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Comment on Article by Page and Quintana∗

Robert B. Gramacy† and Herbert K. H. Lee‡

We congratulate Page and Quintana for this new approach to nonstationary spatial
modeling. This new model is based on a spatial clustering, whereby the underlying
clusters are defined using spatial structure, and these clusters help drive the correlations
between the observations. Here we discuss several related models that are derived from
regional partitions or neighborhood structures. We also note that this work falls under
the much larger rubric of nonstationary spatial modeling, and there are quite a number
of other approaches that are related in that context.

1 Regional Partition Models

A related approach in the literature is to define regional partitions, rather than poten-
tially overlapping clusters. A proper partitioning can be computationally simpler, in
that the combinatoric possibilities are substantially more limited than for a clustering
approach. The advantage of a clustering approach is additional flexibility in defining
the clusters, including the allowance of irregular shapes and overlapping clusters. Thus
the key trade-off is whether the additional computational cost is justified by the need
for modeling flexibility.

Given the opening example in Figure 1 of the paper, of spatial fields that change
across rectangular regions, we were surprised that there is no mention of treed Gaus-
sian process (TGP) models (Gramacy and Lee, 2008), as they fit this example exactly.
A TGP model considers a tree-based partitioning of the space and fits independent
Gaussian process models within each partition. By allowing the partition structure to
also be a random variable inferred simultaneously, Bayesian model averaging can result
in smooth predictions when the data are smooth (as is the typical case), yet can pro-
vide for sharp jumps if warranted by the data (such as in Figure 1). With the inherent
flexibility of the Gaussian process, just a little nonstationarity is usually enough to pro-
vide a really good fit to data, and this partitioning approach provides that sufficient
amount of nonstationarity without invoking the massive computational burdens of fully
nonstationary models. Open source software is provided in the tgp package (Gramacy,
2007; Gramacy and Taddy, 2010) for R (R Core Team, 2015).

Other examples of regional partition-based models are tessellations and partitioned
process convolutions. Kim et al. (2005) developed a model that partitioned the space
using a tessellation, and then fit independent Gaussian processes within each of those
partitions. This provides additional flexibility beyond the treed partitioning approach,
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but in practice this additional flexibility does not usually much improve the fit or pre-
diction, because the Gaussian process is already quite flexible. A different partitioning
mechanism (Liang and Lee, 2011) is to start with the process convolution represen-
tation of a Gaussian process, wherein a smoothing kernel is convolved with a white
noise background process to create a Gaussian process, and then allow partitioning for
the kernel parameters and the background processes. This approach guarantees that
the model will produce a continuous response surface (assuming a smooth kernel), but
allows regional variability in model structure, again providing nonstationarity compu-
tationally cheaply. The process convolution representation allows the fitting of much
larger datasets without the standard explosion in computational expense, but is some-
what limited to lower-dimensional input spaces.

2 Neighborhood Models

Another, perhaps more fluid, localized inference approach involves approximating the
predictive equations nearby elements of a predictive (or testing) input set. Cressie called
this “ad hoc” local kriging (e.g., Cressie, 1991, pp. 131–134), however the idea has come
a long way since then. Emory (2009) is the most recent author to have considered the
problem in a spatial statistics context, while Gramacy and Apley (2015) focus primarily
on computer experiments, and provide open source software in the form of an R package
called laGP (Gramacy, 2015). The above works are primarily motivated by addressing
computational issues that are faced with dealing with large data sets, specifically “large
N” problems for training data sets with N records. Gaussian process inference and
prediction require O(N3) dense matrix decompositions in that case, which is compu-
tationally intactible when N � 1000. Instead, they suggest that a subset of the data
Xn(x) of size n � N , nearby to predictive locations x could lead to nearly identical
predictions, compared to the full data set, with a fraction of the computational effort. It
turns out that a nearest-neighbor choice of Xn(x), as advocated e.g., by Emory (2009)
is inefficient. Gramacy and Apley (2015) show that a sequential search for locations
which minimize mean-squared prediction error works better, yet has similar compu-
tational demands. They also recognize the nonstationary modeling potential of local
inference, and demonstrate more accurate predictions compared to a more spatially
homogeneous (neighborhood-based) approach. Both are examples of local approximate
Gaussian process (laGP) predictors, and one can envisage many further variations.

Another way to build local neighborhoods is through the use of covariance tapering,
for example in Anderes et al. (2013) where tapering allows for efficient fitting of local
variation in the correlation structure. Similar to how Gramacy and Apley (2015) enhance
the fidelity of local neighborhood models to make them more nonstationary, Anderes
et al. (2013) can be interpreted as doing the same for a similar more stationary approach
that was primarily focused on remedies for big data problems (Kaufman et al., 2012).

3 Chilean Standardized Testing Data

The authors graciously provided access to the Chilean Standardized Testing data so
that we could run a comparison of TGP and laGP, and ordinary stationary Gaussian
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process (GP) models, with spatial product partition models. We follow the setup of
Section 4.2 for the Conditional Model, fitting unstandardized SIMCE on spatial location
and mother’s education scores. Using the first 600 datapoints as training data and the
remaining 615 observations as test data, both TGP and an ordinary stationary GP
provide a mean square prediction error (MSPE) of about 365, which put them ahead
of everything but CPS C4. We note that this error rate is highly dependent on the
particular observations used for the training and test dataset. We also tried taking 100
random splits between training and test datasets and obtained MSPEs for a stationary
GP ranging from 304.6 to 403.6, with an average of 349.9.

Looking more closely at the fitted models for both TGP and laGP, as well as a
stationary GP, turned up a surprising result. Our TGP model did not partition the
space, but was using a stationary Gaussian process across all of the observations. laGP
grew its local neighborhood so that it wasn’t fitting a particularly local model. Thus in
both cases, these flexible models reverted toward fitting a stationary GP, or nearly so.
Moreover, we entertained a 10-fold cross-validation comparing laGP and stationary GPs
in 100 repetitions. Although the resulting MSPEs were very similar for both approaches,
having nearly the same marginal mean and variance across all 1000 testing sets, a
pairwise t-test resoundingly rejected the null that the two approaches were yielding
the “same” results. Indeed, the stationary GP was consistently yielding lower MSPEs,
albeit not by a large margin. So we are compelled to ask the authors how much benefit
SPPM provides over a stationary GP on this dataset.

4 A Final Thought

Since clustering can often have useful interpretations in the input space, have the authors
given any thought to trying to interpret the clusters that result from their model? That
could be useful for better understanding the structure of a dataset.
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