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On the Question of Effective Sample Size
in Network Modeling: An Asymptotic
Inquiry
Pavel N. Krivitsky and Eric D. Kolaczyk

Abstract. The modeling and analysis of networks and network data has
seen an explosion of interest in recent years and represents an exciting direc-
tion for potential growth in statistics. Despite the already substantial amount
of work done in this area to date by researchers from various disciplines,
however, there remain many questions of a decidedly foundational nature—
natural analogues of standard questions already posed and addressed in more
classical areas of statistics—that have yet to even be posed, much less ad-
dressed. Here we raise and consider one such question in connection with
network modeling. Specifically, we ask, “Given an observed network, what
is the sample size?” Using simple, illustrative examples from the class of
exponential random graph models, we show that the answer to this question
can very much depend on basic properties of the networks expected under
the model, as the number of vertices nV in the network grows. In particular,
adopting the (asymptotic) scaling of the variance of the maximum likelihood
parameter estimates as a notion of effective sample size (neff), we show that
when modeling the overall propensity to have ties and the propensity to re-
ciprocate ties, whether the networks are sparse or not under the model (i.e.,
having a constant or an increasing number of ties per vertex, respectively) is
sufficient to yield an order of magnitude difference in neff, from O(nV ) to
O(n2

V ). In addition, we report simulation study results that suggest similar
properties for models for triadic (friend-of-a-friend) effects. We then explore
some practical implications of this result, using both simulation and data on
food-sharing from Lamalera, Indonesia.

Key words and phrases: Asymptotic normality, consistency, mutuality, tri-
adic closure, exponential-family random graph model, maximum likelihood.

1. INTRODUCTION

Since roughly the mid-1990s, the study of networks
has increased dramatically. Researchers from across
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the sciences—including biology, bioinformatics, com-
puter science, economics, engineering, mathematics,
physics, sociology and statistics—are more and more
involved with the collection and statistical analysis of
data associated with networks. As a result, statistical
methods and models are being developed in this area
at a furious pace, with contributions coming from a
wide spectrum of disciplines. See, for example, the
work of Jackson (2008), Kolaczyk (2009) and Newman
(2010) for recent overviews from the perspective of
economics, statistics and statistical physics, respec-
tively.

A cross-sectional network is typically represented
mathematically by a graph, say, G = (V ,E), where
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V is a set of nV vertices (commonly written V =
{1, . . . , nV }) and E is a set of |E| ties [represented
as vertex pairs (u, v) ∈ E]. Ties can be either directed
[wherein (u, v) is distinct from (v, u)] or undirected.
Prominent examples of networks represented in this
fashion include the World Wide Web graph (with ver-
tices representing web pages and directed ties repre-
senting hyperlinks pointing from one page to another),
protein–protein interaction networks in biology (with
vertices representing proteins and undirected ties rep-
resenting an affinity for two proteins to bind phys-
ically) and friendship networks (with vertices repre-
senting people and ties representing friendship nomi-
nations in a social survey).

A great deal of attention in the literature has been fo-
cused on the natural problem of modeling networks—
of the presence and absence of their ties in particu-
lar. There is by now a wide variety of network mod-
els that have been proposed, ranging from models of
largely mathematical interest to models designed to be
fit statistically to data. See, for example, the sources
cited above or, for a shorter treatment, the review pa-
per by Airoldi et al. (2009). The derivation and study
of network models is a unique endeavor, due to a num-
ber of factors. First, the defining aspect of networks is
their relational nature, and hence the task is effectively
one of modeling complex dependencies among the ver-
tices. Second, quite often there is no convenient space
associated with the network, and so the type of dis-
tance and geometry that can be exploited in modeling
other dependent phenomena, like time series and spa-
tial processes are not, generally, available when mod-
eling networks. Finally, network problems frequently
are quite large, involving hundreds if not thousands or
hundreds of thousands of vertices and their ties. Since a
network of nV vertices can in principle have on the or-
der of O(n2

V ) ties, in network modeling and analysis—
particularly statistical analysis of network data—the
sheer magnitude of the network can be a critical fac-
tor in this area.

Suppose that we observe a network, in the form of
a directed graph G = (V ,E), where V is a set of
nV = |V | vertices and E is a set of ordered vertex pairs,
indicating ties. We will focus on graphs with no self-
loops: (u,u) /∈ E for any u ∈ V . Alternatively, we may
think of G in terms of its nV × nV adjacency matrix
Y , where Yij = 1, if (i, j) ∈ E, and 0, otherwise, with
Yii ≡ 0. What is our sample size in this setting? At the
opening workshop of the recent Program on Complex
Networks, held in August of 2010 at the Statistical and
Applied Mathematical Sciences Institute (SAMSI), in

North Carolina, USA, this question in fact evoked three
different responses:

(1) it is the number of unique entries in Y , that is,
nV (nV − 1);

(2) it is the number of vertices, that is, nV ; or
(3) it is the number of networks, that is, one.

Which answer is correct? And, why should it matter?
Despite the already vast literature on network mod-

eling, to the best of our knowledge this question has
yet to be formally posed much less answered. Clos-
est to doing so are, perhaps, Frank and Snijders (1994)
and Snijders and Borgatti (1999), who offer some dis-
cussion of this issue in the context of jackknife and
bootstrap estimation of variance in network contexts.
That this should be so is particularly curious given that
the analogous questions have been asked and answered
in other areas involving dependent data. In particular,
the notion of an effective sample size has been found
to be useful in various contexts involving dependent
data, including survey sampling, time series analysis,
spatial analysis and even genetic case–control studies
(Thiébaux and Zwiers, 1984; Yang et al., 2011). Given
a sample of size n in such contexts, an effective sample
size—say, neff—typically is defined in connection with
the variance of an estimator of interest. An understand-
ing of neff, as a function of n, can help lend important
insight into a variety of fundamental and interrelated
concerns, including the precision with which inference
can be done, the amount of information contributed by
the data toward learning a parameter(s) and, more prac-
tically, the resources needed for data collection.

For example, in survey sampling, where nontrivial
dependencies can arise through the use of complex
sampling designs, neff generally is taken to be the sam-
ple size necessary under simple random sampling with
replacement to obtain a variance equal to that resulting
from the actual design used (e.g., Lavrakas, 2008). Al-
ternatively, consider a simple AR(1) time series model,
where (Xt − μ) = φ(Xt−1 − μ) + Zt , for |φ| < 1 and
Zt independent and identically distributed normal ran-
dom variables, with mean zero and variance σ 2. For
a sample of size n, the sample mean X̄n, the natural
and unbiased estimator of μ, has a variance that be-
haves asymptotically in n like σ 2/[n(1 − φ)2]. Con-
trasting this expression with σ 2/n, corresponding to
the case of independent and identically distributed Xt

(i.e., equivalent to the case where φ ≡ 0), the value
neff = n(1 − φ)2 is sometimes interpreted as an effec-
tive sample size.
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In these and similar contexts, it is often possible
to show that whereas nominally the relevant (asymp-
totic) variance scales inversely with the sample size n,
under dependency a different scaling obtains, reflect-
ing a combination of (a) the nominal sample size n

and, importantly, (b) the dependency structure in the
data. Since networks are defined by relational data and,
hence, consist of random variables that are inherently
dependent, it seems not unreasonable to hope that we
might similarly gain insight into the above question
“What is the sample size?” in a network setting, with
the corresponding neff expected to be some function of
the number of vertices nV , modified by characteristics
of the network structure itself.

Following a similar practice in these other fields,
therefore, we will interpret the scaling of the asymp-
totic variances of maximum likelihood estimates in a
network model as an effective sample size. In this pa-
per we provide some initial insight into the question of
what is the effective sample size in network modeling,
focusing on the impact of what is arguably the most
fundamental of network characteristics—sparsity. A
now commonly acknowledged characteristic of real-
world networks is that the actual number of ties tends
to scale much more like the number of vertices [i.e.,
O(nV )] than the number of potential ties [i.e., O(n2

V )].
Here we demonstrate that two very different regimes of
asymptotics, corresponding to responses 1 and 2 above,
obtain for maximum likelihood estimates in the con-
text of a simple case of the popular exponential ran-
dom graph models, under nonsparse and sparse vari-
ants of the models. Response 3 suggests no mean-
ingful asymptotics other than via independent repli-
cation. These may arise in some unexpected settings,
such as with discrete-time Markov models for evolu-
tion of networks over time (Hanneke, Fu and Xing,
2010; Krivitsky and Handcock, 2014, e.g.); however,
we do not explore this direction here.

We will also show that the notion of regime of
asymptotics relates to the notion of consistency, as it
applies to networks. Krivitsky, Handcock and Morris
(2011) showed, informally, that their offset model was
consistent, in the sense that if the network’s asymp-
totic regime agreed with the model, the coefficients of
the nonoffset terms would converge to some asymp-
totic value. Although the results of Shalizi and Rinaldo
(2013) suggest that consistency may be meaningless
for linear ERGMs with nontrivial dependence struc-
ture, our results, both theoretical and simulated, sug-
gest that offsets that control the asymptotic regime of

the network model can produce consistency-like prop-
erties.

As a technical aside, we note that the exponential
random graph models we consider here are only rela-
tively simple versions of those commonly used in prac-
tice. We choose to work with these models because
(i) they are amenable to relatively standard tools in pro-
ducing the theoretical results we require, while, never-
theless, (ii) they are sufficient in allowing us to high-
light in a straightforward and illustrative manner our
key finding—that the question of effective sample size
in network settings can in fact be expected to be non-
trivial and that the answer in general is likely to be sub-
tle, depending substantially on basic model assump-
tions. That such insight may be obtained already for the
simplest models in this class not only speaks to the fun-
damental nature of our results, but also appears to be
fortunate, in that it would appear that theoretical anal-
ysis of the key quantity involved in our calculations be-
comes decidedly more delicate when even moderately
more sophisticated models are considered. We provide
further comments in this direction at the end of this pa-
per.

The rest of this paper is organized as follows. Some
background and definitions are provided in Section 2.
Our main results are presented in Section 3, first for
the case where ties arise as independent coin flips; sec-
ond, for the case in which flips corresponding to ties
to and from a given pair of vertices are dependent;
and, third, for the case of triadic (friend-of-a-friend)
effects, which we study via simulation. We then illus-
trate some practical implications of our results through
a simulation study in Section 4, exploring coverage of
confidence intervals associated with our asymptotic ar-
guments, and through application to food-sharing net-
works in Section 5, where we examine the extent to
which real-world data can be found to support non-
sparse versus sparse variants of our models. Finally,
some additional discussion may be found in Section 6.

2. BACKGROUND

There are many models for networks. [See Kolaczyk
(2009), Chapter 6, or the review paper by Airoldi et al.
(2009).] The class of exponential random graph models
has a history going back roughly 30 years and is par-
ticularly popular with practitioners in social network
analysis. This class of models specifies that the distri-
bution of the adjacency matrix Y follow an exponen-
tial family form, that is, pθ(Y = y) ∝ exp(θ�g(y)), for
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vectors θ of parameters and g(·) of sufficient statis-
tics. However, despite this seemingly appealing fea-
ture, work in the last 10 years has shown that exponen-
tial random graph models must be handled with some
care, as both their theoretical properties and computa-
tional tractability can be rather sensitive to model spec-
ification. See Robins et al. (2007), for example, and
Chatterjee and Diaconis (2013) for a more theoretical
treatment.

Here we concern ourselves only with certain exam-
ples of the simplest type of exponential random graph
models, wherein the dyads (Yij , Yji) and (Yk�, Y�k) are
assumed independent, for (i, j) �= (k, �), and identi-
cally distributed. These independent dyad models ar-
guably have the smallest amount of dependency to still
be interesting as network models. A variant of the mod-
els introduced by Holland and Leinhardt (1981), they
are in fact too simple to be appropriate for modeling
in most situations of practical interest. However, they
are ideal for our purposes, as they allow us to quickly
obtain nontrivial insight into the question of effective
sample size in network modeling using relatively stan-
dard tools and arguments.

Outside of Section 3.3, the models we consider are
all variations of the form

pα,β(Y = y) = ∏
i<j

exp{α(yij + yji) + βyij yji}
1 + 2eα + e2α+β

(2.1)

=
(

1

1 + 2eα + e2α+β

)( n
V
2

)

· exp
{
αs(y) + βm(y)

}
,

with sufficient statistics

s(y) ≡ ∑
i<j

(yij + yji) and m(y) ≡ ∑
i<j

yij yji,(2.2)

a so-called Bernoulli model with reciprocity. The pa-
rameter α governs the propensity of pairs of vertices i

and j to form a tie (i, j), and the parameter β governs
the tendency toward reciprocity, forming a tie (j, i)

that reciprocates (i, j). This model can be motivated
from the independence and homogeneity assumptions
given above by an argument analogous to that of Frank
and Strauss (1986) using the Hammersley–Clifford
Theorem (Besag, 1974), with dependence graph be-
ing D = {{(i, j), (j, i)} : (i, j) ∈ V 2 ∧ i < j}, the set
of cliques of D being {{(i, j)} : (i, j) ∈ V 2 ∧ i �= j} ∪
{{(i, j), (j, i)} : (i, j) ∈ V 2 ∧ i < j}, and simplifying
for homogeneity.

Of interest will be both this general model and the
restricted model pα ≡ pα,0, wherein β = 0 and there is

no reciprocity, and not just dyads, but individual poten-
tial ties within dyads are independent. We will refer to
this latter model simply as the Bernoulli model. Real-
izations of networks from this model without and with
reciprocity [holding expected tie count s(y) fixed] are
given in Figure 1(a) and (b), respectively.

Importantly, in both the Bernoulli model and the
Bernoulli model with reciprocity, we will examine the
question of effective sample size under both the orig-
inal model parameterization and a reparameterisation
in which parameter(s) are shifted by a value lognV .
Krivitsky, Handcock and Morris (2011) introduced
such shifts in an undirected context as a way of adjust-
ing models like (2.1) for network size such that realiza-
tions with fixed α and β would produce network dis-
tributions with asymptotically constant expected mean
degree, Eα,β[2s(Y )/nV ], for varying nV . That is, a
configuration (α,β) that would produce a typical nV =
100 realization like that in Figure 1(a) would pro-
duce an nV = 200 realization like that in Figure 1(d).
The model’s baseline asymptotic behavior is to have a
constant expected density, Eα,β [2s(Y )/{nV (nV − 1)}],
such that a parameter configuration that would produce
a network like 1(a) for nV = 100 would produce a net-
work like 1(c) for nV = 200.

In a directed context, “degree” of a given vertex
i is ambiguous, as it can refer to the number of
ties that vertex makes to others (

∑
j �=i Yij , “outde-

gree”), the number of ties others make to that vertex
(
∑

j �=i Yji , “indegree”), the number of others to whom
that vertex has at least one connection of either type
[
∑

j �=i max(Yij , Yji)], and the number of connections
that vertex has [

∑
j �=i (Yij + Yji)]. In this work, we

use either of the first two. Then, “mean degree” of Y

is s(Y )/nV , with mean outdegree and mean indegree
trivially equal; and density is s(Y )/{nV (nV − 1)}.

Motivated by similar concerns, we use the presence
or absence of such shifts to produce two different types
of asymptotic behavior in our network model classes,
corresponding to sparse (asymptotically finite mean
degree) and nonsparse (asymptotically infinite mean
degree) networks, respectively. Because it is widely
recognized that most large real-world networks are
sparse networks, this distinction is critical and, as we
show below, it has fundamental implications on effec-
tive sample size and consistency.

3. MAIN RESULTS

3.1 Bernoulli Model

We first present our results for the Bernoulli model.
Let pα denote the model pα,0, as defined above, and
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(a) nV = 100, s(y) ≈ 100 (b) nV = 100, s(y) ≈ 100,m(y) ≈ 25

(c) nV = 200, preserve density of (a) (d) nV = 200, preserve mean degree of (a)

FIG. 1. Sampled networks drawn from four configurations of (2.1). (a) shows a realization from a model with expected mean degree 1 on
100 vertices, and no reciprocity effect. (b) shows a realization from a model with the same network size and mean degree as (a), but with
reciprocity parameter β set such that the expected number of mutual ties is 25. (c) is a realization of the model from (a), scaled to 200
vertices, preserving density; while (d) preserves mean degree.

let p†
α denote the same model, but under the mapping

α 
→ α − lognV of the density parameter. Then, it is
easy to show that under pα the mean vertex in- and out-
degree tends to infinity and the network density stays
at logit−1(α) as nV → ∞, while under p†

α , the mean
degree tends to eα while the density tends to zero. In
fact, the limiting in- and out-degree distributions tend
to a Poisson law with the stated mean.

From the perspective of traditional random graph
theory, the offset model of Krivitsky, Handcock and
Morris (2011) is asymptotically equivalent to the stan-
dard formulation of an Erdős–Rényi random graph, in
which the probability of a tie scales like eα/nV . Alter-
natively, from the perspective of social network theory,
it is useful to examine the log-odds that Yij = 1, condi-
tional on the status of all other potential ties. Defining
Y[−ij ] to be the network Y with tie (i, j) removed if

present, this can be expressed as

logitp(Yij = 1|Y[−ij ] = y[−ij ])

≡ log
p(Yij = 1|Y[−ij ] = y[−ij ])
p(Yij = 0|Y[−ij ] = y[−ij ])

.

This quantity goes from being a constant value α un-
der p = pα to a value α − lognV under p†

α . This re-
flects the intuition that as long as there is a cost asso-
ciated with forming and maintaining a network tie, an
individual will be able to maintain ties with a shrink-
ing fraction of the network as the network grows, with
the average number of maintained ties being unaffected
by the growth of the network beyond a certain point
(Krivitsky, Handcock and Morris, 2011).

Given the observation of a network Y randomly gen-
erated with respect to either of these models, initial
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insight into the effective sample size can be obtained
by studying the asymptotic behavior of the Fisher in-
formation, which we denote I(α) and I†(α) under
pα and p†

α , respectively. Straightforward calculation
shows that while

I(α) =
(

nV

2

)
2eα

(1 + eα)2 ,

in contrast,

I†(α) =
(

nV

2

)
2eα/nV

(1 + eα/nV )2 ≈ nV eα.

So I(α) = O(n2
V ), while I(α)† = O(nV ), a difference

by an order of magnitude.
The implications of this difference are immediately

apparent when we consider the asymptotic behavior of
the maximum likelihood estimates of α under the two
models.

THEOREM 3.1. Let α̂ and α̂† denote the maximum
likelihood estimates of the parameter α0 under models
pα0 and p†

α0
, respectively, where α0 ∈ [αmin, αmax], for

finite αmin, αmax. Then under the model pα0 , the esti-

mator α̂ is
(nV

2

)1/2
-consistent for α0, and

(
nV

2

)1/2
(α̂ − α0) → N

(
0,

{
2eα0

(1 + eα0)2

}−1)
,

while under the model p†
α0

, the estimator α̂† is n
1/2
V -

consistent for α0, and
√

nV

(
α̂† − α0

) → N
(
0, e−α0

)
.

The proof of these results uses largely standard tech-
niques for asymptotics of estimating equations, but
with a few interesting twists. Note that, for fixed nV ,
the dyads (Yij , Yji) constitute nV (nV − 1)/2 indepen-
dent and identically distributed bivariate random vari-
ables under both pα and p†

α . Consistency of the esti-
mators in both cases can be argued by verifying, for
example, the conditions of Theorem 5.9 of van der
Vaart (2000) for consistency of estimating equations.
Similarly, the proof of asymptotic normality of the es-
timators can be based on the usual technique of a Tay-
lor series expansion of the log-likelihood and, due to
the fact that we have assumed an exponential family
distribution, the asymptotic normality of the sufficient
statistic s(y) in (2.2); however, in the case of the sparse
model p†

α , the dyads {(Yij , Yji)}i<j follow a different
distribution for each nV , and therefore an array-based
central limit theorem is required to show the asymp-
totic normality of s(y). But since increasing the num-
ber of vertices from, say, nV − 1 to nV , as nV → ∞,

increases the number of dyads in our model by nV − 1,
a standard triangular array central limit theorem is not
appropriate here. Rather, a double array central limit
theorem is needed, such as Theorem 7.1.2 of Chung
(2001). A full derivation is provided in the supplemen-
tal article (Krivitsky and Kolaczyk, 2014).

3.2 Bernoulli Model with Reciprocity

From Theorem 3.1 we see that the effective sample
size neff in this context can be either on the order of
nV or of n2

V , depending on the scaling of the assumed
model, that is, on whether the model is sparse or not.
From a nonnetwork perspective, these results can be
largely anticipated by the rescaling involved, in that
the transformation α 
→ α − lognV induces a rescal-
ing of the expected number of ties by n−1

V . Now, how-
ever, consider the full Bernoulli model with reciprocity,
pα,β , defined in (2.1). Even with just two parameters
the situation becomes notably more subtle.

Let I(α,β) be the 2 × 2 Fisher information ma-
trix under this model. Then calculations (not shown)
completely analogous to those required for our previ-
ous results show that I(α,β) = O(n2

V ) and, similarly,
asymptotic properties of the maximum likelihood esti-
mate of (α,β) analogous to those for pα hold.

Let us focus then on sparse versions of pα,β . The off-
set used previously, that is, mapping α to α − lognV ,
is not, by itself, satisfactory. Call the resulting model
p

†
α,β . Standard arguments show that the limiting in-

and out-degree distributions under this model will be
Poisson with mean parameter eα . On the other hand,
the expected number of reciprocated out-ties a ver-
tex has, E†

α,β[2m(Y)/nV ], behaves like e2α+β/nV , and
therefore tends to zero as nV → ∞. Thus, β plays no
role in the limiting behavior of the model, and, indeed,
reciprocity vanishes. This fact can also be understood
through examination of the Fisher information matrix,
say, I†(α,β), in that direct calculation shows that

I†(α,β) =
[
O(nV ) O(1)

O(1) O(1)

]
.

That is, only the information on α grows with the net-
work. Under p

†
α,β , only the affinity parameter α can be

inferred in a reliable manner.
However, the same intuition that suggests that, as the

network becomes larger, a given vertex i will have an
opportunity for contact with a smaller and smaller frac-
tion of it also suggests that if there is a preexisting
relationship in the form of a tie from j to i, such an
opportunity likely exists for a tie from i to j regard-
less of how large the network may be. This, as well as



190 P. KRIVITSKY AND E. KOLACZYK

direct examination of the exact expression for the in-
formation matrix I†(α,β), suggests that the − lognV

penalty on tie log-probability should not apply to re-
ciprocating ties, which may be implemented by map-
ping β 
→ β + lognV . Call this model, in which p

†
α,β is

augmented with this additional offset for β , the model
p

‡
α,β . The corresponding conditional log-odds of a tie

now have the form

logitp‡
α,β(Yij = 1|Y[−ij ] = y[−ij ])

=
{

α − lognV , if yji = 0,
α + β, if yji = 1,

which exactly captures the intuition described.
It can be shown that under p

‡
α,β we have I‡(α,β) =

O(nV ), indicating that information on both parameters
grows at the same rate in nV . It can also be shown
that the limiting in- and out-degree distribution is now
Poisson with mean parameter eα + e2α+β , and that
E‡

α,β[2m(Y)/nV ] tends to e2α+β . So, both parameters
play a role in the limiting behavior of the model and the
additional offset induces an asymptotically constant
expected per-vertex reciprocity in addition to asymp-
totically constant expected mean degree.

Finally, we have the following analogue of Theo-
rem 3.1.

THEOREM 3.2. Let (α̂‡, β̂‡) denote the maxi-
mum likelihood estimate of the parameter (α0, β0) un-
der the model p

‡
α0,β0

, where (α0, β0) ∈ [αmin, αmax] ·
[βmin, βmax], for finite αmin, αmax, βmin, βmax. Then
(α̂‡, β̂‡) is n

1/2
V -consistent for (α0, β0), and

√
nV

(
α̂‡ − α0
β̂‡ − β0

)

→ N

(
0, e−α0

[
1 −2

−2 4 + 2e−α0−β0

])
.

Proof of this theorem, using arguments directly anal-
ogous to those of Theorem 3.1, may be found in the
supplemental article (Krivitsky and Kolaczyk, 2014).
From the theorem we see that under the sparse model
p

‡
α,β , as under p†

α , the effective sample size neff is nV .

3.3 Triadic Effects

Although there has been some work on obtaining
closed-form asymptotics for ERGMs with triadic—
friend-of-a-friend—effects (Chatterjee, Diaconis and
Sly, 2011) or showing that they might not exist (Shalizi
and Rinaldo, 2013), these results do not appear to be di-
rectly applicable to the per-capita asymptotic regimes

that we consider in this work. Therefore, in this sec-
tion, we use simulation in an attempt to extend the
intuition developed in Section 3.2—that reciprocating
ties should not be “penalized” for the network size—to
these triadic effects. For the sake of simplicity, we will
consider undirected networks only.

A tie between i and k and a tie between k and j—
that is, that i knows k and k knows j—should create a
preexisting relationship between i and j . That is, k can
“introduce” i and j regardless of how large the network
is otherwise. Thus, given i − k − j relationships, a po-
tential relationship between i and j should not be pe-
nalized for network size (though i − k − j themselves
are); and more such two-paths (i.e., i − k′ − j ) should
have no further effect on this penalty. This suggests an
offset on the statistic called the transitive ties (Snijders,
van de Bunt and Steglich, 2010, equation 8) or, equiva-
lently, Geometrically-Weighted Edgewise Shared Part-
ners (GWESP) (Morris, Handcock and Hunter, 2008)
with parameter α fixed at 0, that is,

t (y) = ∑
i<j

yij max
k

(yik, yjk).(3.1)

Unlike the more familiar count of the number of trian-
gles (

∑
i<j<k yij yikyjk), t (y) only considers whether a

two-path between i and j exists, not how many of them
there are. [This also makes it far less prone to ERGM
degeneracy (Schweinberger, 2011).]

Consider the following model, with tie count and
transitive tie count (3.1):

pα,γ (Y = y)

∝ exp
{− log(nV )

(
α	s(y) − γ 	t (y)

)
(3.2)

+ α0s(y) + γ0t (y)
}
.

As with p†
α , the coefficient on s is penalized by net-

work size, in the form of log(nV )α	, with α	 being 1
in p†

α . However, the penalty is then partially negated
by increasing the coefficient on t by log(nV )γ 	. This
means that, on a sparse network,

logitpα,γ (Yij = 1|Y[−ij ] = y[−ij ])

≈
⎧⎨
⎩

α0 − α	 lognV , if ¬∃k �=i,j yikykj = 1,

α0 + 3γ0 − (
α	 − 3γ 	

)
lognV ,

if ∃k �=i,j yikykj = 1.

This approximation holds because on an otherwise
empty network having ties (i, k) and (k, j), adding a tie
(i, j) creates not one but three transitive ties, by mak-
ing all three of the ties transitive, leading to the coeffi-
cient of 3 on the γ ’s. However, as the network becomes
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more dense, this ceases to hold exactly, because (i, k)

and/or (k, j) may already be transitive when (i, j) is
added, so only two or one transitive tie might be cre-
ated.

Therefore, on a sufficiently sparse network (i.e., suf-
ficiently large nV for a given mean degree), in order to
cancel the network size penalty for a tie (i, j) but retain
it for (i, k) and (k, j), γ 	 = α	/3. With α	 = 1 per the
same reasoning as before, this means that our heuristic
suggests that γ 	 ≈ 1/3. We verify this empirically as
follows. Define t ′(y)—per-capita transitive ties—as

t ′(y) = 1

nV

∑
i

∑
j �=i

yij max
k �=i,j

(yikyjk).

In other words, for each vertex i, the number of its
neighbors who have ties to at least one other neighbor
of i is counted, and the resulting measures averaged
over all vertices in the network. It can be shown easily
that t ′(y) ≡ 2t (y)/nV .

We can then ask if there exist constant values of α	

and γ 	 that produce stable mean degree (2s(y)/nV )
and stable per-capita transitive ties (t ′(y)). We con-
structed a series of 40 networks, sized from 100 to
12,000, logarithmically spaced, for each of three con-
figurations of mean degree, 6, 9 and 12; and two
levels of per-capita transitivity for each: 1/2 of the
mean degree and 1/4 of the mean degree. (This was
done because per-capita transitivity cannot exceed the
mean degree.) For each combination of nV , 2s/nV and
t ′/(2s/nV ), we used simulated annealing to construct
a network y with these statistics, and then fit an ERGM
pα,γ (without offsets) to it to obtain point estimates for
what is effectively (− log(nV )α	 + α0, log(nV )γ 	 +
γ0). The calculations were performed using the ergm
package (Handcock et al., 2014; Hunter et al., 2008) for
the R computing environment (R Core Team, 2013).

We show the results in Figure 2. Our intuition seems
to be confirmed, to the extent that our network sizes
are sufficiently large to confirm or disconfirm it. The
trend in both parameter estimates appears to become
more linear (in lognV ) as nV increases, suggesting that
unique α	 and γ 	 exist. For α̂, the asymptotic slope
(i.e., −α	) is very close to −1 regardless of the mean
degree and the amount of transitivity, and for α̂, the
slope (i.e., γ 	) decreases as lognV increases, though
it does not quite obtain the exact value of 1/3 for
the network sizes considered. [Considering only nV >

5,000, 2s(y)/nV = 6, and t ′(y)/(2s(y)/nV ) = 1/4—
the fastest-converging configuration—gave the slope
of 0.35.]

Notably, even though given a particular value of the
sufficient statistic (s(y), t (y)), the natural parameters
(α, γ ) would be determined exactly, we have to use
Monte Carlo MLE (Hunter and Handcock, 2006) to
estimate them, so there is some noise in the point esti-
mates.

Overall, it appears that the coefficients of sparser net-
works with weaker transitivity tend to approach linear-
ity faster. Thus, we performed a follow-up simulation
study, this one with mean degree 2, transitivity pro-
portion 1/8 and 40 values of nV between 10,000 and
40,000, logarithmically spaced.

Based on all of the values of nV considered, α̂	 =
1.00037 [95% CI: (1.00029,1.00044)] and γ̂ 	 =
0.3377 [95% CI: (0.3369,0.3386)], closer to the the-
oretical values of 1 and 1/3 than the smaller network
sizes. The confidence intervals do not include the the-
oretical values, but we would not expect the asymp-
totic values to be attained for any finite network size.
Indeed, there is evidence of nonlinearity in that range
[P -value of predictor log(nV )2 term is <0.0001 for the
α	 response and 0.04 for the γ 	 response, with nega-
tive coefficient for both]. Furthermore, fitting only the
20 data points with nV > 20,000 produces (α̂	, γ̂ 	) =
(1.000072,0.3347), and fitting only the 10 data points
with nV > 29,000, (α̂	, γ̂ 	) = (1.00030,0.3334).

This very strongly suggests meaningful and inter-
pretable asymptotic behavior for triadic closure ERGM
terms as well. In particular, the asymptotic linearity
with a known coefficient suggests a form of consis-
tency for “intercepts” α0 and γ0, as it is they that con-
trol the asymptotic mean degree and per-vertex amount
of triadic closure in (3.2).

To relate this to the notion of effective sample size
neff used earlier, defined through the scaling of the in-
formation matrix I(α, γ ), we simulated the sufficient
statistics from the above-described fits. For an expo-
nential family, the variance–covariance matrix of suffi-
cient statistics under the MLE approximates the infor-
mation matrix (Hunter and Handcock, 2006, equation
3.5, e.g.). We find that the entries of Î(α̂, γ̂ )/nV =
Varα̂,γ̂ ([s(Y ), t (Y )])/nV do not exhibit any trend at
all as a function of nV , for fixed mean degree and
per-vertex transitivity. [In particular, for a linear trend,
P -values are 0.31, 0.49 and 0.41 for Var(s(Y ))/nV ,
Var(t (Y ))/nV and Cov(s(Y ), t (Y ))/nV , respectively.
Exploratory plots do not show any pattern, except for
greater variability in estimates of variance for higher
nV .] This strongly suggests that the asymptotics of the
model (3.2) have an effective sample size neff of nV as
well.
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FIG. 2. Maximum likelihood estimates from fitting pα,γ to networks with a variety of sizes, densities (distinguished by color) and levels of
transitivity (distinguished by plotting symbol). Note that the horizontal axis is plotted on the logarithmic scale.

4. COVERAGE OF WALD CONFIDENCE
INTERVALS

Our asymptotic arguments in Section 3 were de-
veloped primarily for the purpose of establishing
the scaling associated with the asymptotic variance,
so as to provide insight into the question of effec-
tive sample size—our main focus here. However, the
asymptotically normal distributions we have derived
are of no little independent interest themselves, as
they serve as a foundation for doing formal infer-
ence on the model parameters in practice. By way of
illustration, here we explore their use for construct-
ing confidence intervals, particularly those based on
Theorem 3.2: under a model p

‡
α,β , the Wald confi-

dence intervals using plug-in estimators for the stan-

dard errors are α̂‡ ± z∗
(1−CL)/2

√
e−α̂‡

/nV for α and

β̂‡ ± z∗
(1−CL)/2

√
e−α̂‡

(4 + 2e−α̂‡−β̂‡
)/nV for β .

Because our asymptotics are in nV = |V |, we ex-

amine a variety of network sizes. The desired asymp-

totic properties of the network are expressed in terms of
the per-capita mean value parameters—E‡

α,β [s(Y )/nV ]
and E‡

α,β[2m(Y)/nV ]. We study two configurations:

(1) (E‡
α,β [s(Y )/nV ],E‡

α,β[m(Y)/nV ]) = (1,0.25)

and

(2) (E‡
α,β [s(Y )/nV ],E‡

α,β[m(Y)/nV ]) = (1,0.40).
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In other words, the expected mean outdegree is set to 1,
and expected numbers of out-ties that are reciprocated
are 0.25 · 2 = 0.5 and 0.40 · 2 = 0.8 per vertex, respec-
tively. These represent two levels of mutuality, though
note that even (1) represents substantial mutuality, es-
pecially for larger networks.

For each nV = 10,15,20, . . . ,200, we estimate the

natural parameters of the model p
‡
α,β corresponding to

the desired mean value parameters, and then simulate
100,000 networks from each configuration, evaluating
the MLE and constructing a Wald confidence interval
at each level of the customary 80%, 90%, 95% and
99%, for α and for β (individually), checking the cov-
erage.

For some of the smaller sample sizes, the simulated
network statistics for some realizations were not in the
interior of their convex hull (Barndorff-Nielsen, 1978,
Theorem 9.13, page 151). That is, their values were the
maximal or minimal possible: s(y) = 0 (empty graph),
s(y) = nV (nV − 1) (complete graph), m(y) = 0 (no
ties reciprocated), and/or m(y) = s(y)/2 (every extant
tie reciprocated). For those, the MLE did not exist. [For
(1), the fraction was 8.2% for nV = 10 and none of the
100,000 realizations had no MLE for nV ≥ 55. For (2),
it was 14.2% for nV = 10 and none of the realizations
had no MLE for nV ≥ 65.]

Our results are conditional on the MLE existing.
From the frequentist perspective, one might argue that
if the MLE did not exist for a real data set, we would
not have reported that type of confidence interval, so it
should be excluded from the simulation as well.

We report coverages for selected network sizes in
Table 1 and provide a visualization in Figure 3. Over-
all, the 80% coverage appears to be varied—and not
very conservative—while higher levels of confidence
appear to be more consistently conservative, particu-
larly for estimates of β . Coverage for α appears to os-
cillate as a function of network size. This is particularly
noticeable for the lower confidence levels and stronger
mutuality (2). Tendency of a confidence interval for
a binomial proportion to oscillate around the nominal
level is a known phenomenon (Brown, Cai and Das-
Gupta, 2001, 2002, and others), though it is interesting
to note that it appears to be more prominent for the den-
sity, rather than mutuality, parameter and that it appears
to be stronger for stronger mutuality.

5. EXAMPLE: FOOD-SHARING NETWORKS IN
LAMALERA

While the results of Section 3 are important in es-
tablishing how closely the question of effective sam-
ple size in network modeling is tied to the structural

property of (non)sparseness expected of the networks
modeled, there remains the important practical ques-
tion of establishing in applications just which model
(i.e., sparse or nonsparse) is most appropriate. While a
full and detailed study of this question is beyond the
scope of this work, we present here an initial explo-
ration.

Note that, in exploring this question, we face a prob-
lem similar to that pointed out by Krivitsky, Handcock
and Morris (2011): it requires a collection of closed
networks of a variety of sizes yet substantively simi-
lar social structure. Furthermore, our results are limited
to modeling density and reciprocity, so the networks
should be well approximated by this model. Here, we
use data collected by Nolin (2010), in which each of
317 households in Lamalera, Indonesia was asked to
list the households to whom they have given and house-
holds from whom they have received food in the pre-
ceding season. Lamalera is split, administratively, into
two villages, which are further subdivided into wards,
and then into neighborhoods. Nolin (2010) fit several
ERGMs to the network, finding that distance between
households had a significant effect on the propensity to
share, as did kinship between members of the house-
holds involved. Nolin also found a significant positive
mutuality effect.

In our study, we make use of the geographic ef-
fect by constructing a series of 24 overlapping subnet-
works, consisting of Lamalera itself, its 2 constituent
villages, 6 wards and 15 neighborhoods, with network
sizes ranging from 12 to 317. We then fit the baseline
model pα,β to each network. If pα,β is the most realis-
tic asymptotic regime for these data, we would expect
estimates α̂ and β̂ to have no relationship to lognV for

the corresponding network. If p
†
α,β is the most realis-

tic, we would expect no relationship between lognV

and β̂ , but an approximately linear relationship with α̂,
with slope around −1. Last, if p

‡
α,β is the most realistic,

we would expect the slope of the relationship between
lognV and α̂ to be around −1 and between lognV and
β̂ to be around +1.

The estimated coefficients and the slopes are given
in Figure 4. The results are suggestive. The relation-
ship between α̂ and lognV is clearly negative, while
the relationship between β̂ and lognV is clearly pos-
itive, and the magnitudes of both slopes are closer to
1 than to 0 (although both are far from equaling 1).
Overlap between the subnetworks induces dependence
among the coefficients, so it is not possible to formally
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TABLE 1
Simulated Theorem 3.2 confidence interval coverage levels for selected network sizes and two levels of reciprocity: lower (1) and higher (2)

Coverage

80.0% 90.0% 95.0% 99.0%

nV α β α β α β α β

(1) 10 72.4% 77.3% 85.3% 89.8% 93.2% 95.2% 96.4% 99.4%
20 74.5% 77.3% 86.0% 89.4% 92.9% 94.9% 98.3% 99.5%
50 80.9% 78.8% 87.6% 89.4% 94.7% 94.8% 98.9% 99.2%

100 77.4% 79.6% 90.0% 90.0% 94.6% 94.9% 98.9% 99.1%
200 79.0% 79.5% 90.1% 89.8% 94.9% 94.9% 98.9% 99.0%

(2) 10 84.0% 84.2% 86.6% 89.8% 93.6% 94.3% 96.3% 98.2%
20 81.8% 80.3% 92.8% 92.1% 95.1% 96.0% 98.1% 98.8%
50 75.3% 79.5% 91.7% 89.4% 95.6% 95.1% 98.8% 99.0%

100 78.5% 79.7% 91.0% 90.2% 94.5% 94.9% 99.0% 99.1%
200 82.2% 79.9% 90.5% 89.9% 95.3% 95.1% 99.2% 99.1%

FIG. 3. Scatterplot of differences between simulated coverage and nominal coverage for the two configurations studied, as a function of
network size nV . Color denotes the nominal coverage levels, and smoothing lines have been added. Note that the differences are differences

in percentage points (simulated % − nominal %), not percent differences ( simulated %−nominal %
nominal % · 100%).
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FIG. 4. Maximum likelihood estimates from fitting pα,β to each subdivision of the Lamalera food-sharing network. Note that the horizontal

axis is plotted on the logarithmic scale. Colors indicate subdivision type. The least-squares coefficients from regressing α̂ and β̂ on lognV
are −0.72 and +0.60, respectively.

test or estimate how significant this difference is. Nev-
ertheless, the preponderance of evidence is that p

‡
α,β is

the best of the three considered. That is, a sparse model
that does not enforce sparsity on reciprocating ties ap-
pears to be preferable here.

A possible explanation for why the magnitudes of
the slopes are substantially less than 1 is that both the
argument of Krivitsky, Handcock and Morris (2011)
and our argument in Section 3.2 rely on the assump-
tion that the network is closed—no relationships of in-
terest are to or from vertices outside of the network
observed—or, at least, that the stable mean degree and
per-capita reciprocity are for the ties within it. How-
ever, while there is likely to be very little food sharing
out of or into Lamalera, and relatively little between the
two villages it comprises (7% of all food-sharing ties in
the network are between villages), there is more shar-
ing between the wards (28% are between wards), and
even more between neighborhoods (44%). Thus, the
closed-network assumption is violated. (The respective
between-subdivision percentages for reciprocated ties
are 6%, 22% and 39%.) When each of the subdivisions
of the network is considered in isolation, these ties are
lost, so the smaller subdivisions appear, to the model,
to have smaller mean degree and per-capita mutuality.
(See Figure 5.) This, in turn, means that smaller subdi-
visions have a decreased α̂ (increasing the slope for it
in Figure 4) and, because mutual ties suffer less of this
“attrition” than ties do overall, the β̂ , after adjusting for
the decreased α̂, is increased for smaller networks, thus

reducing the slope for β̂ in Figure 4. It is not unlikely
that this pattern will hold in any network with an unob-
served spatial structure, whose subnetworks of interest
are contiguous regions in this space.

6. DISCUSSION

Unlike conventional data, network data typically do
not have an unambiguous notion of sample size. The
theoretical developments and the examples we have
presented show that the effective sample size neff as-
sociated with a network depends strongly on the model
assumed for how the network scales. In particular, in
the case of reciprocity, whether or not the model for
scaling takes into account the notion of the preexisting
relationship affects whether reciprocity is even mean-
ingful for large networks. In the case of triadic effects,
a similar notion—along with the intuition that as the
network size changes each individual’s view of triadic
closure should not—implies a specific scaling regime
which, in turn, implies a specific notion of the effective
sample size.

The models we study here are relatively simple
examples of network models. However, with reci-
procity, our work includes an important aspect that al-
ready allows us a glimpse beyond the treatments of,
say, Chatterjee, Diaconis and Sly (2011) and Rinaldo,
Petrović and Fienberg (2013), for so-called beta mod-
els, where the dependency induced here by reciprocity
is absent. In addition, the results for reciprocity sug-
gest that the effective modeling of triadic (e.g., friend
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FIG. 5. Per-capita network statistics as a function of nV . Colors indicate subdivision type. Note that the larger subdivisions have more
within-subdivision ties.

of a friend of a friend) effects in a manner indexed to
network size requires a more complex treatment yet.
However, our simulation shows, perhaps somewhat
surprisingly, that if triadic closure is considered on a
per-capita basis, effective sample size ultimately be-
haves similarly to the way it does in the simpler cases.

We note that asymptotic theory supporting methods
for the construction of confidence intervals for network
parameters is only beginning to emerge. The most trac-
tion appears to have been gained in the context of
stochastic block models (e.g., Bickel and Chen, 2009;
Choi, Wolfe and Airoldi, 2012; Celisse, Daudin and
Pierre, 2012 and Rohe, Chatterjee and Yu, 2011), al-
though progress is beginning to be had with exponen-
tial random graph models as well (e.g., Chatterjee, Di-
aconis and Sly, 2011; Chatterjee and Diaconis, 2013
and Rinaldo, Petrović and Fienberg, 2013). Most of
these works present consistency results for maximum
likelihood and related estimators, with the exception of
Bickel and Chen (2009), which also includes results
on asymptotic normality of estimators. Our work con-
tributes to this important but nascent area with both our
theoretical developments and our simulation studies. In
particular, the asymptotic regime of pα,γ is one that
neither appears to become degenerate nor approaches
Erdős–Rényi.

The lack of an established understanding of the dis-
tributional properties of parameter estimates in com-
monly used network models is particularly unfortunate

given that a number of software packages now allow
for the easy computation of such estimates. For exam-
ple, packages for computing estimates of parameters
in fairly general formulations of exponential random
graph models routinely report both estimates and, os-
tensibly, standard errors, where the latter are based on
standard arguments for exponential families. Unfortu-
nately, practitioners do not always seem to be aware
that the use of these standard errors for constructing
normal-theory confidence intervals and tests is lack-
ing fully formal justification. From that perspective,
our work appears to be one of the first to begin laying
the necessary theoretical foundation to justify practical
confidence interval procedures in exponential random
graph models. See Haberman (1981) for another con-
tribution in this direction, proposed as part of the dis-
cussion of the original paper of Holland and Leinhardt
(1981).

In order to successfully build upon our work, and
extend our results to more sophisticated instances of
exponential random graph models, certain technical
challenges must be overcome. First, we note that our
notion of effective sample size is tied directly to the
asymptotic behavior of the Fisher information matrix
of our model [denoted I(θ) in the supplemental ar-
ticle (Krivitsky and Kolaczyk, 2014)]. Given that ex-
ponential random graph models are, by definition, of
exponential family form, this information matrix is in
principle given by the matrix of partial second deriva-
tives of the cumulant generating function [denoted ψ in
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the supplemental article, so that I = ∂2ψ(θ)/∂θ ∂θ�].
Due to the use of independent dyads in our theoretical
work (i.e., our models are variations on Bernoulli mod-
els), the corresponding likelihoods factor over dyads,
and hence the information matrices are simply propor-
tional to powers of nV (i.e., linear or quadratic). This
is in analogy to the canonical setting of independent
and identically distributed observations. However, in
more general settings beyond the case of independent
dyads—including even the models with triadic effects
we studied in simulation—the likelihood cannot be ex-
pected to factor in such a simple manner. Hence, the
analysis of the Fisher information promises to be de-
cidedly more subtle. In fact, there appears to be al-
most no work to date studying this matrix in any de-
tail. To the best of our knowledge, the only such work
is the recent manuscript by Pu et al. (2013), introduc-
ing a deterministic approach to approximating this ma-
trix (stochastic approximations may, of course, be pro-
duced using MCMC) based on a lower bound of the cu-
mulant generating function. This bound, however, has
only an implicit representation.

Second, in the case of more general exponential ran-
dom graph models than those studied here, there will
be a need for a correspondingly more sophisticated
central limit theorem, in order to produce results on
asymptotic normality analogous to those we present
for the simpler models we study. Even for our models,
the tool we used was somewhat nonstandard, in that
we required a double-array central limit theorem. The
more general case will require a central limit theorem
capable of handling the nontrivial global dependencies
induced by effects even as seemingly simple as triadic
closure or the like. Progress on the first point above is a
likely prerequisite to understanding the nature of these
dependencies sufficiently well to know just what sort
of central limit theorem is required.

Finally, there is, as always with exponential random
graph models, the issue of instability and degeneracy
that must be kept in mind (e.g., Handcock, 2003 and
Chatterjee, Diaconis and Sly, 2011). It has been dis-
covered only relatively recently that substantial care
must be taken in specifying network effects in expo-
nential random graph models. Without such care, it
is possible to produce models for which the corre-
sponding distributions turn out to be near-degenerate
and, in turn, the estimation of parameters highly un-
stable. Schweinberger (2011) has recently shed im-
portant light on this issue, showing that instability
and degeneracy are related to the scaling of the linear
term in exponential family distributions generally and,

more specifically, in exponential random graph mod-
els. These scaling results can be expected to have im-
plications on the role that scaling necessarily plays in
the types of calculations we have presented here.
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