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A recurrent random walk on the p-adic integers

M. Cruz-López and A. Murillo-Salas
Universidad de Guanajuato

Abstract. This paper describes a random walk on the p-adic integers, which
turns out to be recurrent.

1 Introduction

Random walks on abstract groups have been studied during the last sixty years
(see, e.g., Dudley (1962)). The description of stochastic processes on totally dis-
connected groups began with the revealing paper by Evans (1989) and, ever since,
this area of study has been highly stimulated due to the wide range of applications
of analysis on local fields to probability theory and physics.

In this paper it is done the description of a continuous time random walk with
state space a compact Abelian group known as the p-adic integers Zp , which is
the ring of integers of the field of p-adic numbers Qp . The random walk on Zp

is described by using the method developed in Albeverio and Karwowski (1994)
for Qp . In the paper Lukierska-Walasek and Topolski (2006), the authors at-
tempted to describe a random walk on Zp , but, the solution to Kolmogorov forward
and backward equations is inaccurate, and the present authors do not know exactly
where, since the ideas are only sketched. However, using the intensities suggested
in the mentionated paper, the complete solution to the Kolmogorov forward and
backward equations needed to describe the process is founded here. Thus, we are
able to describe a Markov process � which takes values in Zp . The precise state-
ment of the main result in this paper can be found in Theorem 1 (see Section 3).
By using the transition functions obtained for the process �, we are able to prove
that the process is recurrent (see Proposition 1 below).

Finally, it should be pointed out that different properties of p-adic integers have
been used in several contexts as in Dragovich and Dragovich (2009), where Zp ,
for p = 5, has been proposed as a model to describe the genetic code. From this
perspective, the authors guess that the process � described here, suggests a new
line of research to provide a random p-adic genetic code model. This will be the
content of a future work.

General information and properties about p-adic integers can be consulted, v.g.,
in Koblitz (1984) and Robert (2000). In the first part of the paper, the basic objects
of study are introduced, and, in the second part, the corresponding random walk is
defined.
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2 The p-adic integers Zp

Denote by P the set of all prime numbers. Throughout the paper p will denote a
prime number.

If n < m, then pmZ is a subgroup of pnZ and there is a well-defined surjective
homomorphism

ρnm : Z/pmZ −→ Z/pnZ,

given by

x modpmZ �−→ x modpnZ.

This determines a projective system {Z/pnZ, ρnm} of compact (finite) Abelian
topological groups whose projective limit is the so called p-adic integers, denoted
by Zp . That is,

Zp := lim←−Z/pnZ.

Zp , with the profinite topology, is a compact Abelian topological group, which is
also perfect and totally disconnected and therefore, homeomorphic to the p-adic
Cantor group. A more complete description of Zp as a projective limit can be
found in Wilson (1998).

Remark 1. The following isomorphisms of topological groups are well known
(see, e.g., Robert (2000)).

Zp
∼= ∏

j≥0

{0,1, . . . , p − 1}

∼=
{∑

j≥0

ajp
j : 0 ≤ aj < p

}
.

According to the above remark, a p-adic integer x can be represented as the
formal series

x =
∞∑

j=0

ajp
j ,

with aj ∈ {0,1, . . . , p − 1}. The p-adic order of x, ordp(x), is defined as the
smallest index j0 such that aj0 
= 0. Moreover, the norm of x ∈ Zp is defined by

|x|p := p−ordp(x).

This norm satisfies the non-archimedean inequality:

|x + y|p ≤ max
{|x|p, |y|p}

.

Zp , with the metric dp induced by this norm, is a complete metric space. More
complete information about these properties can be found in Koblitz (1984), or,
Robert (2000).
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2.1 The decomposition of Zp

The (closed) ball with centre at 0 and radius p−1 is denoted by

B := B
(
0,p−1) = {

x ∈ Zp : |x|p ≤ p−1}
.

By definition, B = pZp is a subgroup of Zp and the quotient group Zp/pZp is
isomorphic to the cyclic group of order p, Z/pZ. In particular, Zp is a disjoint
union of p cosets of pZp , that is, of p balls of radius p−1.

Similarly, for an integer M ≥ 0, a (closed) ball with radius p−M is denoted by

BM
j := B

(
j,p−M) = j + pMZp

(
0 ≤ j < pM)

.

This leads to a decomposition of Zp as a (finite) disjoint union of balls of radius
p−M :

Zp =
pM−1⋃
j=0

BM
j .

Each of these balls BM
j can be decomposed as a disjoint union of balls of radius

p−(M+1):

BM
j =

p−1⋃
k=0

BM+1
jk .

For each M ∈ N write BM := {BM
i : 0 ≤ i < pM}. To simplify the notation, in

what follows we write Bi := BM
i . The distance between two elements in BM is

defined by

dp(Bi,Bj ) := dp(xi, xj ), i 
= j,

where xi ∈ Bi , xj ∈ Bj and 0 ≤ i, j < pM . The distance dp(Bi,Bj ) is well-defined
due to the non-achimedean property and it is clearly independent of the chosen
points. Putting in a different way, this is equivalent to say that any point in a ball
is a centre:

x ∈ B
(
y,p−M) �⇒ B

(
y,p−M) = B

(
x,p−M)

.

Lemma 1. If 0 ≤ i, j < pM with i 
= j , then dp(Bi,Bj ) = p−(M−k) for some
k ∈ {1,2, . . . ,M}. Furthermore, if 0 ≤ j < pM , then

#
{
i : dp(Bi,Bj ) = p−(M−k)} = (p − 1)pk−1,

for each k = 1,2, . . . ,M .

Proof. To prove the first assertion, observe that if 0 ≤ i, j < pM with i 
= j , then

p−M < p−ordp(i−j) ≤ p−N,

where N = min{ordp(i),ordp(j)} ≤ ordp(i − j) < M . Since ordp(i) ≥ 0 for all
i ∈ Zp , it follows that N ≥ 0. The second statement follows by a typical counting
argument. �
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3 A random walk on Zp

The aim of this section is to construct a Zp-valued stationary Markov process
which is denoted by � ≡ {�(t), t ≥ 0}. As a first step, we shall introduce a process
on BM , for each M ∈ N. The latter can be done by solving the classical system of
forward Kolmogorov equations which read as follows:

ṖBM
i BM

j
(t) = −qM

i PBM
i BM

j
(t) + ∑

0≤l<pM,l 
=i

qM
il PBM

l BM
j

(t), (3.1)

for all t ∈ [0,∞) and 0 ≤ i, j < pM with initial condition PBM
i BM

j
(0) = δij . The

parameter qM
i can be thought of as the intensity of the state BM

i and qM
ij is the

infinitesimal transition probability from the state BM
i to the state BM

j , for each
i 
= j .

Remark 2. For each M > 0, denote by P M
ij (t) the transition function of the pro-

cess � restricted to move on BM . By using the decomposition of a ball of radius
p−M into balls of radii p−(M+1) the relation

P M
ij (t) = pP M+1

ij (t)

is obtained, and this implies the relation

qM
ij = pqM+1

ij

(see Lukierska-Walasek and Topolski (2006)).

For any sequence (a(−n))n∈N∪{0} of positive numbers such that

a(−n) ≥ a(−n + 1), a(0) = 0 and lim
n→∞a(−n) ∈ (0,∞), (3.2)

define

u(−M,m) := (p − 1)−1p−m+1[
a(−M + m − 1) − a(−M + m)

]
. (3.3)

Given BM
i and BM

j any two balls in BM such that dp(BM
i ,BM

j ) = p−n, define

qM
ij := u(−M,M − n). (3.4)

Then, for any M > 0 and 0 < m ≤ M we have

u(−M + 1,m − 1) = pu(−M,m).

In fact, (3.4) tell us that the jump rate only depends on the distance between balls
no matter what the balls are. Thus, the process � will be spherically symmet-
ric. Relation (3.3) together with Lemma 1 play a key role when solving the Kol-
mogorov equations.
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3.1 Kolmogorov equations

From now on, we write PBj
(t) for PBM

j
(t), similarly for PBM

0 BM
j

(t). Setting

B0 = B(0,p−M), we wish to solve Kolmogorov equations for i = 0 with initial
condition PB0Bj

(0) = δij . It is enough to do it in this way due to the translation
invariance of the p-adic topology. Write PBj

(t) instead of PB0Bj
(t).

Observing that a ball of radius p−M can be characterized by the values
{a0, a1, . . . , aM−1}, which are the first coefficients of the p-adic expansion of the
center of the ball, the equation (3.1) reads as follows:

Ṗ{a0,...,aM−1}(t) = −a(−M + 1)P{a0,...,aM−1}(t)

+ u(−M + 1,1)
∑

a′
M−1 
=aM−1

P{a0,...,a
′
M−1}(t)

...

+ u(−M + 1,M)
∑

a′
M−1,...,a

′
1

P{a′
0,...,a

′
M−1}(t)

(
a′

0 
= a0
)
.

Equivalently,

Ṗ{a0,...,aM−1}(t) = −[
a(−M + 1) + u(−M + 1,1)

]
P{a0,...,aM−1}(t)

+ u(−M + 1,1)
∑

a′
M−1

P{a0,...,a
′
M−1}(t)

+ u(−M + 1,2)
∑

a′
M−1

P{a0,...,a
′
M−2a

′
M−1}(t)

(
a′
M−2 
= aM−2

)

...

+ u(−M + 1,M)
∑

a′
M−1,...,a

′
1

P{a′
0,...,a

′
M−1}(t)

(
a′

0 
= a0
)
.

The above expression can be rewritten as:

Ṗ{a0,...,aM−1}(t) = −[
a(−M + 1) + u(−M + 1,1)

]
P{a0,...,aM−1}(t)

+
M−1∑
m=1

[
u(−M + 1,m) − u(−M + 1,m + 1)

]
P{a0,...,aM−m−1}(t)

+ u(−M + 1,M).

Summing over aM−1 in the equation above:

Ṗ{a0,...,aM−2}(t)
= −[

a(−M + 1) + u(−M + 1,1)
]
P{a0,...,aM−2}(t)
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+ p

M−1∑
m=1

[
u(−M + 1,m) − u(−M + 1,m + 1)

]
P{a0,...,aM−m−1}(t)

+ pu(−M + 1,M).

Regrouping and using (3.3), the last equation can be written as:

Ṗ{a0,...,aM−2}(t)
= −[

a(−M + 2) + pu(−M + 1,2)
]
P{a0,...,aM−2}(t)

+ p

M−1∑
m=2

[
u(−M + 1,m) − u(−M + 1,m + 1)

]
P{a0,...,aM−m−1}(t)

+ pu(−M + 1,M).

Continuing in this fashion, we get, for any 1 ≤ k ≤ M − 1:

Ṗ{a0,...,aM−k}(t)

= −[
a(−M + k) + pk−1u(−M + 1, k)

]
P{a0,...,aM−k}(t)

+ pk−1
M−1∑
m=k

[
u(−M + 1,m) − u(−M + 1,m + 1)

]
P{a0,...,aM−m−1}(t)

+ pk−1u(−M + 1,M).

Define

PM,k(t) := P{a0,...,aM−k}(t) = PB(0,p−M+k−1)(t) (1 ≤ k ≤ M − 1).

Then the last equation can be written as:

ṖM,k(t) = −[
a(−M + k) + pk−1u(−M + 1, k)

]
PM,k(t)

+ pk−1
M−1∑
m=k

[
u(−M + 1,m) − u(−M + 1,m + 1)

]
PM,m+1(t)

+ pk−1u(−M + 1,M).

Direct computation implies:

(pṖM,k − ṖM,k+1)(t)

= −[
a(−M + k + 1) + pku(−M + 1, k)

]
(pPM,k − PM,k+1)(t).

The solution of this differential equation, according with the initial conditions
is:

pPM,k(t) − PM,k+1(t) = (p − 1) exp
{−[

a(−M + k + 1) + pku(−M + 1, k)
]
t
}
.
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For any i, the following relation holds

p−iPM,k+i(t) − p−(i+1)PM,k+i+1(t)

= p − 1

pi+1 exp
{−[

a(−M + k + i + 1) + pk+iu(−M + 1, k + i)
]
t
}
.

Summing up on both sides of equation from i = 0 to i = m − 1:

PM,k(t) − p−mPM,k+m(t)

= p − 1

p

m−1∑
i=0

p−i exp
{−[

a(−M + k + i + 1) + pk+iu(−M + 1, k + i)
]
t
}
.

Since 1 ≤ m ≤ M − k + 1, writing recursively the last equality for each m, we
get

PM,k(t) = p−(M−k+1) + p − 1

p

M−k∑
i=0

p−i exp
{−[

a(−M + k + i + 1)

+ pk+iu(−M + 1, k + i)
]
t
}
.

Finally, using the definition of u (see equation (3.3)), we get:

PM,k(t) = p−(M−k+1)

+ p − 1

p

M−k∑
i=0

p−i exp
{
− 1

p − 1

[
pa(−M + k + i) (3.5)

− a(−M + k + i + 1)
]
t

}
.

3.2 Transition probabilities

The transition probabilities of a Markov process on Zp can now be described in
the following way.

Denote by PN(t) the complete solution of the system (3.1) with initial condition

PN(0) = PB(0,p−N)(0) = 1.

For any M > 0, denote by Pt(B
M,B(0,p−N)) the transition probability of

moving from the ball BM to the ball B(0,p−N). Then,

PN(t) = Pt

(
BM,B

(
0,p−N ))

(M > N).

Using the fact that the p-adic topology is invariant under translations and the Finite
Intersection Property for closed balls in Zp , we can define

Pt

(
x,B

(
0,p−N )) := PN(t),

for any x ∈ B(0,p−N).
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If x /∈ B(0,p−N), then the transition probability Pt(x,B(0,p−N)), can be cal-
culated as follows:

Pt

(
x,B

(
0,p−N )) = 1

pk−1(p − 1)

[
PN−1(t) − PN(t)

]
.

Remark 3. In this case, N = M − k + 1 according with the complete solu-
tion (3.5).

To calculate explicitly this solution, observe that

PN(t) = p−N + p − 1

p

N−1∑
i=0

p−i exp
{
− 1

p − 1

[
pa(−N + i + 1)

− a(−N + i + 2)
]
t

}
,

and

PN−1(t) = p−N+1 + p − 1

p

N−2∑
i=0

p−i exp
{
− 1

p − 1

[
pa(−N + i + 2)

− a(−N + i + 3)
]
t

}
.

Taking the difference PN−1(t) − PN(t), separating the first term in the sum of
PN(t) and regrouping the remaining terms in both series, we get:

PN−1(t) − PN(t)

= (
p−N+1 − p−N )

+ (p − 1)2

p

N−1∑
i=1

p−i exp
{
− 1

p − 1

[
pa(−N + i + 1) − a(−N + i + 2)

]
t

}

− p − 1

p
exp

{
− 1

p − 1

[
pa(−N + 1) − a(−N + 2)

]
t

}
.

Finally, recalling that N = M − k + 1 and dividing the above difference by
pk−1(p − 1) we get:

1

pk−1(p − 1)

[
PN−1(t) − PN(t)

]

= 1

pM

+ p − 1

pk

N−1∑
i=1

p−i exp
{
− 1

p − 1

[
pa(−N + i + 1) − a(−N + i + 2)

]
t

}

− 1

pk
exp

{
− 1

p − 1

[
pa(−N + 1) − a(−N + 2)

]
t

}
.
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3.3 The Markov process

According with the last analysis, we have:

Pt

(
x,B

(
0,p−M))

= p−M + p − 1

p

M∑
i=1

p−i exp
{
− 1

p − 1

[
pa(−M + i) (3.6)

− a(−M + i + 1)
]
t

}
,

if x ∈ B(0,p−M). If dp(x,B(0,p−M)) = p−M+k , then

Pt

(
x,B

(
0,p−M))

= p−M+1

+ p − 1

pk

M−k−1∑
i=1

p−i exp
{
− 1

p − 1

[
pa(−M + k + i) (3.7)

− a(−M + k + i + 1)
]
t

}

− 1

pk
exp

{
− 1

p − 1

[
pa(−M + k) − a(−M + k + 1)

]
t

}
.

Theorem 1. For any sequence {a(−n)}n∈N∪{0} satisfying (3.2) there exists a
spherically symmetric Markov process � = {�t, t ≥ 0} on Zp with transition func-
tions given by (3.6) and (3.7).

Proof. The proof can be done following the same lines as in Albeverio and Kar-
wowski (1994). Let A be a disjoint union of balls of the same radii p−M , for some
M > 0. Then, with the obvious notation, Pt(x,A) defines a symmetric (with re-
spect to the Haar measure on Zp) Markov transition function. Thus, it defines a
strongly continuous Markov semigroup {Tt , t ≥ 0} on L2(Zp). Hence, we have
constructed a continuous time Markov process � = {�t, t ≥ 0} with state space
Zp and transition function Pt(x,A), t ≥ 0, x ∈ Zp , as defined before. �

As a by-product of the above result, we get that the process � just defined is
recurrent. This is the content of the following proposition.

Proposition 1. The process � is recurrent.

Proof. For given x ∈ Zp consider the ball B(x, r) = {y ∈ Zp : dp(y, x) ≤ r}, for
each r > 0. Now, note that there exists M ∈ Z such that B(x,p−M) ⊂ B(x, r).
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Hence, ∫ ∞
0

Pt

(
x,B(x, r)

)
dt ≥

∫ ∞
0

Pt

(
x,B

(
x,p−M))

dt = ∞,

where (3.6) is used in the last equality. Thus, � is recurrent. �

Acknowledgments

The authors wish to thank the anonymous referee for the careful reading and
very helpful comments which significantly improved the presentation of the pa-
per. This research was supported by the University of Guanajuato grant DAIP-UG:
191/2013.

References

Albeverio, S. and Karwowski, W. (1994). A random walk on p-adics—The generator and its spec-
trum. Stochastic Process. Appl. 53, 1–22. MR1290704

Dudley, R. M. (1962). Random walks on abelian groups. Proc. Amer. Math. Soc. 13, 447–450.
MR0141167

Dragovich, B. and Dragovich, A. Yu. (2009). A p-adic model of DNA sequence and genetic code.
p-Adic Numbers Ultrametric Anal. Appl. 1, 34–41. MR2566118

Evans, S. N. (1989). Local properties of Lévy processes on a totally disconnected group. J. Theoret.
Probab. 2, 209–259. MR0987578

Koblitz, N. (1984). p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, 2nd ed. Graduate Texts
in Mathematics 58. New York: Springer. MR0754003

Lukierska-Walasek, K. and Topolski, K. (2006). p-adic description of hierarchical systems dynamics.
In p-Adic Mathematical Physics. AIP Conf. Proc. 826, 81–90. Melville, NY: Amer. Inst. Phys.
MR2258676

Robert, A. M. (2000). A Course in p-Adic Analysis. Graduate Texts in Mathematics 198. New York:
Springer. MR1760253

Wilson, J. S. (1998). Profinite Groups. London Mathematical Society Monographs. New Series 19.
New York: The Clarendon Press, Oxford Univ. Press. MR1691054

Departamento de Matemáticas
Universidad de Guanajuato
Jalisco S/N
Mineral de Valenciana
Guanajuato, Gto. C.P. 36240
México
E-mail: manuelcl@ugto.mx

amurillos@ugto.mx

http://www.ams.org/mathscinet-getitem?mr=1290704
http://www.ams.org/mathscinet-getitem?mr=0141167
http://www.ams.org/mathscinet-getitem?mr=2566118
http://www.ams.org/mathscinet-getitem?mr=0987578
http://www.ams.org/mathscinet-getitem?mr=0754003
http://www.ams.org/mathscinet-getitem?mr=2258676
http://www.ams.org/mathscinet-getitem?mr=1760253
http://www.ams.org/mathscinet-getitem?mr=1691054
mailto:manuelcl@ugto.mx
mailto:amurillos@ugto.mx

	Introduction
	The p-adic integers Zp
	The decomposition of Zp

	A random walk on Zp
	Kolmogorov equations
	Transition probabilities
	The Markov process

	Acknowledgments
	References
	Author's Addresses

