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small number of sampling units can be ordered with respect to the variable
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which are not identically distributed and most of the commonly used non-
parametric techniques are not directly applicable to them. We first develop
a kernel density estimator of f based on an imperfect PROS sampling pro-
cedure and study its theoretical properties. Then, we consider the problem
when the underlying distribution is assumed to be symmetric and introduce
some plug-in kernel density estimators of f . We use an EM type algorithm
to estimate misplacement probabilities associated with an imperfect PROS
design. Finally, we expand on various numerical illustrations of our results
via several simulation studies and a case study to estimate the distribution
of wheat yield using the total acreage of land which is planted in wheat as
an easily obtained auxiliary information. Our results show that the PROS
density estimate performs better than its SRS and RSS counterparts.
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1. Introduction

Nonparametric density estimation techniques are widely used to construct an
estimate of a density function and to provide valuable information about sev-
eral features of the underlying population (e.g., skewness, multimodality, etc.)
without imposing any parametric assumptions. These methods are very popular
in practice and their advantages over histograms or parametric techniques are
greatly appreciated. For example, they are widely used for both descriptive and
analytic purposes in economics to examine the distribution of income, wages
and poverty (e.g., [19]); in environmental and ecological studies (e.g., [8]); or in
medical research (e.g., [23]), among others.

Most of these density estimation techniques are based on simple random sam-
pling (SRS) design which involve independent and identically distributed (i.i.d.)
samples from the underlying population. There are only a few results available
when the sampling design is different (e.g., [5, 7, 13, 18, 2, 3, 4] and [20]). The
properties of nonparametric kernel density estimation based on i.i.d. samples are
well known and extensively studied in the literature (e.g., [25] as well as [24]).
In many applications, however, the data sets are often generated using more
complex sampling designs and they do not meet the i.i.d. assumption. Exam-
ples include the rank-based sampling techniques which are typically used when
a small number of sampling units can be ordered fairly accurately with respect
to a variable of interest without actual measurements on them and this can also
be done at low cost. This is a useful property since, quite often, exact measure-
ments of these units can be very tedious and/or expensive. For example, for
environmental risks such as radiation (soil contamination and disease clusters)
or pollution (water contamination and root disease of crops), exact measure-
ments require substantial scientific processing of materials and a high cost as a
result, while the variable of interest from a small number of experimental (sam-
pling) units may easily be ranked. These rank-based sampling designs provide a
collection of techniques to obtain more representative samples from the underly-
ing population with the help of the available auxiliary information. The samples
obtained from such rank-based sampling designs often involve independent ob-
servations based on order statistics which are not identically distributed. So, it
is important to develop kernel density estimators of the underlying population
using such data sets and study their optimal properties.

In this paper, we study the problem of kernel density estimation based on
a partially rank-ordered set (PROS) sampling design. [22] introduced PROS
sampling procedure as a generalization of the ranked set sampling (RSS) design.
To obtain a ranked set sample of size n one can proceed as follows. A set of n
units is drawn from the underlying population. The units are ranked via some
mechanism rather than the actual measurements of the variable of interest.
Then, only the unit ranked as the smallest is selected for full measurement.
Another set of n units is drawn and ranked and only the unit ranked as the
second smallest is selected for full measurement. This process is repeated n
times until the unit ranked the maximum is selected for the final measurement.
See [6, 27, 26] and references therein for more details.
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In RSS, rankers are forced to assign unique ranks to each observation even if
they are not sure about the ranks. PROS design is aimed at reducing the impact
of ranking error and the burden on rankers by not requiring them to provide a
full ranking of all units in a set. Under PROS sampling technique, rankers have
more flexibility by being able to divide the sampling units into subsets of pre-
specified sizes based on their partial ranks. [22] obtained unbiased estimators
for the population mean and variance using PROS samples. He also showed that
PROS sampling has some advantages over RSS. [15] and [16] showed that the
Fisher information of PROS samples is larger than the Fisher information of
RSS samples of the same size. Since 2011, PROS sampling design has been the
subject of many studies. Among others, see [11] for a two-sample distribution-
free inference; [21] for quantile estimation; [10] for nonparametric estimation of
the population mean; [1] for parametric inference in a location-scale family of
distributions, and [14] for finite mixture model analysis based on PROS samples
with a fishery application.

The outline of this paper is as follows. In Section 2, we introduce some pre-
liminary results and present a general theory that can be used to obtain non-
parametric estimates of some functionals of the underlying distribution based
on imperfect PROS samples. In Section 3, we present a nonparametric kernel
density estimate of the underlying distribution based on an imperfect PROS
sampling scheme and study its properties. We also consider the problem of den-
sity estimation when the distribution of population is symmetric. In Section 4,
we consider the problem of estimating the misplacement probabilities. To this
end, we propose a modified EM-algorithm to estimate the probabilities of subset-
ting errors. This algorithm is fairly simple to implement and simulation results
show that its performance is satisfactory. In Section 5, we compare our PROS
density estimate with its RSS and SRS counterparts using simulation studies.
In Section 6, we illustrate our proposed method by a real example. Finally, in
Section 7, we provide some concluding remarks and directions for future works.

2. Necessary backgrounds and preliminary results

In this section, we first give a formal introduction to PROS sampling design
and then present some notations and preliminary results. Also, a general the-
ory is obtained to provide nonparametric estimates of some functionals of the
underlying distribution based on PROS samples.

2.1. PROS sampling design

To obtain a PROS sample of size N = nL, we choose a set size s and a design
parameter D = {d1, . . . , dn} that partitions the set {1, . . . , s} into n mutually
exclusive subsets, where dj = {(j−1)m+1, . . . , jm} and m = s/n. First s units
are randomly selected from the underlying population and they are assigned
into subsets dj , j = 1, . . . , n, without actual measurement of the variable of
interest and only based on visual inspection or judgment, etc. These subsets
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Table 1

An example of PROS design

cycle set Subsets Observation

1 S1 D1 = {d1, d2} = {{1, 2}, {3, 4}} X[d1]1

S2 D2 = {d1,d2} = {{1, 2}, {3, 4}} X[d2]1

2 S1 D1 = {d1, d2} = {{1, 2}, {3, 4}} X[d1]2

S2 D2 = {d1,d2} = {{1, 2}, {3, 4}} X[d2]2

are partially judgment ordered, i.e. all units in subset dj judged to have smaller
ranks than all units in dj′ , where j < j′. Then a unit is selected at random for
measurement from the subset d1 and it is denoted by X[d1]1. Selecting another
s units assigning them into subsets, a unit is randomly drawn from subset d2
and then it is quantified and denoted by X[d2]1. This process is repeated until
we randomly draw a unit form dn resulting in X[dn]1. This constitutes one cycle
of PROS sampling technique. The cycle is then repeated L times to generate a
PROS sample of size N = nL, i.e. XPROS = {X[dj]i; j = 1, . . . , n; i = 1, . . . , L}.
Table 1 shows the construction of a PROS sample with s = 4, n = 2, L = 2
and the design parameter D = {d1, d2} = {{1, 2}, {3, 4}}. Each set includes
four units assigned into two partially ordered subsets such that units in d1
have smaller ranks than units in d2. In this subsetting process we do not assign
any ranks to units within each subset so that they are equally likely to take
any place in the subset. One unit, in each set from the bold faced subset, is
randomly drawn and is quantified. The fully measured units are denoted by
X[dj]i, j = 1, 2; i = 1, 2.

Note that if all units in dj have actually smaller ranks than all units in
dj′ , j < j′, then there is no subsetting error and the PROS sample is perfect.
Otherwise, we have subsetting error and this PROS sample is called imperfect.
To model an imperfect PROS sampling design, following [1, 15] and [16], let α
be a double stochastic misplacement probability matrix,

α =




αd1,d1
· · · αd1,dn

...
. . .

...
αdn,d1

· · · αdn,dn


 , (1)

where αdj,dh
is the misplacement probability of a unit from subset dh into sub-

set dj with
∑n

h=1 αdj,dh
=

∑n
j=1 αdj ,dh

= 1. Throughout the paper, we use
PROSα(n, L, s,D) to denote an imperfect PROS sampling design with sub-
setting error probability matrix α, the number of subsets n, the number of
cycles L, the set size s, and the design parameter D = {dj , j = 1, . . . , n} where
dj = {(j−1)m+1, . . . , jm}, in which m = s/n is the number of unranked obser-
vations in each subset. We note that SRS and imperfect RSS (with ranking error
probability matrix α) can be expressed as special cases of the PROSα(n, L, s,D)
design when s = 1 and s = n, respectively. For a perfect PROS design, since
αdj,dj

= 1 for j = 1, . . . , n and αdj ,dh
= 0 for h 6= j, we use PROSI(n, L, s,D),

where I is the identity matrix.
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2.2. Some notations and preliminary results

In what follows, the probability density function (pdf) and cumulative distri-
bution function (cdf) of the variable of interest are denoted by f and F , re-
spectively. The pdf and cdf of X[dj]i, for i = 1, . . . , L, are denoted by f[dj] and
F[dj ], respectively, and the pdf of the r-th order statistic from a SRS of size s

is denoted by f(r:s). We also use ik(g) to denote
∫
xkg(x)dx and work with a

second-order kernel density function K(·) that is symmetric and satisfies the
following conditions

i0(K) =

∫
K(x)dx = 1, i0(K

2) =

∫
K2(x)dx < ∞,

and

i2(K) =

∫
x2K(x)dx < ∞.

The SRS, RSS and PROS density estimates of f are denoted by f̂SRS, f̂RSS and
f̂PROS, respectively. Now, we present a useful lemma to show the connection
between f[dj] and f .

Lemma 1. Let XPROS denote a PROSα(n, L, s,D) sample of size N from a
population with pdf f and cdf F , respectively. Then

f[dj](x) = nf(x)

n∑

h=1

∑

u∈dh

αdj ,dh

(
s− 1

u− 1

)
F (x)u−1F (x)

s−u

=
1

m

n∑

h=1

∑

u∈dh

αdj,dh
f(u:s)(x), (2)

where F (x) = 1− F (x), and consequently

f(x) =
1

n

n∑

j=1

f[dj](x) and F (x) =
1

n

n∑

j=1

F[dj](x).

Remark 1. For a PROSI(n, L, s,D) design, we have

f[dj](x) = nf(x)
∑

u∈dj

(
s− 1

u− 1

)
F (x)u−1F (x)s−u

=
1

m

∑

u∈dj

f(u:s)(x) =
1

m

jm∑

r=(j−1)m+1

f(r:s)(x).

Therefore, a perfect PROS sample is a special case of an imperfect PROS sample
and hence the results for a perfect PROS sampling can be obtained as a special
case.
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Let h(x) be a function of x with µh = E[h(X)]. We study the method of
moments estimate of µh by using an imperfect PROS sampling procedure, as-
suming that the required moments of h(X) exist. Note that different choices of
h(x) lead to different types of estimators. For example, h(x) = xl for l = 1, 2, . . . ,
corresponds to the estimation of population moments; h(x) = 1

λK( t−x
λ ) where

K(·) is a kernel function and λ is a given constant, corresponds to the kernel
estimate of pdf and h(x) = I(x ≤ c), where I(A) is the indicator function of A,
corresponds to the estimate of cdf at point c.

The method of moments estimate of µh based on an imperfect PROS sample
of size N is given by

µ̂h.PROS =
1

N

L∑

i=1

n∑

j=1

h(X[dj]i). (3)

The properties of µ̂h.PROS is discussed in the following theorem.

Theorem 1. Let XPROS be a PROSα(n, L, s,D) sample of size N from a pop-
ulation with pdf f , and let the method of moments estimator of µh be defined as
in (3). Then

(i) µ̂h.PROS is an unbiased estimator of µh, i.e. E(µ̂h.PROS) = µh.
(ii) var(µ̂h.PROS) ≤ var(µ̂h.SRS) where µ̂h.SRS is the method of moments

estimator of µh based on a SRS sample of comparable size.
(iii) µ̂h.PROS is asymptotically distributed as a normal distribution with mean

µh and variance var(µ̂h.PROS) as L → ∞.
(iv) µ̂h.PROS is a strong consistent estimator of µh.PROS as L → ∞.

Proof. The proof is essentially the same as the one given by [22] for h(x) = x
which we present here for the sake of completeness. Part (i) is an immediate
consequence of Lemma 1. For part (ii), using [22], we have

var(µ̂h.PROS) = var(µ̂h.SRS)−
1

n2L

n∑

j=1

(µh[dj ] − µh)
2

≤ var(µ̂h.SRS),

where µh[dj] = E[h(X[dj])]. Note that the equality holds if and only if µh[dj] = µh

for all j = 1, . . . , n; i.e. the subsetting process is purely random. For part (iii),

note that µ̂h.PROS = 1
n

∑n
j=1 h[dj ], where h[dj ] =

1
L

∑L
i=1 h(X[dj]i). However,

for a fixed j, h[dj ] converges asymptotically to a normal distribution with mean
E[h(X[dj])] and variance var[h(X[d

j
])]/L as L → ∞ by the Central Limit Theo-

rem. Therefore, the result holds for µ̂h.PROS . Finally, part (iv) follows from the
Strong Law of Large Numbers.

3. Kernel density estimate based on PROS samples

In this section, we present a kernel density estimator of f(x) based on an im-
perfect PROS sample of size N and study some theoretical properties of our
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proposed estimator. Also, we consider the problem of density estimation when
f(·) is assumed to be symmetric.

3.1. Main results

To obtain a PROS kernel density estimator of f(·) we first note that from Lemma
1 we have f(x) = 1

n

∑n
j=1 f[dj](x). For a fixed j, the sub-sample X[dj]i, i =

1, . . . , L can be considered as a simple random sample of size L from f[dj ](·).
Hence, f[dj](x) can be estimated by the usual kernel method as follows

f̂[dj](x) =
1

Lh

L∑

i=1

K

(
x−X[dj]i

h

)
, (4)

where h is the bandwidth to be determined. We propose a kernel estimate of
f(x) as

f̂PROS(x) =
1

n

n∑

j=1

f̂[dj](x) =
1

nLh

L∑

i=1

n∑

j=1

K

(
x−X[dj]i

h

)
. (5)

Now, we establish some theoretical properties of f̂PROS(x). To this end, let

f̂SRS(x) =
1

N h

∑N
j=1 K(

x−Xj

h ) be a kernel density estimator of f(x) based on a
SRS of size N and note that (e.g., [24])

E[f̂SRS(x)] = f(x) +O(h2),

and

var(f̂SRS(x)) =
1

Nh
f(x)i0(K

2)− 1

N
f2(x) +O(

h2

N
). (6)

Theorem 2. Suppose that f̂PROS(x) is a kernel density estimator of f(x) based

on a PROSα(n, L, s,D) sample of size N = nL and let f̂SRS(x) denote its
corresponding SRS kernel estimator based on a simple random sample of the
same size. Then,

(i) E[f̂PROS(x)] = E[f̂SRS(x)],

(ii) var(f̂PROS(x)) = var(f̂SRS(x)) − 1
Nn

∑n
j=1(µK[dj ] − µK)2, where

µK[dj] = E

[
1

h
K

(
x−X[dj]

h

)]
and µK = E

[
1

h
K

(
x−X

h

)]
,

in which X[dj] is an observation obtained from a PROSα(n, L, s,D) design.

(iii) f̂PROS(x) at a fixed point x is distributed asymptotically as a normal dis-

tribution with mean E[f̂PROS(x)] and variance var(f̂PROS(x)) for large L.

Proof. The results hold immediately from Theorem 1 by letting h(t) = 1
hK(x−t

h ).



Nonparametric density estimation with PROS data 745

Theorem 2 shows that f̂PROS(x) has the same expectation as f̂SRS(x) and a

smaller variance than f̂SRS(x). This implies that f̂PROS(x) has a smaller mean

integrated square error (MISE) than f̂SRS(x), that is

MISE(f̂PROS) =

∫
E

(
f̂PROS(x)− f(x)

)2

dx

≤
∫

E

(
f̂SRS(x)− f(x)

)2

dx

= MISE(f̂SRS).

In addition, by using part (iii) of Theorem 2, one can construct an asymptotic
pointwise 100(1− ν)% confidence interval for f(x) as follows

f̂PROS(x) ± zν/2
√
v̂arPROS(x),

where zν/2 is the 100(1− ν
2 )-th quantile of the standard normal distribution and

v̂arPROS(x) =
1

Nh
f̂PROS(x)i0(K

2)− 1

Nn

n∑

j=1

f̂2
[dj]

(x),

where f̂[dj](x) is a consistent estimators of f[dj](x) given by (4). If the lower
bound of the proposed confidence interval is negative, one can truncate it at
zero.

Note that our estimate f̂PROS(x) depends on a bandwidth h which should
be determined in practice. We present an asymptotic optimal bandwidth by
minimizing the asymptotic expansion of MISE(f̂PROS). In this regard, we first
present a lemma which is useful for obtaining the asymptotic expansion of
MISE(f̂PROS).

Lemma 2. Assuming that the underlying density f(·) is sufficiently smooth
with desired derivatives and K(·) is a second-order kernel function, for a fixed
n, as h → 0, we have

E
2

[
1

h
K

(
x−X

h

)]
− 1

n

n∑

j=1

E
2

[
1

h
K

(
x−X[dj]

h

)]
= f2(x)− 1

n

n∑

j=1

f2
[dj]

(x)+O(h2).

Proof. Using (2) and by changing the variable v = x−t
h , we have

E

[
1

h
K

(
x−X[dj]

h

)]
=

∫
1

h
K

(
x− t

h

)
f[dj](t)dt

=
1

m

n∑

l=1

∑

u∈dl

αdj ,dl

∫
K(v)f(u:s)(hv + x)dv.

Replacing f(u:s)(hv + x) by its Taylor expansion

f(u:s)(x) + hvf ′

(u:s)(x) + (hv)2f
′′

(u:s)(x) +O(h2),
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and using the properties of the kernel function K(·), one can easily get

E

[
1

h
K

(
x−X[dj]

h

)]
=

1

m

n∑

l=1

∑

u∈dl

αdj ,dl
(f(u:s)(x) +O(h2))

= f[dj](x) +O(h2).

Consequently,

E
2

[
1

h
K

(
x−X[dj ]

h

)]
= f2

[dj]
(x) +O(h2),

and it is similarly verified that

E
2

[
1

h
K

(
x−X

h

)]
= f2(x) +O(h2),

which completes the proof.

Theorem 3. Suppose that the same bandwidth is used in both f̂SRS and f̂PROS.
Then, for large N ,

MISE(f̂PROS) = MISE(f̂SRS)−
1

N
∆(f, n) +O(

h2

N
),

where ∆(f, n) =
∫
[ 1n

∑n
j=1 f

2
[dj]

(x)− f2(x)]dx.

Proof. Note that bias(f̂PROS(x)) = E[f̂PROS(x)−f(x)] = bias(f̂SRS(x)). There-
fore,

MISE(f̂PROS) =

∫ [
var(f̂PROS(x)) + bias2(f̂PROS(x))

]
dx

=

∫ [
var(f̂PROS(x)) + bias2(f̂SRS(x))

]
dx.

Now, from Lemma 2

var(f̂PROS(x)) = var(f̂SRS(x)) −
1

N


 1

n

n∑

j=1

f2
[dj]

(x)− f2(x)


 +O(

h2

N
). (7)

Therefore, the result holds.

Theorem 3 shows that the optimal bandwidth which minimizes MISE(f̂SRS),

asymptotically minimizes MISE(f̂PROS) up to order O(N−1). That is, one can
use the following optimal bandwidth which is obtained by minimizing asymp-
totical expansion of MISE(f̂SRS)

hopt.SRS = i2(K)−2/5

[
i0(K

2)

i0(f
′′2)

]1/5
N−1/5,
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(see [7]). The optimal bandwidth hopt.SRS depends on f(·) which is unknown
and, in practice, a nonparametric version of it can be used (see [24]). Theorem 3
also shows that the PROS estimate reduces the MISE of SRS estimate at order
O(N−1), and the amount of this reduction asymptotically is 1

N∆(f, n) (note
that ∆(f, n) is non-negative). Unfortunately, the value of ∆(f, n) depends on
f(·); however, as we show below, one can characterize asymptotic rate of this
reduction in a perfect PROS sampling procedure as an upper bound for ∆(f, n).

Lemma 3. Under a PROSI(n, L, s,D) sampling design,

1

n

n∑

j=1

f2
[dj]

(x) = nf2(x)P{Y = Z},

where Y and Z are i.i.d. binomial random variables with parameters s− 1 and
F (x), i.e. Y, Z ∼ B(s− 1, F (x)).

Proof. Using Remark 1, one can easily verify that

1

n

n∑

j=1

f2
[dj]

(x) = nf2(x)

n∑

j=1




jm∑

r=(j−1)m+1

(
s− 1

r − 1

)
F (x)r−1F (x)s−r



2

= nf2(x)

n∑

j=1

P
2{(j − 1)m ≤ Y ≤ jm− 1},

where Y ∼ B(s−1, F (x)). Let Aj = {(j−1)m, . . . , jm−1} for j = 1, . . . , n. Sup-
pose Z is also distributed as a B(s− 1, F (x)) distribution and it is independent
of Y , then

n∑

j=1

P
2{(j − 1)m ≤ Y ≤ jm− 1} =

n∑

j=1

P{Y = Z,Z ∈ Aj}

= P{Y = Z,
n⋃

j=1

(Z ∈ Aj)}

= P{Y = Z},

since Ajs constitute a disjoint partition of the set {0, . . . ,mn − 1} and this
completes the proof.

By Lemma 3, we can derive an asymptotic result which provides more insight
into the rate of reduction in MISE in a perfect PROS sampling procedure.

Theorem 4. Under a PROSI(n, L, s,D) sampling design, we have

MISE(f̂PROS) = MISE(f̂SRS)−
1

N

[√
n

m
δ(f2)− i0(f

2)

]
− o(

1

Nm
) +O(

h2

N
),

where δ(f2) =
∫ f2(x)√

4πF (x)(1−F (x))
dx.
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Proof. Note that by the Edgeworth expansion of P{Y = Z} in Lemma 3, we
get

P{Y = Z} =
1√

4sπF (x)(1 − F (x))
+ o(

1

s
).

Consequently, we can write

1

N
∆(f, n) =

1

N

[√
n

m
δ(f2)− i0(f

2)

]
− o(

1

Nm
),

and this completes the proof.

Theorem 4 shows that a perfect PROS density estimate reduces the MISE
of f̂SRS at order O(N−1) and this reduction is increased by

√
n/m linearly

whenever
√

n
mδ(f2)− i0(f

2) is non-negative (a sufficient condition is n ≥ mπ).
When m = 1, the result is reduced to the result for perfect RSS density estimate
given by [7]. In Section 5, we compare f̂PROS with f̂SRS and f̂RSS in a more
general case where the sampling procedure can be either perfect or imperfect.

3.2. Density estimation under symmetry assumption

In this section, we consider the problem of kernel density estimation based on
an imperfect PROS sample of size N = nL under the assumption that f(·)
is symmetric. To this end, suppose that f(x) is symmetric about µ, that is
f(x) = f(2µ−x) for all x. One can easily verify that f[dj](x) = f[dn−j+1](2µ−x)
provided αdj ,dh

= αdn−j+1,dn−h+1
for all j, h = 1, . . . , n. Therefore, based on the

sub-sample X[dj]i, i = 1, . . . , L, it is reasonable to estimate f[dj](x) by

f̂∗

[dj]
(x, µ) =

1

2

(
f̂[dj](x) + f̂[dn−j+1](2µ− x)

)
,

where f̂[dj](x) is given in (4). Consequently, the estimate of f(x) under the
symmetry assumption can be defined by

f̂∗

PROS(x, µ) =
1

n

n∑

j=1

f̂∗

[dj ]
(x, µ)

=
1

2

(
f̂PROS(x) + f̂PROS(2µ− x)

)
.

Now, we consider the mean and the variance of f̂∗

PROS(x, µ) in the following
theorem.

Theorem 5. Suppose that f(x) is symmetric about µ and αdj ,dh
= αdn−j+1,dn−h+1

for all j, h = 1, . . . , n. Then, based on an imperfect PROSα(n, L, s,D) sample
of size N = nL, we have

(i) E[f̂∗

PROS
(x, µ)] = E[f̂PROS(x)],

(ii) var(f̂∗

PROS
(x, µ)) ≤ var(f̂PROS(x)).
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Proof. Part (i) is easily proved by the fact that E[f̂PROS(x)] = E[f̂PROS(2µ−x)]
under the symmetry assumption and Theorem 2. For part (ii), note that for all
x, we have

var(f̂PROS(x)) = var(f̂PROS(2µ− x)),

and consequently

var
(
f̂∗

PROS(x, µ)
)
=

1

2
var

(
f̂PROS(x)

)
+

1

2
cov

(
f̂PROS(x), f̂PROS(2µ− x)

)
.

The result holds by using the Cauchy-Schwartz inequality.

Theorem 5 shows that f̂∗

PROS(x, µ) has the same bias as f̂PROS(x); however,

it has smaller variance. Therefore, under the symmetry assumption f̂∗

PROS(x, µ)

has smaller MISE and it dominates f̂PROS(x). Note also that if the symmetry
point µ is unknown, it can be estimated by the PROS sample to obtain a
plug-in estimator as f̂∗

PROS(x, µ̂). Based on a PROS sample of size N , several
non-parametric estimators of µ can be defined as follows

µ̂1 =
1

N

L∑

i=1

n∑

j=1

X[dj]i,

µ̂2 = median
{
X[dj]i, i = 1, . . . , L; j = 1, . . . , n

}
,

µ̂3 = median

{
X[dj]i +X[dk]l

2
, i, l = 1, . . . , L; j, k = 1, . . . , n

}
,

µ̂4 =
1

L

L∑

i=1

median
{
X[dj]i, j = 1 . . . , n

}
. (8)

Among these estimators µ̂1 is the PROS sample mean which is not robust against
outliers, while µ̂2, µ̂3, and µ̂4 are robust estimators of µ. Note that µ̂3 is a
Hodges-Lehmann type estimator of the location parameter. In Section 5, we
consider the effect of these estimators on the MISE of f̂∗

PROS(x, µ̂).

4. Estimating the misplacement probabilities

So far we assumed that the misplacement probability matrix α defined in (1)
is given. In practice, the misplacement probabilities αdj,dh

are unknown and
they should always be estimated. This is a very important problem as the per-
formance of our kernel density estimator depends on the estimated values of
αdj,dh

. In this section, we use a modification of the EM algorithm of [1] to esti-
mate αdj ,dh

’s. We present the result for a symmetric misplacement probability
matrix α with αdj ,dh

= αdh,dj
. However, results for more general α can be

obtained by slight modifications of our results. Let

π[dj,dh]i =
αdj ,dh

β̄h(F (X[dj ]i))∑n
h=1 αdj,dh

β̄h(F (X[dj ]i))
,
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in which

β̄h(F (X[dj ]i)) =
1

m

∑

u∈dh

βu,s−u+1(F (X[dj ]i)),

and βa,b(·) denotes the pdf of a beta distribution with parameters a and b.
Following [1] we estimate the misplacement probability matrix α through an
iterative method. To this end, we start with an initial estimate of α say α(0)

which can be chosen to be a matrix associated with random subsetting with
αdj ,dh

= 1
n . Then, we use the following iterative method:

(i) For a given α(t) at step t of the iterative process, calculate

w
(t)
h′,h =

L∑

i=1

π
(t)
[dh′ ,dh]i

.

(ii) Calculate

Q(t)(α) =

n∑

h=1

n∑

h′=1

w
(t)
h′,h log(αdh′ ,dh

).

(iii) Maximize Q(t)(α) under the restrictions that the misplacement probabil-
ities are symmetric and doubly stochastic and obtain the new α and call
it α(t+1). This can be done via a Lagrange multipliers method to enforce
the constraints as follows

L(t)(α,λ) =

n∑

h=1

{
h−1∑

h′=1

w
(t)
h,h′ log(αdh′ ,dh

) +

n∑

h′=h

w
(t)
h,h′ log(αdh,dh′

)

}

+

n∑

h=1

nλh

{
h−1∑

h′=1

αdh′ ,dh
+

n∑

h′=h

αdh,dh′
− 1

}
,

where λ = (λ1, . . . , λn). The details of this process are given in [21] as well
as [1].

(iv) Repeat Steps (i)–(iii) till the sum of absolute error (SAE) of α(t) and
α(t+1) is less than a predetermined value, say δ, that is

SAE(α(t),α(t+1)) =

n(n+1)/2∑

i=1

|α(t)
i − α

(t+1)
i | ≤ δ.

In practice, to calculate π
(t)
[dj ,dh]i

, one can replace F (·) by an estimate of F such

as the empirical distribution function, i.e.

F̂PROS(x) =
1

nL

L∑

i=1

n∑

j=1

I(X[dj ]i ≤ x).

To investigate the accuracy of our method, we perform a small simulation study
when n = m = 3, and L = 4, 10. Following [1], we consider three misplacement
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Table 2

The averages and standard deviations (in parentheses) of estimated misplacement
probabilities when n = m = 3, L = 4, 10 and the underlying distributions are the standard

Normal and Exponential distributions

Distributions α L α̂d1,d1
α̂d1,d2

α̂d1,d3
α̂d2,d2

α̂d2,d3

α1 4 0.9640(0.099) 0.0355(0.097) 0.0006(0.005) 0.9179(0.155) 0.0466(0.109)

10 0.9775(0.051) 0.0204(0.051) 0.0021(0.012) 0.9565(0.070) 0.0232(0.054)

α2 4 0.8934(0.156) 0.0717(0.140) 0.0348(0.087) 0.8247(0.198) 0.1036(0.143)

Normal 10 0.8961(0.106) 0.0759(0.096) 0.0280(0.044) 0.8356(0.153) 0.0886(0.102)

α3 4 0.7578(0.207) 0.1535(0.188) 0.0888(0.116) 0.6583(0.274) 0.1882(0.217)

10 0.7365(0.140) 0.1605(0.137) 0.1030(0.082) 0.6902(0.174) 0.1493(0.125)

α1 4 0.9384(0.134) 0.0612(0.134) 0.0004(0.004) 0.8751(0.185) 0.0637(0.139)

10 0.9730(0.052) 0.0265(0.052) 0.0005(0.005) 0.9501(0.068) 0.0234(0.048)

α2 4 0.8918(0.167) 0.0833(0.164) 0.0249(0.059) 0.7880(0.225) 0.1287(0.158)

Exponential 10 0.8802(0.107) 0.0891(0.104) 0.0307(0.042) 0.8014(0.161) 0.1095(0.112)

α3 4 0.7486(0.232) 0.1475(0.187) 0.1039(0.136) 0.6535(0.254) 0.1990(0.204)

10 0.7515(0.132) 0.1513(0.125) 0.0972(0.090) 0.6893(0.173) 0.1595(0.128)

probability matrices α1, α2, and α3, where

α1 =




1 0 0
0 1 0
0 0 1


 ,α2 =




0.900 0.075 0.025
0.075 0.850 0.075
0.025 0.075 0.900


 ,

and

α3 =




0.75 0.15 0.10
0.15 0.70 0.15
0.10 0.15 0.75


 .

We generate PROS samples when the underlying population distributions are
the standard Normal and Exponential distributions. For each distribution, the
misplacement probabilities are estimated by using our proposed iterative method
with the help of the package “Rsolnp” ([12] and [28]) in R with δ = 10−4. This
process is repeated 100 times and the average of these estimates are used as the
estimates of the misplacement probabilities. The values of the estimates and
their corresponding standard deviations (given in parentheses) are shown in Ta-
ble 2. Note that following the properties of α we present the results for αd1,d1

,
αd1,d2

, αd1,d3
, αd2,d2

, and αd2,d3
. We observe that the estimates are close to the

true values and they have satisfactory biases given the fact that our proposed
method is a fully nonparametric procedure and the sample size is very small.
We observe that our proposed procedure slightly underestimates αdj ,dj

, espe-
cially for α1. This is because the perfect ranking model is at the boundary of
the parameter space and as noted by [1] the estimates are truncated whenever
they exceed 1 due to the constraints on misplacement probabilities. However,
the biases and standard deviations get smaller as the cycle size increases.

Remark 2. We note that one can easily modify the Lagrangian multipliers
method described above to consider a more general case dealing with asymmetric
misplacement probabilities. Under the symmetry assumption the estimates are
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more reliable since the number of estimated parameters is less than the case
with asymmetric misplacement probabilities. Results of a numerical study (not
presented here) show that one can get a better performance for the PROS
density estimate under asymmetric misplacement probabilities especially for
the tails of the distribution. However, for other regions, PROS estimator under
the symmetry assumption might perform better.

5. Simulation study

In this section, we compare the performance of f̂PROS with its SRS and RSS
counterparts. We first discuss the asymptotic reduction rate in the variance
(RRV) of f̂SRS and f̂RSS by using a PROS density estimate f̂PROS. We then

compare the MISE(f̂PROS) with MISE(f̂SRS) and MISE(f̂RSS). Finally, we con-

sider the effect of estimating the symmetry point on the MISE of f̂∗

PROS(x, µ̂)
when we assume that the underlying distribution is symmetric.

5.1. Comparing the reduction in variances

Using (7), the RRV of f̂PROS over f̂SRS that measures at what rate f̂PROS

reduces the asymptotic variance of f̂SRS can be defined as

RRV(f̂PROS, f̂SRS) =

1
n

∑n
j=1 f

2
[dj]

(x) − f2(x)

1
n

∑n
j=1 f

2
[dj]

(x)

= 1−


n

n∑

j=1

{
n∑

r=1

∑

u∈dr

αdj ,dr

(
s− 1

u− 1

)
pu−1(1− p)s−u

}2


−1

,

where p = F (x). It is clear that RRV(f̂PROS, f̂SRS) is a nonparametric measure
which does not depend on the underlying distribution function. Note that if
RRV(f̂PROS, f̂SRS) = 0 at certain percentiles p, then f̂PROS and f̂SRS have equal

variances at these percentiles asymptotically. However, if RRV(f̂PROS, f̂SRS) =

β > 0, then f̂PROS reduces the variance of f̂SRS at order O(N−1) and this

reduction increases linearly at rate β. The values of RRV(f̂PROS, f̂SRS) can be
easily calculated when n, m and the misplacement probabilities αdi,dj

are given.
For m = 3 and n = 2, . . . , 7 and misplacement probabilities αdi,di

= α0 and

αdi,dj
= (1−α0)/(n−1) for i 6= j, the values of RRV(f̂PROS, f̂SRS) are presented

in Figure 1 when α0 = 0, 0.3, 0.7, 1.
We observe that for all values of α0 the amount of RRV increases symmetri-

cally as p gets away from 0.5 to 0 and 1. This shows that the best performance of
the PROS density estimate over its SRS counterpart happens at the tail of the
distribution. When n = 2, the PROS and SRS estimates have equal precision
at p = 0.5; otherwise, the PROS estimate reduces the variance of SRS estimate.
When α0 = 0, the value of RRV decreases when n increases. This suggests using
a small sample size when the misplacement probabilities (ranking errors) are
large. We also note that RRV increases as both α0 and n increase. The best
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Fig 1. RRV(f̂PROS , f̂SRS) for n = 2, . . . , 7 when m = 3 and α0 = 0, 0.3, 0.7, 1.

performance of PROS design over SRS design happens when the subsetting is
either perfect or it is moderately good, that is when α0 = 1 or α0 = 0.7, respec-
tively. Similar results are observed when m = 5 which we do not present here.

To obtain the RRV of f̂PROS over f̂RSS we first note that (see [7])

var(f̂RSS(x)) = var(f̂SRS(x)) −
1

N

[
1

n

n∑

r=1

f2
[r](x) − f2(x)

]
+O(

h2

N
).

Now, using (7), the RRV of f̂PROS over f̂RSS is defined as

RRV(f̂PROS, f̂RSS) =

1
n

∑n
j=1 f

2
[dj]

(x)− 1
n

∑n
r=1 f

2
[r](x)

1
n

∑n
j=1 f

2
[dj]

(x)
,

where

1

n

n∑

r=1

f2
[r](x) = nf2(x)

n∑

r=1

[
n∑

k=1

prk

(
n− 1

k − 1

)
pk−1(1− p)n−k

]2

,

in which p = F (x) and prk for r, k = 1, . . . , n are the ranking error probabilities
in an imperfect RSS procedure.
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Fig 2. RRV(f̂PROS, f̂RSS) for n = 2, . . . , 7 when m = 3 and α0 = 0, 0.3, 0.7, 1.

For m = 3, n = 2, . . . , 7 and the ranking error probabilities equal to the
misplacement error probabilities in its corresponding imperfect PROS design,
the values of RRV(f̂PROS, f̂RSS) are presented in Figure 2. It is seen that the
values of RRV are symmetric about p = 0.5. When α0 = 0, the RRV decreases
as n increases, and by increasing α0 RRV of f̂RSS increases as n increases. The
RRV of RSS is zero when p = 0 and 1 (when n = 2, the value of RRV is also
zero at p = 0.5). This means that the PROS and RSS estimates have the same
precision at these percentiles. The maximum value of RRV is more than 35
percent when the sampling procedure is perfect and n = 7. Similar results are
obtained when m = 5 which are not presented here.

5.2. Comparing MISE’s of f̂PROS, f̂RSS and f̂SRS

In order to compare MISE(f̂PROS) with MISE(f̂RSS) and MISE(f̂SRS), following
[7], we consider (a) the standard Normal distribution, (b) the Gamma distri-
bution with shape parameter 3 and scale parameter 1, and (c) the standard
Gumbel distribution. We use the Epanechnikov kernel in all estimates and the
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Table 3

The efficiency of PROS density estimate with respect to RSS (RP) and SRS (SP) for
different values of n, L, α0 and Normal, Gamma, and Gumbel distributions when m = 3

α0

0 0.3 0.5 0.7 1

Distributions n L (RP, SP) (RP, SP) (RP, SP) (RP, SP) (RP, SP)

6 4 (1.012,1.030) (1.000,0.993) (1.022,1.084) (1.100,1.281) (1.399,2.151)
6 8 (1.026,1.058) (1.015,1.015) (1.041,1.093) (1.099,1.268) (1.309,1.960)

Normal 8 3 (0.997,0.991) (1.008,1.008) (1.044,1.128) (1.113,1.337) (1.408,2.453)
8 6 (0.998,1.014) (1.006,1.018) (1.042,1.119) (1.106,1.310) (1.398,2.265)

6 4 (1.021,1.022) (1.004,1.009) (1.010,1.069) (1.060,1.190) (1.233,1.650)
6 8 (1.005,1.007) (1.013,1.014) (1.033,1.061) (1.059,1.159) (1.160,1.486)

Gamma 8 3 (1.018,1.054) (0.992,1.010) (1.025,1.113) (1.077,1.278) (1.224,1.811)
8 6 (1.009,0.998) (1.002,0.995) (1.022,1.063) (1.071,1.195) (1.173,1.546)

6 4 (0.985,1.040) (0.984,1.023) (1.013,1.095) (1.102,1.284) (1.283,1.866)
6 8 (1.007,0.999) (1.016,0.990) (1.058,1.064) (1.074,1.172) (1.239,1.619)

Gumbel 8 3 (1.022,1.002) (0.992,1.010) (1.031,1.099) (1.070,1.265) (1.269,1.936)
8 6 (0.996,0.984) (1.009,1.007) (1.037,1.075) (1.092,1.208) (1.237,1.738)

bandwidth h is determined by

h = (4/3)1/5AN−1/5,

where A = min{ standard devision of the sample, interquartile range of the
sample /1.34}; see [24]. For given n, m, L and different misplacement proba-

bilities, we use the following procedure to estimate the values of MISE(f̂PROS),

MISE(f̂RSS), and MISE(f̂SRS). For each estimator, the integrated square error

(ISE)
∫
(f̂(x)− f(x))2dx is calculated based on the corresponding SRS, imper-

fect RSS and imperfect PROS samples. Then, the ISE of 5,000 PROS, RSS, and
SRS estimates is obtained. For each procedure, the average of these 5,000 ISEs
is used as an estimate of the corresponding MISEs. The ratios

RP=MISE(f̂RSS)/MISE(f̂PROS) and SP=MISE(f̂SRS)/MISE(f̂PROS)

are obtained as the efficiency of f̂PROS with respect to f̂RSS and f̂SRS, respec-
tively. Table 3 shows the values of RP and SP for these distributions with
different values of n, L, α0 = 0, 0.3, 0.5, 0.7, 1, and m = 3.

Form Table 3, it is seen that as the misplacement probabilities decrease the
efficiency of PROS with respect to RSS and SRS increases and, as we expect,
the efficiency with respect to SRS is more than RSS procedure. When the mis-
placement probabilities are large, α0 < 0.5, the three estimators have efficiency
near one. The efficiency of PROS with respect to RSS and SRS increases slightly
as n increases (this increment is faster when m = 4, results in which are not
presented here); however, the efficiency decreases as L increases. The amount of
efficiency for the Normal distribution is higher than the Gamma and Gumbel
distributions. For example, when n = 8, L = 3, and α0 = 1 the efficiencies of
PROS with respect to SRS for the Normal, Gamma, and Gumbel distributions
are 145%, 81%, and 94%, respectively. We observe that the main parameter that
controls the efficiency is the misplacement probability matrix α or equivalently
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Table 4

The efficiencies of f̂∗

PROS
(x, µ̂i), i = 1, . . . , 4 with respect to f̂PROS(x) and the efficiency of

f̂∗

PROS
(x, µ = 0) with respect to f̂PROS(x) for m = 3, n = 6, 8, and L = 3, 4 when underlying

distributions are the standard Normal, Logistic, Laplace, and t-student with 2 degrees of
freedom

Estimators

Distributions n L µ̂1 µ̂2 µ̂3 µ̂4 µ = 0

6 3 1.176 1.062 1.212 1.155 1.364
6 4 1.185 1.057 1.225 1.165 1.353

Normal 8 3 1.161 1.031 1.205 1.125 1.313
8 4 1.173 1.054 1.219 1.146 1.309

6 3 1.103 1.098 1.198 1.172 1.339
6 4 1.102 1.104 1.207 1.185 1.339

Logistic 8 3 1.108 1.095 1.205 1.159 1.307
8 4 1.108 1.092 1.205 1.162 1.293

6 3 0.675 1.150 1.191 1.201 1.299
6 4 0.645 1.133 1.182 1.190 1.284

t(2) 8 3 0.621 1.133 1.186 1.176 1.268
8 4 0.615 1.129 1.185 1.176 1.257

6 3 0.998 1.130 1.151 1.158 1.234
6 4 1.002 1.119 1.141 1.146 1.217

Laplace 8 3 1.007 1.112 1.139 1.135 1.193
8 4 1.011 1.108 1.131 1.129 1.172

the ranking error. When the ranking errors are high, there is no substantial
difference between f̂PROS, f̂RSS, and f̂SRS. However, as the ranking errors de-
crease, our simulation results show that the PROS density estimate performs
better than RSS and SRS density estimates in terms of MISE.

5.3. Results under symmetry assumption

To investigate the effect of estimating the symmetry point µ on the MISE of
f̂∗

PROS, we consider four distributions (a) the standard Normal and (b) Logistic
distributions as light tail distributions, (c) t-student with 2 degrees of freedom,
and (d) the standard Laplace distributions as heavy tail distributions. For each
distribution, a perfect PROS sample of size N = nL with subset size m are
generated and the four symmetry point estimators given in (8) were calculated.

Then, MISE(f̂PROS) and MISE(f̂∗

PROS) for µ̂i, i = 1, . . . , 4, were calculated

and their ratios are obtained as the efficiency of f̂∗

PROS(x, µ̂i)’s with respect to

f̂PROS(x). The results for m = 3, n = 6, 8, and L = 3, 4 are shown in Table 4.

The last column shows the efficiency of f̂∗

PROS with respect to f̂PROS when the
symmetry point is known.

We observe that f̂∗

PROS(x, µ̂3) performs the best in all cases which suggests
using the Hodges-Lehmann type estimator, µ̂3, for estimating the symmetry
point. For Normal distribution, the efficiencies of f̂∗

PROS(x, µ̂1) and f̂∗

PROS(x, µ̂3)

with respect to f̂PROS(x) are competitive. However, for t(2) distribution, which
is a heavy tail distribution, it does not hold. On the other hand, the efficiencies of
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f̂∗

PROS(x, µ̂4) and f̂∗

PROS(x, µ̂3) with respect to f̂PROS(x) are very close especially

in heavy tail distributions. Generally, we recommend using f̂∗

PROS(x, µ̂3) when it
is assumed that the underlying population distribution is symmetric. Comparing
the efficiencies of f̂∗

PROS(x, µ = 0) and f̂∗

PROS(x, µ̂3) with respect to f̂PROS(x)
indicates how much the efficiency reduces when the symmetry point is estimated.
This reduction is larger when n = 6 in comparison with n = 8 (the maximum
value of reduction is about 11% when n = 6 and L = 3 in Normal distribution
and the minimum value is 3% when n = 8 and L = 4 in Laplace distribution).

6. Real data application

In this section, we illustrate our method with a real data set collected by the
Iranian Ministry of Jihade-Agricultural (IMJA) in 2005. [17] used this data set
in a different context to examine the accuracy of several ratio estimators of the
population mean based on RSS design. The data set contains the information of
the wheat yield and the total acreage of land which is planted in wheat for 304
cities in 31 provinces of Iran in 2005. Wheat yield estimation is important for
advanced planning and implementation of policies related to food distribution,
import-export decision, etc. We provide kernel density estimates of the distribu-
tion of Y = wheat yield (in ton) as the variable of interest by using X = total
acreage of the planted land in wheat (in acre) as the auxiliary variable which
can be used for the ranking purpose. The correlation coefficient between X and
Y is 0.786. For ease of computations, we divided the values of Y by 100,000,000.

In order to estimate the density function of wheat yield, we regarded this
data set as a population and extracted PROS, RSS and SRS with replacement
samples of size N = nL from the population. For each design, the density
estimates are obtained and the asymptotic variance estimates are calculated.
Then, this process is repeated M times and the average of density estimates at
a fixed point are considered as the density estimates. In addition, for each design,
the average of asymptotic variance estimates are also calculated for constructing
asymptotic pointwise confidence bounds. We take (n,m,L,M) = (3, 4, 6, 20)
and consider a general case where we do not make any symmetry assumption
about the misplacement probabilities. The histogram of 304 records of Y is
shown in Figure 3. The PROS density estimate and its 95 percent asymptotic
pointwise confidence bounds are shown in third column of Figure 3. The SRS and
RSS density estimates and their corresponding 95 percent pointwise confidence
bounds are also shown in the 1st and 2nd columns of Figure 3. In all cases, we
used Epanechnikov kernel and the bandwidth was determined as in Section 5.2.
To obtain the probabilities of subsetting errors, we used a simple modification of
the proposed algorithm in Section 4 that accounts for asymmetric misplacement
probabilities. We estimated the probabilities of subsetting errors for each 20
samples with SAE=0.001. The average of these estimates are given below

α̂ =




0.860(0.14) 0.140(0.14) 6.33× 10−6(2.80× 10−5)
0.104(0.14) 0.724(0.22) 0.172(0.12)
0.036(0.08) 0.136(0.13) 0.828(0.12)


 ,
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Fig 3. The histogram of wheat yield (in ton × 100,000,000), the SRS, RSS and PROS kernel
density estimates and their corresponding asymptotic 95 percent truncated pointwise confi-
dence bounds.

where the standard deviations of the estimates are reported in parentheses. Our
estimates show that the probabilities of correct subsetting are much higher than
the probabilities of incorrect subsetting and this is due to the fact that X and
Y are highly correlated. We observe that the density estimates look similar.
However, the truncated confidence bounds for PROS design are much narrower
than their SRS and RSS counterparts, where for each design the truncated
confidence bounds for f(x) based on an estimator f̂(x) is obtained as follows:

(
max{0, f̂(x) − z0.975

√
V̂ (f̂(x))}, f̂(x) + z0.975

√
V̂ (f̂(x))

)
,

where V̂ (f̂(x)) is the estimated approximate variance of f̂(x).

7. Concluding remarks

In this paper, we have considered the problem of nonparametric density estima-
tion of the pdf f(x) of a continuous random variable based on partially ordered
ranked set samples. First, we developed kernel density estimates of f based
on an imperfect PROS sampling design and studied its theoretical properties.
Then, we considered the problem when the underlying distribution is assumed
to be symmetric. We produced some plug-in kernel density estimates of f under
the symmetry assumption. We have shown that, under imperfect PROS design
with symmetric misplacement probabilities, PROS estimates of f perform bet-
ter than their SRS and RSS counterparts. It would naturally be of interest to
expand our results to a more general PROS design where design parameters are
more flexible and the misplacement probabilities are not necessarily symmetric.
For example, one may be interested is studying how well the PROS density es-
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timates perform if the symmetry assumption on the misplacement probabilities
is not imposed. In such a case, we observe that the bias of f̂PROS(x) does not

change as E[f̂PROS(x)] = E[f̂SRS(x)]. However, the behaviour of the variance of

f̂PROS(x) as a function of misplacement probabilities will need further numer-
ical and theoretical investigations. Also, it would be natural to study whether
the symmetry assumption results in better estimates for the misplacement prob-
abilities. Another problem of interest is to use other models for subsetting errors
in order to improve the PROS density estimates presented in this paper. For
example, as mentioned by a referee, one may want to study the possibility of
extending the model proposed by [9] for ranking errors in RSS to the subsetting
errors in PROS design to improve our PROS density estimates. Another inter-
esting problem which worth further consideration is to develop some diagnostic
tools to test the symmetry of misplacement probabilities. One possible way to
have a prior information about the values of the misplacement probabilities is
to take a preliminary sample (or rely on the results of previous studies) and use
a bootstrap technique to estimate these probabilities. Some of these problems
are currently under investigation and the results will be presented elsewhere.
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