ0 − logγ − s2

2

(
1 − 1

κ

)
.

For a more stringent criterion, we can take the minimum over κ in the right-hand
side of (12) by setting κ = s2. When setting ξ1 it is also important to keep in mind
that ξ1 is the largest allowable gene boost or, better, increase in the log-odds of a
marker being associated to the trait.

Since ξ0 is related to the prior probability of a SNP being associated, we can take
ξ0 to be simply the logit of the fraction of markers that we expect to be associated
a priori. However, for consistency, since we want ξ1 ≥ 0, we also require that the
right-hand side of (12) be non-negative, and so

(13) ξ0 + logγ ≤ 1

2
logκ − s2

2

(
1 − 1

κ

)
.

Equation (13) constrains ξ0 and γ jointly, but we note that the two parameters have
different uses: ξ0 captures our prior belief on the probability of association and
is thus part of the model specification, while γ defines the sensitivity-specificity
trade-off that is used to identify associated markers, and is thus related to model
inference.

As an example, if γ = 1 and we set s = 4, then the bound in (12) with κ = s2

is log(s2)/2 − s2(1 − 1/s2)/2 = −6.11. If we expect 1 in 10,000 markers to be
associated, then we have ξ0 = logit(10−4) = −9.21 < −6.11 and the bound (13)
is respected. The upper bound for ξ1 in (12) is thus 3.10.
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FIG. 3. When analyzing a data set generated for a simulation study as described in Section 6, we
inspect the behavior of the BFDR as a function of γ for various values of κ and see that a choice of
κ = 1000 would be appropriate to achieve a BFDR no greater than 0.05 when using a threshold of
(1 + γ )−1 = 0.1.

5.3. Selecting κ . We propose using a metric similar to the Bayesian false dis-
covery rate [BFDR, Whittemore (2007)] to select κ . The BFDR of an estimator is
computed by taking the expected value of the false discovery proportion under the
marginal posterior distribution of θ :

BFDR(θ̂) = Eθ |y
[∑p

j=1 θ̂j (1 − θj )∑p
j=1 θ̂j

]
=

∑p
j=1 θ̂j (1 − πj )∑p

j=1 θ̂j

.

Since, as in the previous section, we cannot obtain estimates of P(θj = 1|y) just
by running our EM algorithm, we consider instead an alternative metric that uses
the conditional posterior probabilities of association given the fitted parameters,
〈θj 〉 = P(θj = 1|y, β̂EM, σ̂ 2

EM). We call this new metric EMBFDR:

EMBFDR(θ̂) =
∑p

j=1 θ̂j (1 − 〈θj 〉)∑p
j=1 θ̂j

.

Moreover, by the definition of the centroid estimator in (10), we can parameterize
the centroid EMBFDR using γ :

EMBFDR
(
θ̂C(γ )

) = EMBFDR(γ ) =
∑p

j=1 I [〈θj 〉 ≥ (1 + γ )−1](1 − 〈θj 〉)∑p
j=1 I [〈θj 〉 ≥ (1 + γ )−1] .

We can now analyze a particular data set using a range of values for κ , and
subsequently make plots of the EMBFDR metric as a function of the threshold
(1 + γ )−1 or as a function of the proportion of SNPs retained after the EM filter
step. Thus, by setting an upper bound for a desired value of the EMBFDR, we can
investigate these plots and determine an appropriate choice of κ and an appropriate
range of values of γ . In Figure 3 we illustrate an application of this criterion.
We note that the EMBFDR has broader application to Bayesian variable selection
models and can be a useful metric to guide the selection of tuning parameters, in
particular, the spike-and-slab variance separation parameter κ .
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FIG. 4. We illustrate the effect of varying φ, ξ0, and ξ1 on the thresholds on the posterior effect
sizes, βj , in a simple window containing a single gene in isolation and a group of three overlapping
genes. On the left, we vary φ and control the smoothness of the thresholds. In the middle, we vary ξ0
and control the magnitude of the thresholds or, in other words the number of standard deviations (σ )
away from zero at which they are placed. On the right, we vary ξ1 and control the sharpness of the
difference in the thresholds between differently weighted regions of the window. For this illustration,
we set σ 2 = 0.01, κ = 100, and γ = 1. We mark the distance σ away from the origin with black
dashed lines.

5.4. Visualizing the relationship between SNPs and genes. For a given config-
uration of κ , γ , and σ 2, we can plot the bounds ±σsj on βj and inspect the effect
of parameters φ, ξ0, and ξ1. SNPs that are close to relevant genes have thresholds
that are relatively lower in magnitude; they need a relatively smaller (in magni-
tude) coefficient to be selected for the final model. With everything else held fixed,
as φ → ∞ the boost received from the relevant genes will decrease to zero and
our model will coincide with a basic version of Bayesian variable selection where

θj
i.i.d.∼ Bern(logit−1(ξ0)). We demonstrate this visualization on a mock chromo-

some in Figure 4.

6. Empirical studies. We conduct two simulation studies. First, we compare
the performance of our method to other well-known methods including single
SNP tests, LASSO, fused LASSO, group LASSO, the penalized unified multiple-
locus association (PUMA) suite of Hoffman, Logsdon and Mezey (2013), and the
Bayesian sparse linear mixed model (BSLMM) of Zhou, Carbonetto and Stephens
(2013). Then we assess the robustness of our method to misspecifications of the
range parameter, φ, and gene relevances. We describe each study in detail below,
but we first explain how the data is simulated in each scenario.

6.1. Simulation study details. To provide a fair comparison across methods
and to realistically assess the robustness of our method to misspecifications, we
designed our simulation study based on real-life genotypical data and current gene
and marker annotations. Specifically, to keep a representative LD structure, we
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sample whole-chromosome individual genotypes by subsampling individual data
provided by the 1000 Genomes Project Consortium et al. (2012); gene weights
are computed based on gene lengths and positions in the hg19 reference, while
marker positions are taken from actual SNP array designs in the WTCCC studies.
We consider two studies: a “noninformative” setup where the gene relevances are
uniformly set to one and φ = 108 so that marker relevance scores wj (φ)�r are
small and close to uniform, and a mild boost effect of ξ1 = 1; and an “informa-
tive” study with gene relevances taken as search hit scores from MalaCards (2014)
and φ = 104, a frequent value when adopting the procedure in Section 5.1, and a
stronger boost effect, ξ1 = 5. These two studies are extreme with respect to marker
relevance scores—a function of gene relevances and genomic range—and spatial
boost effects, and aim at assessing how robust our model and recommended guide-
lines are. For instance, when fitting all scenarios we take an informative approach
by considering the same gene relevances and genomic range from the “informa-
tive” scenario, but adopt a conservative approach by setting ξ1 = 1 as in the “non-
informative” scenario.

For both studies we simulated two scenarios for the number of markers p:
the “small” scenario comprised chromosome 19 with p = 4199 markers, and the
“large” scenario contained all p = 28,932 markers in chromosome 2. Chromo-
somes 19 and 2 are the smallest and largest in terms of number of markers, respec-
tively. We kept the ratio of p to the number of individuals n at 50, representative of
real-life studies, so n = 85 in the small scenario and n = 580 in the large scenario.
In all simulations we fix the number of causal markers m = 10 and set the baseline
log-odds ξ0 = �logit(m/p)�. For each simulation batch, we first sample uniformly
at random n individuals from the 1000 Genomes data set, taking their whole chro-
mosome genotypes according to the small or large scenario, and filter out markers
with sampled MAF < 0.05, deemed as rare variants, or > 0.50. Next, we sample m

causal markers following (3), with marker relevance scores and ξ1 taken according
to a noninformative or informative scenario. Effect sizes βj are then sampled to re-
flect the challenging nature of GWAS: βj |θj ∼ θjN(0,0.25)+ (1−θj )N(0,0.01),
that is, small effect sizes for causal markers and relatively large coefficients for
noisier noncausal effects. Finally, for each replicate within a batch we sample phe-
notypes according to (1).

In each simulation scenario and data set below we fit the model as follows:
we adopt informative gene relevances from MalaCards and φ = 10,000, start with
conservative values for the baseline log-odds ξ0 = logit(100/p) and the gene boost
effect ξ1 = 1, and run the EM filtering process until either the predictive perfor-
mance starts degrading or at most 10 markers remain. We measure predictive per-
formance using a metric similar to posterior predictive loss [PPL; Gelfand and
Ghosh (1998)]: if, at the t th EM iteration, ŷ

(t)
i = E[yi,rep|β̂(t)

EM,y] is the ith pre-
dicted response, the PPL measure under squared error loss is approximated by

PPL(t) =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

Var
[
yi,rep|β̂(t)

EM,y
] =

n∑
i=1

(yi − ŷi)
2 + ŷi (1 − ŷi).
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FIG. 5. Left: examples of ROC curves for our method (solid line for EM results, crosses for Gibbs
sampling results) and single SNP tests (dashed line); vertical gray line marks a false positive rate
of 10%. Right: relation between AUC and relative PPL (rPPL) as the EM filter progresses, boxplots
over replicates within a simulation batch; in this case the EM filter would stop at iteration 58, right
before rPPL starts increasing.

The right panel in Figure 5 shows an example of how the relative PPL (rPPL) typ-
ically varies as the EM filter advances. We define the rPPL at the t th EM iteration
as the ratio between PPL(t) and the PPL of the null model, that is, the model with
only the intercept and no marker genotypes as predictors. At the end of the filtering
stage we run the Gibbs sampler with ξ0 = logit(m/p̃), where p̃ is the number of
markers retained at the end of the EM filter. Parameter κ is actually elicited at each
EM filtering iteration using EMBFDR.

6.2. Comparison simulation study. In this study, we generated 10 batches of
simulated data, each containing 5 replicates, for a total of 50 simulated data sets
for each cross-configuration of small and large scenarios by noninformative and
informative studies. After simulating the data, we fit our model and compared its
performance in terms of area under the receiver operating characteristic (ROC)
curve (AUC) to the usual single SNP tests, LASSO, fused LASSO, group LASSO,
PUMA, and BSLMM methods. We used the penalized package in R to fit the
LASSO and fused LASSO models; we used tenfold cross-validation to determine
the optimal values for the penalty terms. Similarly, we used the gglasso package
in R to fit the group LASSO model where we defined the groups such that any two
adjacent SNPs belonged to the same group if they were within 10,000 base pairs
of each other; we used tenfold cross-validation to determine the optimal value for
the penalty term. Finally, we used the authors’ respective software packages to fit
the PUMA and BSLMM models.

To calculate the AUC for any one of these methods, we took a final ranking of
SNPs based on an appropriate criterion (see more about this below), determined
the points on the ROC curve using our knowledge of the true positives and the false
positives from the simulated data, and then calculated the area under this curve. For
our model, we used either the ranking (in descending order) of E[θj |β̂EM, σ̂ 2

EM, y]
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for a particular EM filtering step or P̂(θj = 1|y) using the samples obtained by
the Gibbs sampler; for the single SNP tests, we used the ranking (in ascending
order) of the p-values for each marker’s test; for LASSO, fused LASSO, and group
LASSO, we used the ranking (in descending order) of the magnitude of the effect
sizes of the SNPs in the final model; for the other penalized regression models
given by the PUMA program, we used the provided software to compute p-values
for each SNP’s significance in the final model and used the ranking (in ascending
order) of these p-values; for BSLMM, we used the ranking (in descending order)
of the final estimated posterior probabilities of inclusion for each SNP in the final
model.

The left panel in Figure 5 shows examples of ROC curves from a random simu-
lation replicate. Since the interest in GWA studies is focused on low false positive
rates, we also evaluate the performance of the methods with respect to relative
AUC (rAUC) at some false positive rate f , defined simply as the normalized AUC
up to FPR f , that is, rAUC(f ) = AUC(f )/f . According to this criterion, the solid
ROC curve in Figure 5 has a clearer advantage over the dashed curve at a 10%
FPR. The right panel illustrates how the AUC changes with rPPL and as the EM
filtering iterations increase.

We summarize the results in Figure 6. With respect to AUC (top four panels),
our methods perform better on average than the other methods in the informative
scenario, but only comparably in the noninformative scenario. Note that all mod-
els have a modest performance due to the challenging nature of the simulation (but
our model has improved performance under less stringent scenarios; see supple-
mentary material [Johnston et al. (2016)] for more details). Most of the gain in our
methods comes at the beginning of the ROC curves, that is, at low false positive
rates, as exemplified in Figure 5. This becomes more evident if we compare rel-
ative AUC in the bottom four panels. We note that the gains are present even in
the “null” models with ξ1 = 0, so they stem from the joint modeling of markers.
Additional gains in rAUC are more apparent in the informative scenario (bottom
row).

The seemingly bad performance of our model in the noninformative scenario
indicates that the model can be sensitive to poor marker relevance scores, arising
either from meaningless gene relevances or a nonrepresentative genomic range φ.
This is not surprising given that the inference relies on good prior information in
the large-p-small-n regimen; however, as the informative scenario suggests, the
model is more robust to misspecification of ξ1, which can be seen as the overall
prior strength of relevance scores. The null model, for instance, often offers the
best performances in both AUC and relative AUC, which recommends conserva-
tive, low values for ξ1 in initial analyses. Moreover, the EM filtering procedure
contributes to further gains in performance even in noninformative scenarios, that
is, with misspecified relevance scores. These gains are even more pronounced with
larger causal effect sizes relative to noncausal effects, as we show in supplemen-
tary material [Johnston et al. (2016)]; that is, we observe that the EM filter becomes
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FIG. 6. Results from the comparison simulation study. Top four panels show AUC, while bottom
four panels show relative AUC. Within each block of four panels: left panels show results under
noninformative scenario (top) and informative scenario (bottom) for small study, while right panels
show respective AUC or rAUC results for the large study. The boxplots in each panel are, left to right,
as follows: single SNP (SS) tests; spatial boost “null” (no boost) model at the first (EM0) and last
(EM∞) iteration of the EM filter and after Gibbs sampling phase; spatial boost “informative” model
at first and last EM filtering iterations and after Gibbs sampling phase; LASSO (L); fused LASSO
(Lf ); grouped LASSO (Lg); PUMA with penalties NEG, LOG, MCP, and adaptive LASSO (La ); and
BSLMM (B).



1236 JOHNSTON, HANCOCK, MAMITSUKA AND CARVALHO

more robust to these misspecifications, especially on large scenarios and under low
false positive rates, as shown here.

6.3. Relevance robustness simulation study. To investigate how robust our
model is to misspecifications of gene relevances and genomic range, we focus on
their joint effect in defining marker relevance scores and again consider the small
(chromosome 19) and large (chromosome 2) scenarios under the informative study,
where the gene relevances are more varied. We randomly select one batch from the
comparison study to be the reference in each scenario, with its replicates serving
as ground truth. We then vary three sampling percentages π ∈ {25%,50%,75%},
and, for each π , we randomly select �πp� markers uniformly from each refer-
ence replicate and sample their relevance scores from the empirical distribution of
relevance scores in each scenario. This simulation is replicated 50 times.

Hyperprior parameters ξ0, ξ1, and κ were elicited as in Section 6.1. For each
simulated replication we then fit our model and assess performance using the AUC,
as in the previous study. Figure 7 illustrates the distribution of relevance scores for
the markers in chromosomes 19 and 2 and how the performance of the model varies
at each sample percentage. The AUC at initial EM iterations degrades with higher
percentages for both scenarios, as expected; however, small scenario replicates
continue to show a similar pattern at their last EM iterations, as opposed to large
scenario replicates that show better and stable results across all percentages. We
attribute this discrepancy in robustness to the distribution of relevance scores. As
the left panel in Figure 7 shows, the large scenario has a bimodal distribution and
low mean score, and so a few markers are relevant; in contrast, the small scenario
score distribution has more spread and higher mean, and so many markers can be
relevant and influence negatively the fit by calling more false positives. We thus
recommend to analyze the resulting distribution of marker relevance scores when
eliciting gene relevances and φ.

7. Case study. Using data provided by the WTCCC, we analyzed the entire
genome (342,502 SNPs total) from a case group of 1999 individuals with rheuma-
toid arthritis (RA) and a control group of 1504 individuals from the 1958 Na-
tional Blood Bank data set. For now we addressed the issues of LD, rare variants,
and population stratification by analyzing only the SNPs in the Hardy–Weinberg
equilibrium [Wigginton, Cutler and Abecasis (2005)] with minor allele frequency
greater than 5%. There are 15 SNPs that achieve genome-wide significance when
using a Bonferroni multiple testing procedure on the results from a single SNP
analysis. Table 1 in supplementary material [Johnston et al. (2016)] provides a
summary of these results for comparison to those obtained when using the spatial
boost model.

When fitting the spatial boost model, we broke each chromosome into blocks
and selected an optimal value of φ for each block using our proposed method
metric, |ρi,j |(φ). We used the EMBFDR to select a choice for κ from the set
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FIG. 7. Results from the simulation study to assess robustness to marker relevance scores. Left
panel shows the distribution of marker relevance score from small and large scenarios, chromosomes
19 and 2, respectively. Right panels show AUC results for first (EM0) and last (EM∞) filtering iter-
ations across simulation percentages for small (top) and large (bottom) scenarios. Null percentages
correspond to reference replicates.

{102,103,104,105,106} at each step of our model-fitting pipeline so that the
BFDR was no greater than 0.05 while retaining no larger than 5% of the total
number of SNPs. With a generous minimum standard deviation s = 1, we have
that trivially ξ0 < 0 from (13), but we set ξ0 = −8 to encode a prior belief that
around 100 markers would be associated to the trait on average a priori. The bound
on ξ1 is then ξ1 ≤ 8, but we consider log odds-ratio boost effects of ξ1 ∈ {1,4,8}.
A value of ξ1 = 1 is more representative of low-power GWA studies; however, the
larger boost effects offer more weight to our prior information. For comparison,
we also fit a model without any gene boost by setting ξ1 = 0 (the “null” model),
and also fit two models for each possible value of ξ1 trying both a noninforma-
tive gene relevance vector and a vector based on text-mining scores obtained from
MalaCards (2014).

To accelerate the EM algorithm, we rank-truncate X using l = 3259 singular
vectors; the mean squared error between X and this approximation is less than 1%.
We apply the EM filtering 29 times and use PPL to decide when to start the Gibbs
sampler. As Figure 8 shows, in all of our fitted models, the PPL decreases slowly
and uniformly for the first twenty or so iterations, and then suddenly decreases
more sharply for the next five iterations until it reaches a minimum and then begins
increasing uniformly until the final iteration, similarly to the behavior depicted in



1238 JOHNSTON, HANCOCK, MAMITSUKA AND CARVALHO

FIG. 8. Although we run the EM filter until the number of retained markers <100 (iteration #29),
the PPL metric often tells us to keep between 200 to 250 markers (iterations #25–26).

Figure 5. For comparison to the 15 SNPs that achieve genome-wide significance
in the single marker tests, Tables 2–15 in supplementary material [Johnston et al.
(2016)] list, for each spatial boost model, the top 15 SNPs at the optimal EM
filtering step, that is, the step with the smallest PPL, and the top 15 SNPs based on
the posterior samples from our Gibbs sampler when using only the corresponding
set of retained markers.

We observe the most overlap with the results of the single SNP tests in our
null model where ξ1 = 0 and in our models that use informative priors based on
relevance scores from MalaCards. Although there is concordance between these
models in terms of the top 15 SNPs, it is noteworthy that we select only a fraction
of these markers after running either the EM algorithm or the Gibbs sampler. Based
on the results from our simulation study where we observe superior performances
for the spatial boost model at low false positive rates, we believe that an advantage
of our method is this ability to highlight a smaller set of candidate markers for
future investigation.

Indeed, after running our complete analysis, we observe that the usual threshold
of 0.5 on P̂(θj = 1|y) would result in only the null spatial boost model (ξ1 = 0),
the low gene boost noninformative model (ξ1 = 1), and the informative models
selecting SNPs for inclusion in their respective final models. The SNPs that occur
the most frequently in these final models are the first four top hits from the single
SNP tests: rs4718582, rs10262109, rs6679677, and rs664893. The SNP with the
highest minor allele frequency in this set is rs6679677; this marker has appeared
in several top rankings in the GWAS literature [e.g., Burton et al. (2007)] and is in
high LD with another SNP in gene PTPN22 which has been linked to RA [Michou
et al. (2007)].

If we consider only the final models obtained after running the EM filter, we
see another interesting SNP picked up across the null and informative models:
rs1028850. In Figure 9, we show a closer look at the region around this marker
and compare the trace of the Manhattan plot with the traces of each spatial boost
model’s E[θj |β̂EM, σ̂ 2

EM, y] values at the first iteration of the EM filter. To the best
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FIG. 9. Although rs1028850 has a relative peak in the Manhattan plot (SS), it does not achieve
genome-wide significance. The spatial boost (SB) model initially prioritizes markers that are closer
to the center of regions rich in genes, but selects rs1028850 for inclusion in the final model by the
end of the EM filter (not shown) under several configurations.

of our knowledge, this marker has not yet been identified as being associated to
RA; moreover, it is located inside a nonprotein coding RNA gene, LINC00598,
and is close to another gene that has been linked to RA, FOXO1 [Grabiec et al.
(2014)].

As we increase the strength of the gene boost term with a noninformative rel-
evance vector, the relatively strong prior likely leads to a mis-prioritization of all
SNPs that happen to be located in regions rich in genes. In the supplementary
sables (2–15) of supplementary material [Johnston et al. (2016)] we list the lengths
of the genes that contain each SNP and we see that indeed the noninformative gene
boost models tend to retain SNPs that are near large genes that can offer a generous
boost. Perhaps due to prioritizing the SNPs incorrectly in these models, we do not
actually select any markers at either the optimal EM filtering step or after running
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the Gibbs sampler. However, some of the highest ranking SNPs for these models,
rs1982126 and rs6969220, are located in gene PTPRN2, which is interestingly a
paralog of PTPN22.

8. Conclusions. We have presented a novel hierarchical Bayesian model for
GWAS that exploits the structure of the genome to define SNP-specific prior dis-
tributions for the model parameters based on proximities to relevant genes. While
it is possible that other “functional” regions are also very relevant—for exam-
ple, regulatory and highly conserved regions—and that mutations in SNPs influ-
ence regions of the genome much farther away—either upstream, downstream, or,
through a complex interaction of molecular pathways, even on different chromo-
somes entirely—we believe that incorporating information about the genes in the
immediate surroundings of a SNP is a reasonable place to start.

By incorporating prior information on relevant genomic regions, we focus on
well-annotated parts of the genome and were able to identify, in real data, markers
that were previously identified in large studies and highlight at least one novel SNP
that has not been found by other models. Clearly, validation via other studies of the
importance of this marker for RA should be investigated. In addition, as shown in
a simulation study, while logistic regression under the large-p-small-n regimen is
challenging, the spatial boost model often outperforms simpler models that either
analyze SNPs independently or employ a uniform penalty term on the L1 norm of
their coefficients.

Our main point is that we regard a fully joint analysis of all markers as essential
to overcome genotype correlations and rare variants. This approach, however, en-
tails many difficulties. From a statistical point of view, the problem is severely ill-
posed, so we rely on informative, meaningful priors to guide the inference. From
a computational perspective, we also have the daunting task of fitting a large-scale
logistic regression, but we make it feasible by reducing the dimension of both
data—intrinsically through rank truncation—and parameters—through EM filter-
ing. Moreover, from a practical point of view, we provide guidelines for selecting
hyperpriors, reducing dimensionality, and implement the proposed approach using
parallelized routines.

From the simulation studies in Section 6 we can further draw two conclusions.
First, as reported by other methods such as PUMA, filtering is important; our EM
filtering procedure seems to focus on effectively selecting true positives at low
false positive rates. This feature of our method is encouraging, since practition-
ers are often interested in achieving higher sensitivity by focusing on lower false
positive rates. Second, because we depend on good informative priors to guide the
selection of associated markers, we rely on a judicious choice of hyperprior pa-
rameters, in particular, of the range parameter φ and how it boosts markers within
neighboring genes that are deemed relevant. It is also important to elicit gene rele-
vances from well-curated databases, for example, MalaCards, and to calibrate prior
strength according to how significant these scores are.
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We have shown that our model performs better than most variable selection
methods, but that it can suffer in the case of severe model misspecification. As a
way to flag misspecification, we suggest to check monotonicity in a measure of
model fit such as PPL as we filter markers using EM. In addition, refining the EM
filtering by using a lower threshold (<0.25) at each iteration can help increase
performance, especially at lower false positive rates.

When applying the spatial boost model to a real data set, we were able to con-
fidently isolate at least one marker that has previously been linked to the trait as
well as find another novel interesting marker that may be related to the trait. This
shows that, although we can better explore associations jointly while accounting
for gene effects, the spatial boost model still might lack power to detect associa-
tions between diseases and SNPs due to the high correlation induced by linkage
disequilibrium. In the future we plan to increase the power even further by extend-
ing the model to include a data preprocessing step that attempts to formally correct
for the collinearity between SNPs.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their valuable suggestions and constructive comments that helped shape a
much improved final version of the paper. We would also like to thank the Editors
for their generous comments and support during the review process. This study
makes use of data generated by the Wellcome Trust Case Control Consortium.
A full list of the investigators who contributed to the generation of the data is
available from wtccc.org.uk.

SUPPLEMENTARY MATERIAL

Extended results tables and figures (DOI: 10.1214/16-AOAS907SUPP; .pdf).
We provide figures and tables to summarize the results of additional simulation
studies with less stringent effect sizes as well as the findings in our case study.
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