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We would like to sincerely thank all discussants for their kind remarks and
insightful comments. To start with, we wholeheartedly welcome the proposal of
Rob Hyndman for a “better acf” plot based on our vector estimator γ̂∗(n) from
Section 3.2. As mentioned, the sample autocovariance is not a good estimate for
the vector γ(n), and this is especially apparent in the wild excursions it takes
at higher lags—see the left panel of Figure 1 of Hyndman’s piece. Note that
these wild (and potentially confusing) excursions are the norm rather than the
exception; they are partly explainable by two facts: (a) the identity

∑n
k=−n γ̆k =

0 implies that γ̆k must misbehave for higher lags to counteract its good behavior
for small lags; and (b) the γ̆k are correlated, and therefore their excursions
appear smooth (and may be confused for structure). The only saving point of
the current acf plot in R is that it has a lag.max default of 10 log10 n so the
ugliness occuring at higher lags is masked. Interestingly, showing just the lags up
to 10 log10 n is tantamount to employing a rectangular lag-window—which is one
of the flat-top kernels albeit not the best—with a logarithmic choice for l that
is indeed optimal under the exponential decay of γk typical of ARMA models.

Rob Hyndman also brings up the question of optimal linear prediction. Here,
we would just like to offer a linguistic comment. The statistical term ‘optimal
estimation’ is clear: an optimal estimator is closest (according to some criterion)
to its target estimand. However, the term ‘optimal prediction’ is typically used
in a probabilistic context where all parameters are assumed known and only the
form of the predictor is in question; in other words, the term ‘optimal prediction’
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does not entail any claims as to estimation accuracy. We are using the term
this way, i.e., we are proposing a new estimator of the theoretically optimal
linear predictor of eq. (1). Whether our estimate of the optimal linear predictor
is better than the benchmark AR-based estimate is an open question (and is
not expected to admit an easy answer). In the next section, we elaborate on
the problems in comparing our proposed method to the benchmark AR-based
predictor; the main theoretical problem is lack of knowledge of their respective
rates of convergence.

Xiaohui Chen proposes another approach to estimating Γ−1
n . His approach

has the appealing properties that large eigenvalues of Γ̂n are inverted relatively
unperturbed, while those close to 0 are adjusted gracefully. These appealing
features are balanced with two less intuitive characteristics. First, the resulting
estimates are not positive definite, even though Γn is. Second, eigenvalues close
to 0 in Γ̂n are converted into eigenvalues close to 0 in Γ̂−1

n . Consider the al-
most equivalent problem of estimating the spectral density f(ω) and its inverse

1/f(ω). If f̂(ω) drops below 0, it can reasonably be assumed that the f(ω) is
small but positive, which implies that the best available estimate of 1/f(ω) is
large and positive, rather than near 0; these distinctions are illustrated in his
Fig. 1. Chen also offers an extension to sparse prediction; we welcome this con-
tribution and are eager to better understand the conditions under which the
sparse prediction converges to the oracle.

Wei Biao Wu proposes an upper bound of Op(rn) on the rate of convergence of
our predictors in Theorem 3. He then brings up the question on the performance
of the empirical bandwidth rule of Politis (2003) in terms of minimizing this
upper bound. Note, however, that this is just an upper bound, not the exact
rate of convergence. As mentioned in Remark 3, under stronger conditions rn
can be replaced by r′n in all theorems, including Wu’s upper bound. Choosing
which quantity to minimize could create a bit of controversy but fortunately the
empirical bandwidth choice l̂ is not focused on minimizing any such quantity.
Instead, it is inspired by the fact that, under a Moving Average MA(q) model,
a flat-top kernel is optimized by letting l = q.

Under a high-level assumption on the behavior of the maximal deviation of γ̆k
(which incidentally was verified 10 years later by Xiao and Wu (2012)), Politis

(2003) was able to show that l̂ → q in probability under an MA(q) model. Hence,
both rn and r′n are optimized in this case. Of course, an MA(q) assumption seems
very restrictive but by the Wold decomposition we can always approximate
the autocovariance structure by an MA(q) model provided we choose a large

enough q. When γk decays exponentially, Politis (2003) showed that l̂ increases
logarithmically, and thus it again optimizes (up to a log term) both rn and r′n.

Finally, if γk decays polynomially, l̂ increases polynomially at a rate that is
close—especially in the case of fast decay—to the rate optimizing r′n. More
work is undoubtedly needed here including the quantification of the MSE of the
estimators that use the random bandwidth l̂.

Yulia Gel and Wilfredo Palma draw distinctions between same realization
and independent realization predictions, and further between offline and online
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problems. While our problem is framed in terms of same realization predictions,
we see no reason our methods cannot also be made to work for independent re-
alizations. We can say more about the distinction between the online and offline
problems. Optimally implemented, our FSO shrinkage to white noise should run
in O(max{n log2 n, nl}) computational time, although the other corrections to
positive definiteness can be slower. The n log2 n bound results from solving the
n×n Toeplitz system, while the nl rate reflects calculation of the necessary au-
tocovariances. Naively, in an online problem, either of these rates will eventually
overwhelm available computational resources as the data grows. However, the
autocovariance calculations can likely be sped up by starting from and updat-
ing previous calculations, and the PSO predictor can dramatically reduce the
equation solving burden.

Yulia Gel and Wilfredo Palma also offer an intriguing suggestion towards the
prediction of long range dependent time series. They propose directly estimat-
ing the well-behaved Γ−1

n rather than trying to estimate and invert the poorly
behaved Γn. From this point, we foresee two further challenges. First, eq. (2)
still requires an estimate of γ(n), which is closely related to the rows of Γn; we
therefore expect any estimate of γ(n) to have convergence rates similar to the
rates at which estimates of Γn converge. Second, our Theorem 3, (convergence
of the predictor to the oracle) rests on being able to show that the entries of
φ(n) are small for large lags, but we do not necessarily expect this to be the
case for long memory processes; the approach outlined by Wei Biao Wu may
offer a way forward on this front.

Coming back to the current paper, we have formulated the main part of
the rejoinder on the basis of three general themes that were inspired by the
discussion pieces.

R.1. AR vs. MA models

In time series analysis, there has long been a tension between Autoregressive
(AR) and Moving Average (MA) model fitting. In practice, fitting an AR(p)
model typically entails selecting the order p in a data-dependent way, e.g., min-
imizing AIC or a related criterion; this implies that we are really approximating
an AR(∞) model with an AR(p) with p → ∞ as n → ∞, i.e., a sieve approx-
imation. Analogously, one can approximate an MA(∞) model with an MA(q)
with q → ∞ as n → ∞. However, fitting an MA(q) is practically cumbersome,
and this is especially true when q is large. A surrogate for MA model fitting
is approximating/estimating the spectral density via kernel smoothing, which
is nothing other than tapering the sample autocovariance with a lag-window of
compact support; the support, say lcκ in the notation of our paper, is related
to the order q of an underlying fitted MA(q) model, and is allowed to tend to
infinity as n→ ∞.

To further elaborate on the tension between AR and MA/kernel smoothing
consider the following cases:

i. Spectral estimation. AR-based spectral estimates have been available
for a long time, and have been popular in the engineering literature—



814 T. L. McMurry and D. N. Politis

see e.g. Kay (1988); their statistical performance was quantified by Berk
(1974) who showed that they have a large-sample variance of O(p/n).
Similarly, kernel smoothed spectral estimates were introduced in the late
1940s, and have been studied extensively; see Brillinger (1993) for a his-
torical perspective. The large-sample variance of kernel smoothed spectral
estimates is typically O(l/n).

ii. Bootstrap for time series. AR(p) and/or AR-sieve bootstrap was one
of the earliest methods for time series resampling; see e.g. Kreiss and Pa-
paroditis (2011) for a review. The AR–bootstrap is to be contrasted with
(different versions of) the block bootstrap that has at its core an implicit
spectral estimator based on kernel smoothing. For example, the original
block bootstrap of Künsch (1989) is associated with kernel smoothing
using Bartlett’s triangular kernel, while the tapered block bootstrap of
Paparoditis and Politis (2001) is associated with a kernel given by the
self-convolution of the data taper.

iii. Linear prediction. As is well-known, AR-based prediction has been the
most popular method; it is the subject of the present paper to offer an al-
ternative based on windowing the sample autocovariance sequence which
is intimately related to the aforementioned lag-window spectral estimates.

iv. Autocovariance matrix estimation. To our knowledge the first con-
sistent estimates of Γn based on a time series sample of size n were given
by Wu and Pourahmadi (2009); their estimators—as well as the ones that
are discussed in the present paper—are based on windowing the sample
autocovariance. Up to a log-term, the tapered matrix estimators have a
variance that achieves the same rate of convergence as the kernel estimates
of the spectral density; see e.g. the quantity r′n in Remark 3. Interestingly,
this is a setting where perhaps the AR method has been overlooked; the
next section tries to do it justice.

In all the above settings, the question can be asked: which is better, AR or
MA/kernel estimation. There cannot be a sweeping yes/no answer here as it de-
pends on whether the autocovariance and/or spectral density can be better, e.g.
more parsimoniously, approximated by an AR(p) or MA(q) model. For example,
if the underlying time series has an AR(p) structure (with a finite order p), then
one can fit an AR(p) model with finite p and achieve spectral and/or autocovari-
ance estimation with a parametric rate of convergence of

√
n; if one follows the

MA/kernel approach in this example, it would be necessary to let l → ∞, and
a rate of convergence of

√

n/l = o(
√
n) ensues. On the other hand, if the un-

derlying time series has an MA(q) structure (with a finite order q), then fitting
an AR(p) model necessitates letting p→ ∞ that yields a rate of convergence of
√

n/p = o(
√
n); by contrast, using a flat-top kernel here, the practitioner can

use a finite l (that is bigger or equal to q), and therefore achieve spectral and/or
autocovariance estimation with a parametric rate of convergence of

√
n.

Our simulations on the prediction problem show a similar phenomenon, i.e., in
some models AR-based prediction performs better while in others the kernel/lag-
window method performs just as well or better. However, as Rob Hyndman
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points out, the situation is not as clear cut as compared to the aforementioned
estimation settings. There are at least two possible reasons for this:

(a) Rates of convergence of the two predictors have yet to be established
and compared. Wei Biao Wu’s discussion gives some insights on obtaining an
upper bound on the rate of convergence of the lag-window predictor; we do
hope that the details can be worked out in order to make these arguments
rigorous. Despite the fact that AR-based predictors have been the norm for the
last 100 or so years, we are not aware of rigorous results quantifying their rate
of convergence.

(b) AR–based prediction is helped by an implicit model selection that is
taking place; for example, choosing to leave out all terms Xt having t < n−p+1
in the formula for the optimal predictor ofXn+1 offers big savings in the variance
of the predictor at a (hopefully) small cost in its bias. This trade-off could/would
be quantified if/when the rate of convergence of the AR-based predictor is made
available; if confirmed, it may explain the edge that the AR–predictor seems to
have in the real data example where the sample sizes where admittedly quite
small.

R.2. AR-based estimation of the matrix Γn

The symmetry between AR and MA processes, suggests an alternative estimate
of Γn via an AR(p) approximation. In other words, fit an AR(p) model to the
data (with p chosen by AIC) based on the sample autocovariances γ̆0, . . . , γ̆p;
fitting the AR(p) model via the Yule-Walker equations is convenient as it re-
sults in a causal (and therefore stationary) model. Then, estimate the whole
autocovariance sequence by the autocovariance implied by the fitted AR model
by solving the difference equation as outlined in Brockwell and Davis (1991,
Section 3.3); R automates this process through the ARMAacf() function.

Denote by γ̂AR
k the lag-k autocovariance of the fitted AR model. As the

autocovariance sequence of a stationary time series, the sequence γ̂AR
k for k ∈ Z

is positive definite. Hence if we define Γ̂AR
n as the n × n Toeplitz matrix with

i, j’th element given by γ̂AR
|i−j|, it then follows that Γ̂AR

n will be a positive definite
estimator of matrix Γn.

We tried this new estimator on the scenarios described in Section 5.5. The AR
estimator shows substantial improvements when the time series is indeed an AR
process (with a large autoregressive coefficient) but notably worse performance
in all other settings; see Table R.1 where Γ̂AR

n is compared to the uncorrected
flat-top estimator Γ̂n, and to the two global shrinkage estimators of eq. (22) and
(23). The performance of the latter was recomputed over 1,000 new replications
of datasets of size n = 200 (as opposed to just copying the relevant entries of
Table 6) in order to provide a fair comparison with Γ̂AR

n .

R.3. A new predictor based on the Model-Free Prediction Principle

A recent development in predictive inference is the Model-Free Prediction Prin-
ciple of Politis (2013); it is interesting to see if following the Model-Free paradigm
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Table R.1

Average operator norm loss of different autocovariance matrix estimators

Γ̂n WN-Shrink 2o-Shrink Γ̂AR
n

AR(1) φ = −0.9 11.1049 10.0554 10.2395 9.2601
AR(1) φ = −0.5 0.9581 0.9839 0.9529 0.8532
AR(1) φ = −0.1 0.2956 0.2955 0.2956 0.3693
AR(1) φ = 0.1 0.2955 0.2954 0.2955 0.3699
AR(1) φ = 0.5 0.9242 0.9525 0.9198 0.8070
AR(1) φ = 0.9 9.4281 9.1549 9.4940 8.6014
MA(1) θ = −0.9 0.2946 0.2707 0.3240 1.3399
MA(1) θ = −0.5 0.2606 0.2488 0.2616 0.7212
MA(1) θ = −0.1 0.2886 0.2886 0.2886 0.3711
MA(1) θ = 0.1 0.2928 0.2928 0.2928 0.3764
MA(1) θ = 0.5 0.2570 0.2460 0.2580 0.6918
MA(1) θ = 0.9 0.2888 0.2695 0.3222 1.2947
ARMA(2,1) 1.3650 1.3570 1.3613 1.4580

can lead to a different predictor. To start with, let us assume the working hy-
pothesis that {Xt, t ∈ Z} is a linear time series that is causal and invertible,
i.e., it satisfies the following two equations:

Xt =

∞
∑

k=0

ψkZt−k (R.1)

and

Xt =

∞
∑

k=1

φkXt−k + Zt (R.2)

with respect to innovations {Zt} that are i.i.d. with mean zero and variance σ2;
a typical assumption here is that the sequences ψk and φk are absolutely summa-
ble although square-summability of the ψk is enough. In such a case, it is easy
to see that

E(Xn+1|Xn, Xn−1, . . .) =

∞
∑

k=1

φkXt−k

where E(Xn+1|Xn, Xn−1, . . .) denotes the conditional expectation given the in-
finite past. In the practical setting, we only observe the finite history Xn, . . . , X1

but for large n the approximation

E(Xn+1|Xn, . . . , X1) ≃
n
∑

k=1

φkXt−k

holds under regularity conditions. Hence, for causal and invertible linear time
series the best (with respect to MSE) predictor is (approximately) linear in its
arguments.

Recall that the autocovariance matrix of data vector Xn = (X1, . . . , Xn)
′ is

Γn which is a positive definite Toeplitz matrix. Consider a square-root decom-
position

Γn = CnC
′
n (R.3)
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where Cn is positive definite. Now define the new vector Z(n)
n = (Z

(n)
1 , . . . , Z

(n)
n )′

by

Z(n)
n = C−1

n Xn. (R.4)

Eq. (R.4) is a whitening filter since the variables Z
(n)
1 , . . . , Z

(n)
n are mean-zero,

variance one, and uncorrelated, i.e., they constitute a white noise sample path.

Nevertheless, a stronger result is true if we insist that eq. (R.3) is the Cholesky
decomposition of Γn, i.e., require that the positive definite matrix Cn is (lower)

triangular. In that case, it is not hard to see that the variables Z
(n)
1 , . . . , Z

(n)
n

are approximately i.i.d. as the filter (R.4) gives an approximation to the inver-
sion (R.2). In fact, the whitening filter (R.4) that uses the Cholesky decompo-
sition of Γn is equivalent to the well-known innovations algorithm of Brockwell
and Davis (1988); see also Rissanen and Barbosa (1969).

To elaborate, letting Cn be the (lower) triangular Cholesky factor of Γn

implies Z
(n)
j ≃ Zj/σ for all j ≥ some j0; the reason we have approximation

instead of equality is due to edge effects in initializing the filter. Furthermore,
transformation (R.4) is invertible so if we define the transformation Hn : Xn 7→
Z(n)

n , then Hn satisfies premise (a) of the Model-Free Prediction Principle of
Politis (2013). It is easy to see that it also satisfies premise (b) of the Model-
Free Prediction Principle in that we can express the (yet unobserved) Xn+1 as

a function of the current data Xn and the new (yet unobserved) Z
(n+1)
n+1 ; the

details are given in the sequel—see eq. (R.7).

In order to put the Model-Free Prediction Principle to work, we need to es-
timate the transformation Hm both for m = n and for m = n+ 1. Recall that
Section 4 developed several estimators of Γn that are consistent and positive
definite. Let Γ̂∗

n denote one of the two global shrinkage estimators, i.e., either
estimators (22) or (23). The reason we focus on the two global shrinkage esti-
mators is they yield a matrix Γ̂∗

n that is banded and Toeplitz; see Remark 11.
In addition to fast computation, the banded Toeplitz property gives us an im-
mediate way of constructing Γ̂∗

n+1 that is needed for transformation Hn+1 and
its inverse.

To elaborate, let us denote by γ̂∗|i−j| the i, j’th element of Γ̂∗
n for i, j = 1, . . . , n;

by construction, the sequence γ̂∗s for s = 0, 1, . . . is positive definite, and consis-
tent for the true γ̂s for s = 0, 1, . . .. Hence, we define Γ̂∗

n+1 to be the symmetric,
banded Toeplitz matrix with ij element given by γ̂∗|i−j| for i, j = 1, . . . , n + 1.

Recall that Γ̂∗
n is banded, so γ̂∗|i−j| = 0 if |i − j| > lcκ. Thus, the two entries

of Γ̂∗
n+1 at the upper-right and lower-left, i.e., the i, j’th elements satisfying

|i− j| = n, are naturally estimated by zeros.

The practical application of the Model-Free Prediction Principle in order to
obtain the L2–optimal predictor of Xn+1 can be summarized as follows:

i. Let Ĉn be the (lower) triangular Cholesky factor of Γ̂∗
n, and define

Ẑn = Ĉ−1
n Xn and hence Xn = ĈnẐn. (R.5)
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Table R.2

Root mean square prediction errors for MA(1) processes with n = 200, including the
Model-Free predictor

FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr MF-WN AR
θ = −0.9 1.0626 1.0662 1.0635 1.0629 1.0647 1.0614
θ = −0.5 0.9849 0.9839 0.9892 0.9885 0.9840 0.9886
θ = −0.1 0.9869 0.9869 0.9869 0.9869 0.9869 0.9939
θ = 0.1 1.0314 1.0314 1.0314 1.0314 1.0314 1.0348
θ = 0.5 1.0087 1.0070 1.0112 1.0106 1.0070 1.0222
θ = 0.9 1.0481 1.0507 1.0460 1.0484 1.0504 1.0374

Table R.3

Root mean square prediction errors for AR(1) processes with n = 200, including the
Model-Free predictor

FSO-WN-Raw FSO-WN-Shr FSO-2o-Raw FSO-2o-Shr MF-WN AR
φ = −0.9 1.1481 1.0968 1.0948 1.0633 1.0952 1.0091
φ = −0.5 1.0121 1.0100 1.0239 1.0204 1.0102 0.9978
φ = −0.1 0.9874 0.9874 0.9874 0.9874 0.9875 0.9841
φ = 0.1 0.9975 0.9975 0.9975 0.9975 0.9975 0.9983
φ = 0.5 1.0322 1.0298 1.0489 1.0454 1.0300 1.0093
φ = 0.9 1.0942 1.0866 1.0654 1.0496 1.0849 1.0087

Ignoring the aforementioned edge effects, we have denoted Ẑn = (Ẑ1, . . . ,
Ẑn)

′ as a simple sequence as opposed to a triangular array.
ii. Let Xn+1 = (X1, . . . , Xn, Xn+1)

′ that includes the unobserved Xn+1, and

Ẑn+1 = (Ẑ1, . . . , Ẑn, Ẑn+1)
′. Use the inverse transformation to write

Xn+1 = Ĉn+1Ẑn+1 (R.6)

where Ĉn+1 is the (lower) triangular Cholesky factor of Γ̂∗
n+1.

iii. Note that eq. (R.6) implies that

Xn+1 = ĉn+1Ẑn+1 (R.7)

where ĉn+1 = (ĉ1, . . . , ĉn, ĉn+1) is the last row of Ĉn+1.
iv. Recall that the prediction is carried out conditionally on Xn. Due to

eq. (R.5), the first n elements of the vector Ẑn+1 can be treated as fixed
(and known) given Xn. Then, the Model-Free approximation to the L2–
optimal predictor E(Xn+1|Xn, . . . , X1) is given by

X̂n+1 =

n
∑

i=1

ĉiẐi + ĉn+1Ẑ (R.8)

where Ẑ is an empirical approximation to the expected value of Ẑn+1.

A natural choice is to let Ẑ = n−1
∑n

i=1 Ẑi; this is what we used in our

simulations. Alternatively, we can simply estimate Ẑ by zero using the
fact that Ẑn+1 ≃ Zn+1/σ, and E(Zn+1|Xn, . . . , X1) = E(Zn+1) = 0 by

assumption. The two choices for Ẑ lead to virtually identical results in
practice.
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Table R.4

Root mean square prediction errors for MA(2) processes with n = 100, including the
Model-Free predictor

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1
FSO-WN-Raw θ1 = −1 1.693 1.522 1.372 1.144 1.051 1.129 1.279

FSO-WN-Shr θ1 = −1 1.691 1.520 1.372 1.147 1.095 1.150 1.275
FSO-2o-Raw θ1 = −1 1.697 1.524 1.370 1.143 1.049 1.144 1.325
FSO-2o-Shr θ1 = −1 1.694 1.522 1.369 1.145 1.044 1.091 1.235

MF-WN θ1 = −1 1.691 1.521 1.371 1.145 1.089 1.148 1.274

AR θ1 = −1 1.708 1.506 1.340 1.139 1.032 1.075 1.154

FSO-WN-Raw θ1 = −2/3 1.465 1.302 1.157 1.034 1.090 1.071 1.211

FSO-WN-Shr θ1 = −2/3 1.459 1.301 1.158 1.036 1.086 1.057 1.213
FSO-2o-Raw θ1 = −2/3 1.466 1.303 1.157 1.035 1.119 1.103 1.218

FSO-2o-Shr θ1 = −2/3 1.461 1.299 1.156 1.034 1.081 1.055 1.208
MF-WN θ1 = −2/3 1.459 1.300 1.157 1.034 1.086 1.058 1.213

AR θ1 = −2/3 1.475 1.313 1.093 1.051 1.053 1.004 1.155

FSO-WN-Raw θ1 = −1/3 1.198 1.061 1.065 1.040 1.043 1.033 1.166
FSO-WN-Shr θ1 = −1/3 1.200 1.065 1.064 1.039 1.041 1.034 1.176

FSO-2o-Raw θ1 = −1/3 1.200 1.058 1.065 1.040 1.052 1.033 1.164
FSO-2o-Shr θ1 = −1/3 1.202 1.060 1.065 1.040 1.050 1.035 1.175

MF-WN θ1 = −1/3 1.198 1.062 1.063 1.039 1.041 1.034 1.175

AR θ1 = −1/3 1.228 1.076 1.045 1.016 1.015 1.038 1.173

FSO-WN-Raw θ1 = 0 1.072 1.073 1.044 1.020 1.033 1.025 1.159

FSO-WN-Shr θ1 = 0 1.084 1.078 1.042 1.020 1.032 1.025 1.167

FSO-2o-Raw θ1 = 0 1.066 1.076 1.047 1.020 1.034 1.023 1.156

FSO-2o-Shr θ1 = 0 1.072 1.079 1.045 1.020 1.033 1.022 1.161
MF-WN θ1 = 0 1.081 1.076 1.042 1.020 1.032 1.025 1.166

AR θ1 = 0 1.104 1.101 1.042 1.020 1.016 1.061 1.163

FSO-WN-Raw θ1 = 1/3 1.266 1.137 1.076 1.041 1.086 1.054 1.122

FSO-WN-Shr θ1 = 1/3 1.274 1.136 1.075 1.040 1.085 1.050 1.131

FSO-2o-Raw θ1 = 1/3 1.265 1.135 1.075 1.042 1.091 1.056 1.121
FSO-2o-Shr θ1 = 1/3 1.276 1.137 1.072 1.041 1.089 1.052 1.128

MF-WN θ1 = 1/3 1.272 1.136 1.075 1.040 1.085 1.051 1.131

AR θ1 = 1/3 1.294 1.141 1.066 1.031 1.047 1.067 1.130

FSO-WN-Raw θ1 = 2/3 1.397 1.245 1.230 1.054 1.052 1.166 1.260

FSO-WN-Shr θ1 = 2/3 1.391 1.247 1.230 1.054 1.048 1.157 1.254

FSO-2o-Raw θ1 = 2/3 1.401 1.244 1.230 1.052 1.082 1.198 1.278
FSO-2o-Shr θ1 = 2/3 1.395 1.246 1.227 1.053 1.046 1.160 1.261

MF-WN θ1 = 2/3 1.392 1.247 1.230 1.054 1.048 1.157 1.254

AR θ1 = 2/3 1.421 1.245 1.147 1.085 1.041 1.119 1.177

FSO-WN-Raw θ1 = 1 1.723 1.457 1.391 1.168 1.026 1.127 1.270
FSO-WN-Shr θ1 = 1 1.718 1.455 1.389 1.180 1.069 1.146 1.268

FSO-2o-Raw θ1 = 1 1.727 1.457 1.391 1.165 1.012 1.161 1.305
FSO-2o-Shr θ1 = 1 1.724 1.454 1.388 1.172 1.023 1.092 1.225

MF-WN θ1 = 1 1.718 1.455 1.389 1.179 1.068 1.145 1.267

AR θ1 = 1 1.716 1.440 1.352 1.160 1.024 1.070 1.135

Finally, recall our working hypothesis that {Xt, t ∈ Z} is a linear time series
that is causal and invertible. Under this hypothesis, the conditional expectation
E(Xn+1|Xn, . . . , X1) is (approximately) linear in Xn, and the same is true for
its Model-Free estimate (R.8). However, if the working hypothesis of linearity
is not true, then predictor (R.8) gives a novel approximation to the best linear
predictor of Xn+1 on the basis of Xn, i.e., the orthogonal projection of Xn+1

onto the linear span of (Xn, . . . , X1).
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Table R.5

Root mean square prediction errors for MA(2) processes with n = 500, including the
Model-Free predictor

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-WN-Raw θ1 = −1 1.687 1.432 1.283 1.102 1.054 1.042 1.106
FSO-WN-Shr θ1 = −1 1.687 1.432 1.283 1.105 1.064 1.044 1.108
FSO-2o-Raw θ1 = −1 1.687 1.437 1.288 1.093 1.091 1.040 1.095

FSO-2o-Shr θ1 = −1 1.687 1.436 1.287 1.095 1.055 1.039 1.095
MF-WN θ1 = −1 1.687 1.432 1.283 1.105 1.064 1.044 1.108

AR θ1 = −1 1.694 1.444 1.274 1.069 1.052 1.041 1.089

FSO-WN-Raw θ1 = −2/3 1.395 1.236 1.058 0.996 1.009 1.000 1.049

FSO-WN-Shr θ1 = −2/3 1.394 1.236 1.059 0.995 1.009 0.999 1.052

FSO-2o-Raw θ1 = −2/3 1.397 1.246 1.048 1.006 1.056 1.007 1.033
FSO-2o-Shr θ1 = −2/3 1.397 1.244 1.050 1.004 1.044 1.006 1.033

MF-WN θ1 = −2/3 1.394 1.236 1.059 0.995 1.009 0.999 1.051

AR θ1 = −2/3 1.404 1.243 1.058 1.002 0.999 0.997 1.024

FSO-WN-Raw θ1 = −1/3 1.153 1.058 0.979 0.988 1.012 0.984 1.048

FSO-WN-Shr θ1 = −1/3 1.151 1.061 0.978 0.988 1.012 0.984 1.049

FSO-2o-Raw θ1 = −1/3 1.167 1.050 0.987 0.988 1.012 0.989 1.041

FSO-2o-Shr θ1 = −1/3 1.163 1.051 0.987 0.988 1.012 0.988 1.039

MF-WN θ1 = −1/3 1.151 1.060 0.978 0.988 1.012 0.984 1.049
AR θ1 = −1/3 1.166 1.050 0.984 0.996 1.016 0.993 1.045

FSO-WN-Raw θ1 = 0 1.103 1.002 0.976 0.992 0.988 0.992 1.123

FSO-WN-Shr θ1 = 0 1.107 1.000 0.976 0.992 0.988 0.993 1.127
FSO-2o-Raw θ1 = 0 1.090 1.011 0.976 0.992 0.988 0.995 1.107
FSO-2o-Shr θ1 = 0 1.091 1.010 0.976 0.992 0.988 0.994 1.108

MF-WN θ1 = 0 1.106 1.001 0.976 0.992 0.988 0.993 1.127

AR θ1 = 0 1.074 1.001 0.980 0.991 0.985 1.003 1.101

FSO-WN-Raw θ1 = 1/3 1.212 1.042 1.011 1.004 0.967 1.008 1.101

FSO-WN-Shr θ1 = 1/3 1.214 1.045 1.011 1.004 0.967 1.008 1.102

FSO-2o-Raw θ1 = 1/3 1.215 1.034 1.014 1.004 0.967 1.017 1.089

FSO-2o-Shr θ1 = 1/3 1.214 1.038 1.014 1.004 0.967 1.016 1.088
MF-WN θ1 = 1/3 1.213 1.045 1.011 1.004 0.967 1.008 1.102

AR θ1 = 1/3 1.201 1.055 1.023 1.009 0.974 1.023 1.090

FSO-WN-Raw θ1 = 2/3 1.360 1.227 1.068 1.008 0.992 1.017 1.120

FSO-WN-Shr θ1 = 2/3 1.360 1.227 1.072 1.008 0.990 1.016 1.121

FSO-2o-Raw θ1 = 2/3 1.362 1.234 1.058 1.014 1.030 1.023 1.107
FSO-2o-Shr θ1 = 2/3 1.362 1.234 1.060 1.013 1.018 1.023 1.108

MF-WN θ1 = 2/3 1.361 1.227 1.072 1.008 0.990 1.016 1.121

AR θ1 = 2/3 1.371 1.246 1.073 1.014 0.984 1.022 1.116

FSO-WN-Raw θ1 = 1 1.654 1.386 1.310 1.076 1.026 0.997 1.123

FSO-WN-Shr θ1 = 1 1.654 1.385 1.310 1.078 1.031 0.996 1.127
FSO-2o-Raw θ1 = 1 1.654 1.386 1.314 1.071 1.077 1.006 1.114
FSO-2o-Shr θ1 = 1 1.654 1.386 1.314 1.070 1.028 0.999 1.115

MF-WN θ1 = 1 1.654 1.385 1.310 1.078 1.031 0.996 1.127

AR θ1 = 1 1.675 1.390 1.287 1.063 1.012 0.995 1.092

We explored the performance of the model free predictor in the scenarios
considered in the main manuscript against several of the predictors investigated
therein. MA(1) simulations are given in Table R.2, AR(1) simulations in Ta-
ble R.3, MA(2) with n = 100 are in Table R.4, MA(2) with n = 500 are in
Table R.5, and the real data example is re-analyzed in Table R.6. For simplic-
ity, we considered the Model-Free approach where Γ̂n was corrected to positive
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Table R.6

Root mean square prediction errors for M3 competition data and reversed M3 competition
data, including the Model-Free predictor

Forward Reversed
FSO-WN-Raw 0.8821 0.8509
FSO-WN-Shr 0.9831 1.0237
FSO-2o-Raw 0.8894 0.8640
FSO-2o-Shr 0.8916 0.8877

MF-WN 0.9809 1.0189
AR 0.8356 0.7852

definiteness using shrinkage to white noise, i.e., the matrix Γ̂∗
n used corresponded

to estimator (22); hence, the notation MF-WN for the Model-Free method. In-
terestingly, the MF-WN method generates predictions that are of very similar
quality to the FSO-WN-Shr approach; see Tables 2–6. The Model-Free approach
using matrix Γ̂∗

n obtained from estimator (23), i.e., shrinkage towards a 2nd or-
der estimator, would generate predictions that are of similar quality to the
FSO-2o-Shr approach.

Thus, it looks like the Model-Free approach in essense gives a different way
to compute the FSO predictor based on Γ̂∗

n in connection with the shrunk auto-
covariance estimator γ̂∗(n) whatever the choice of Γ̂∗

n might be. This is corrobo-
rated by the fact that, as mentioned before, the construction of predictor (R.8)
was motivated by the Model-Free Prediction Principle but it is similar in spirit
to the innovations algorithm of Brockwell and Davis (1988). The latter, however,
assumes knowledge of Γn; the crucial difference is that the Model-Free predictor
uses the consistent, positive definite estimator Γ̂∗

n in place of the unknown Γn.

In closing, we would like to reiterate our thanks to all discussants, and in
particular to the Editor, George Michailidis, for making all this possible.
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