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SPACE–TIME PERCOLATION AND DETECTION BY
MOBILE NODES

BY ALEXANDRE STAUFFER1

University of Bath

Consider the model where nodes are initially distributed as a Poisson
point process with intensity λ over Rd and are moving in continuous time ac-
cording to independent Brownian motions. We assume that nodes are capable
of detecting all points within distance r of their location and study the prob-
lem of determining the first time at which a target particle, which is initially
placed at the origin of Rd , is detected by at least one node. We consider the
case where the target particle can move according to any continuous function
and can adapt its motion based on the location of the nodes. We show that
there exists a sufficiently large value of λ so that the target will eventually
be detected almost surely. This means that the target cannot evade detection
even if it has full information about the past, present and future locations
of the nodes. Also, this establishes a phase transition for λ since, for small
enough λ, with positive probability the target can avoid detection forever.
A key ingredient of our proof is to use fractal percolation and multi-scale
analysis to show that cells with a small density of nodes do not percolate in
space and time.

1. Introduction. Let �0 be a Poisson point process over Rd of intensity
λ > 0. We refer to the points of �0 as nodes, and let each node of �0 move as
an independent Brownian motion. Define �s to be the point process obtained af-
ter the nodes of �0 have moved for time s. More formally, for each x ∈ �0, let
(ζx(s))s≥0 be a standard Brownian motion and define �s = {x + ζx(s) :x ∈ �0}.
It is well known that Brownian motion is a measure-preserving transformation of
Poisson point processes [31], Proposition 1.3, which gives that, for any fixed s,
�s is also distributed as a Poisson point process. However, �s and �0 are not
independent, and it is this feature that makes this model challenging to analyze.

We consider a fixed constant r so that, at any time, a node is able to detect all
points inside the ball of radius r centered at its location. Then, letting B(x, r) stand
for the ball of radius r centered at x, we have that

at time s, the nodes of �s detect the region
⋃

x∈�s

B(x, r).(1)
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The region in (1) is related to the random geometric graph model [20, 25], where
(nonmobile) nodes are given by a Poisson point process and edges are added be-
tween pairs of nodes whose distance is at most r .

This model is closely related to a model of mobile graphs introduced by van
den Berg, Meester and White [31]. This and other similar models of mobile graphs
have been considered as natural models for mobile wireless networks [7, 8, 11, 18,
28].

Detection time. Consider an additional target particle u that is located at the
origin of Rd at time 0. Let u move according to a continuous function g(s), and
define the detection time Tdet as the first time at which a node is within distance r

from u. More formally, we have

Tdet = inf
{
t ≥ 0 :g(t) ∈ ⋃

x∈�t

B(x, r)

}
.

Detection is a fundamental problem in wireless networks and it appears, for ex-
ample, in the contexts of area surveillance and disaster recovery, where mobile
sensors are randomly deployed to explore a region which, due to some natural
disaster, is unsafe for humans [32].

We consider the case of a target u that wants to evade detection and can adapt
its motion according to the position of the nodes of �0. A fundamental question
is whether there exists a phase transition on λ so that, for sufficiently large λ,
the target has no way to avoid detection almost surely as t → ∞. More formally,
define a trajectory h :R+ → Rd as a continuous function such that h(0) is the
origin of Rd . Then we say that h is not detected from time 0 to t if, for each
s ∈ [0, t], all nodes of �s are at distance larger than r from h(s). The existence of
such h implies that, if the target chooses its location at time s to be g(s) = h(s),
then it avoids detection up to time t . We then define

ρt (λ) = P
(∃ a trajectory that is not detected by (�s)s from time 0 to t

)
and, since ρt(λ) is nonincreasing with t and nonnegative, the limit exists and we
let

ρ = ρ(λ) = lim
t→∞ρt .

Let Vt = Rd \ ⋃
x∈�t

B(x, r) be the subset of Rd that is not detected by the
nodes of �t , which is usually referred to as the vacant region. Well-known results
on random geometric graphs and mobile graphs [20, 31] give that there exists a
critical value λc so that, if λ < λc, then Vt contains an infinite connected compo-
nent (also called the infinite vacant cluster) at all times. Therefore, since time is
continuous and the target is allowed to move with arbitrary speed, if λ < λc, the
target can avoid detection if the origin belongs to the infinite component of V0, an
event that occurs with positive probability when λ > λc. This gives that ρ(λ) > 0



2418 A. STAUFFER

for all λ < λc. Our Theorem 1.1 below establishes that, if λ is larger than some
value λt, where t stands for trajectory, then ρ = 0, which means that the target
cannot avoid detection almost surely even if it is able to foresee the locations of
all nodes at all times (including future times). Since ρ is monotone in λ, this gives
a phase transition on the value of λ for the existence of a trajectory that is not
detected by the nodes.

THEOREM 1.1. In dimensions d ≥ 2, there exists a value λt = λt(d) ∈ [λc,∞)

such that ρ = 0 for all λ > λt, and ρ > 0 for all λ < λt. Furthermore, there exist
λ′

t ≥ λt, an explicit positive constant c = c(d) and a positive C independent of t

such that, for all large enough t and all λ > λ′
t,

ρt(λ) ≤
⎧⎨
⎩ exp

(
−C

t

(log t)c

)
, for d = 2,

exp(−Ct), for d ≥ 3.
(2)

REMARK 1.1. (i) For d = 1, we have that ρ = 0 for all λ > 0. This holds
since, for any two nodes v1, v2 ∈ �0, after a finite time, v1 and v2 will meet almost
surely. Therefore, by considering v1 and v2 such that u is between them at time 0,
we have that u will be detected in finite time almost surely.

(ii) Note that ρ < 1 for all λ > 0 since, with constant probability, the origin
of Rd is detected at time 0.

(iii) Based on results by Kesidis, Konstantopoulos and Phoha [14, 17] (see also
the discussion in [26]), we have the following lower bound for ρt(λ), which is
obtained by considering a nonmobile target:

ρt (λ) ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
(−C′√t

)
, for d = 1,

exp
(
−C′ t

log t

)
, for d = 2,

exp
(−C′t

)
, for d ≥ 3,

for all large enough t and where C′ > 0 does not depend on t . Therefore, compar-
ing this lower bound with the tail bound in (2) for λ > λ′

t reveals that, disregarding
logarithmic factors for d = 2 and constant factors for d ≥ 3, a target that is able
to choose its motion strategically in response to the past, present and even future
positions of the nodes and is also capable of moving with arbitrary speed cannot
do much better in terms of avoiding detection than a target that does not move at
all.

We believe that there exists a regime for λ so that Vt contains no infinite com-
ponent at every t , but the target is still able to avoid detection; that is, λt > λc. If
this is true, when λ ∈ (λc, λt), we have that the target is completely surrounded by
nodes at all times; that is, at any time, the positions at which the target can be at
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that time form a bounded set. However, this set may not collapse to the empty set
as time proceeds, and thus the target may be able to avoid detection with positive
probability. Also, we believe that λt = λ′

t; that is, as soon as λ is large enough so
that ρ = 0, then the exponential tail bounds in (2) should hold. We formalize these
ideas in the following conjecture.

CONJECTURE 1. For all dimensions d ≥ 2, we have λc < λt and λt = λ′
t.

Space–time percolation. In order to prove Theorem 1.1, which is the main
motivation of this paper, we develop a framework that gives a more general result
regarding space–time percolation of increasing events. We consider a tessellation
of Rd into cubes of side length �, and a tessellation of the time interval [0, t] into
subintervals of length β . Let i ∈ Zd be an index for the cubes of the tessellation
and τ ∈ Z+ be an index for the time intervals. Let ε ∈ (0,1) be fixed and let E(i, τ )

be the indicator random variable for the event that �τβ contains at least (1−ε)λ�d

nodes in the cube indexed by i.
The pairs (i, τ ) can be seen as a tessellation of the space–time region Rd+1

and E(i, τ ) is a process over this region. We refer to the space–time subregion
indexed by (i, τ ) as a cell. For this process, we say that a cell (i, τ ) is adjacent
to a cell (i′, τ ′) if ‖i − i′‖∞ ≤ 1 and |τ − τ ′| ≤ 1. We say that a cell (i, τ ) is bad
if E(i, τ ) = 0 and, in this case, define K(i, τ ) as the set of bad cells from which
there exists a path of adjacent bad cells to (i, τ ); if E(i, τ ) = 1 we let K(i, τ ) = ∅.
K(i, τ ) is usually referred to as the bad cluster of (i, τ ). Our Theorem 1.2 below
establishes an upper bound for the bad cluster of the origin (0,0), which implies
that the bad cells do not percolate in space and time. We note that the theorem
below is carried out for all dimensions d ≥ 1, unlike Theorem 1.1 for which the
case d = 1 is trivial [see Remark 1.1(i)].

THEOREM 1.2. Let ε > 0, � > 0 and β > 0 be fixed. Let Qt be the space–time
region (−t, t)d × [0, t/2). Then there exist a positive constant c = c(d), a positive
value C, and values λ0, t0 > 0 such that, for all λ > λ0 and t > t0, we have

P
(∃ a cell of K(0,0) not contained in Qt

) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
−C

√
t

(log t)c

)
, for d = 1,

exp
(
−C

t

(log t)c

)
, for d = 2,

exp(−Ct), for d ≥ 3.

In Section 3, we prove a more general form of Theorem 1.2 (which we state
in Theorem 3.1). In this general form, E is not restricted to be the event defined
above, but can be taken to be the indicator random variable of any increasing
event that depends only on a bounded neighborhood of cells and whose marginal
probability is large enough. Under these assumptions, we prove that the cells (i, τ )
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for which E(i, τ ) = 1 percolate in space and time, which implies that the cells
for which E(i, τ ) = 0 do not percolate. We prove Theorem 1.1 from this result by
defining E with respect to a specific event that implies that if the target enters a
cell (i, τ ) for which E(i, τ ) = 1 then the target is detected. Since the statement of
Theorem 3.1 requires some extra notation, we defer it to Section 3.

Proof overview. The proof of Theorem 1.2 proceeds via a multi-scale argument
inspired by fractal percolation. We will consider tessellations of the space–time
region Rd+1 into cells of various scale. We start with very large cells so that, by
standard arguments, we can show that, with sufficiently large probability, all such
cells contain a sufficiently high density of nodes at the beginning of their time
interval. Then we consider only the cells that were seen to be sufficiently dense
and partition them into smaller cells; the cells that were observed not to be dense
are simply disregarded, similarly to a fractal percolation process. We use that the
large cells were dense to infer that, with sufficiently large probability, the smaller
cells also contain a high density of nodes. We then repeat this procedure until
we obtain cells of side length �, for which the density requirement translates to the
event E(i, τ ) = 1. We show that, despite the procedure of removing nondense cells
described above, the cells of side length � that are observed to be dense percolate in
space and time. The proof of this result requires a delicate construction that allows
us to control dependencies among cells of various scales. The details are given in
Section 3.

With this framework of space–time percolation, the proof of Theorem 1.1 fol-
lows rather easily from Theorem 1.2. The intuition is that, whenever E(i, τ ) = 1,
the cube i contains sufficiently many nodes that can prevent the target to cut
through the cube i during the interval [τβ, (τ +1)β]. Indeed, by setting the param-
eters � and β small enough, we can ensure that the target can only avoid detection
if it never enters a cell for which E(i, τ ) = 1. However, since the cells for which
E(i, τ ) = 0 do not percolate in space and time by Theorem 1.2, we are assured that
the target must be detected. The details are given in Section 4.

Related work. The detection of a target that moves independently of the nodes
of (�s)s is by now well understood. Kesidis, Konstantopoulous and Phoha [14, 17]
observed that, for the case g ≡ 0 (i.e., u does not move), a very precise asymptotic
expression for P(Tdet ≥ t) can be obtained using ideas from stochastic geome-
try [30]. This was later extended by Peres et al. [26] and Peres and Sousi [27] for
the case when g is any function independent of the nodes of (�s)s . They estab-
lish the interesting fact that the best strategy for a target that moves independently
of the nodes and wants to avoid detection is to stay put and not to move. A result of
similar flavor was proved for continuous-time random walks on the square lattice
by Drewitz et al. [10] and Moreau et al. [22]. The detection problem has also being
analyzed in different models of static and mobile networks [1, 9, 19].
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Multi-scale arguments as developed in our proof of Theorem 1.2 are not un-
common. The most related references are the papers by Kesten and Sidoravicius
[15, 16] for the study of the spread of infection in a moving population, the work
of Peres et al. [26] for the so-called percolation time of mobile geometric graphs,
and a paper by Chatterjee et al. [3] for the gravitational allocation of Poisson point
processes. However, the techniques in these papers are tailored to specific prob-
lems. Our Theorem 1.2 (or, more precisely, the detailed version of Theorem 3.1)
provides a flexible multi-scale analysis that establish space–time percolation of
increasing events. We believe this technique can be extended to handle other prob-
lems as well.

Organization of the paper. The remainder of the paper is organized as follows.
In Section 2, we generalize a coupling argument developed in [26, 29] for the mix-
ing of moving nodes, which we will need in our main proofs. Then, in Section 3,
we give the precise statement and proof of Theorem 1.2. Finally, we apply this
result in Section 4, where we prove Theorem 1.1.

2. Mixing of mobile graphs. In this section, we extend a coupling argument
developed by Sinclair and Stauffer [29] (see also [26]). In a high-level description,
the result in [29] establishes that, if a point process contains sufficiently many
nodes in each cell of a suitable tessellation, then after the nodes have moved as
independent Brownian motions for some time interval 
 that depends on the size
of the cells of the tessellation, the nodes will contain an independent Poisson point
process with high probability. This argument gives a way to handle dependen-
cies on mobile geometric graphs, but is not enough in our proof of Theorem 1.2.
The reason is that, when nodes are moving as independent Brownian motions, it
may be the case that a node moves atypically far away during the time interval 
.
Therefore, a node may affect a large region in space during 
, causing large depen-
dencies among the cells of the tessellation. In order to better control dependencies,
we only consider nodes that do not move very far away during the interval 
. These
nodes are then moving as independent Brownian motions conditioned on not mov-
ing very far away during 
. We carry out a more careful analysis of the coupling
argument in [29] in order to derive a corresponding result to this more general
setting for the motion of the nodes.

We note that, very recently, Benjamini and Stauffer [2] employed similar tech-
niques to show that, for a particular point process, after the nodes have moved for
some time, they will be contained in an independent Poisson point process.

Now we describe the setting. Fix � > 0 and consider the cube Q� = [−�/2,

�/2]d . Consider a node that, at time 0, is located at some arbitrary position x ∈ Q�.
We assume that the position of this node at time � is distributed according to a
translation-invariant function f�, which means that the probability density func-
tion for this node to move from x to some arbitrary position y ∈ Rd after time �
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is f�(y − x). Let M > �. We say that a subdensity function g :Rd →R+ is (ε, �)-
indistinguishable from f� over the cube QM if

g(y) ≤ f�(y − x)
(3)

for all x ∈ Q� and y ∈ QM, and also
∫
QM−�

g(y) dy ≥ 1 − ε.

[Recall that a function h is called a subdensity function if h(x) ≥ 0 for all x ∈ Rd

and
∫
Rd h(x) dx ≤ 1.] We will apply (3) in the following context. Consider two

nodes u and v that are initially in arbitrary positions inside Q�/2; so their distance
vector is in Q� and is represented by x in (3). Assume that, at time 0, u is at
position a0 and that, at time �, the position of u is a�, where a� −a0 is distributed
according to the density function f�. Similarly, assume that v is at position b0 at
time 0 and that b� is v’s position at time �, where b� −b0 is distributed according
to the density function given by a renormalization of g. Suppose we are given
a0 and b0, and we want to sample b� and a� in a coupled way. Then, for any
b� such that b� − b0 ∈ QM , we have from (3) that g(b� − b0) ≤ f�(b� − a0).
Thus, we can obtain a coupling so that a� = b� whenever b� − b0 ∈ QM . Also,
since the integral of g over QM−� is at least 1 − ε, we obtain that this coupling
gives P(a� = b�) ≥ 1 − ε. In words, an indistinguishable function g is such that
a motion according to g inside QM is very similar to a motion according to f�

under any perturbation of the starting point that is within Q�.
We now state Proposition 2.1, which is the most general version of our ex-

tension to [29], Proposition 4.1. Later, in Proposition 2.3, we give a special
case of Proposition 2.1, which we will use in our proofs for space–time perco-
lation. In [29], a proof is carried out by constructing a (ε, �)-indistinguishable
function for the special case when f� is a (standard) Brownian motion run for
time �. Below, for any two sets A,A′ ⊂ Rd , we define A + A′ to be the set
{x + x′ : for all x ∈ A and x′ ∈ A′}.

PROPOSITION 2.1. Let S ⊃ S′ be two bounded regions of Rd and define R =
sup{k > 0 :S′ + Qk ⊆ S}. Consider any partition of S into sets S1, S2, . . . , Sm that
we call cells such that the diameter of each cell is at most γ for some fixed γ > 0.
Let 
0 be an arbitrary point process at time 0 such that, for each i = 1,2, . . . ,m,

0 contains at least β vol(Si) nodes in Si for some β > 0. Let 
� be the point
process obtained at time � from 
0 after the nodes have moved independently
according to a translation-invariant density function f�. Fix ε ∈ (0,1). If there
exists a translation-invariant subdensity function g :Rd → R+ that is (ε/2,2γ )-
indistinguishable from f� over the cube QR+2γ , then we can couple the nodes
of 
� with those of a Poisson point process � that is independent of 
0 and has
intensity (1 − ε)β so that the nodes of � are a subset of the nodes of 
� inside S′
with probability at least

1 −
m∑

i=1

exp
(−cε2β vol(Si)

)
for some positive constant c = c(d).
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PROOF. We will construct � via three Poisson point processes: �0, �′
0

and �′
�. We start by defining �0 as a Poisson point process over S with intensity

(1−ε/2)β . Then, for each i = 1,2, . . . ,m, �0 has fewer nodes than 
0 in Si if �0
has less than β vol(Si) nodes in that cell, which by a standard Chernoff bound (cf.

Lemma A.1) occurs with probability larger than 1 − exp(− δ2(1−ε/2)β vol(Si)
2 (1 −

δ/3)) for δ such that (1 + δ)(1 − ε/2) = 1. Note that δ ∈ (ε/2,1), so the probabil-
ity above can be bounded below by 1 − exp(−c1ε

2β vol(Si)) for some universal
constant c1. Let {�0 � 
0} be the event that, for every i = 1,2, . . . ,m, �0 has
fewer nodes than 
0 in every cell. Using the union bound we obtain

P(�0 � 
0) ≥ 1 −
m∑

i=1

exp
(−c1ε

2β vol(Si)
)
.(4)

If {�0 � 
0} holds, then we can pair each node u ∈ �0 to a unique node of v ∈

0 in the same cell. We call u the corresponding pair of v (and vice versa). We
will now show that we can couple the motion of the nodes in �0 with the motion
of their corresponding pairs in 
0 so that the probability that an arbitrary pair is at
the same location at time � is sufficiently large.

To describe the coupling, let v′ be a node of �0 located at y′ ∈ S, and let v be
the corresponding pair of v′ in 
0. Let y be the location of v in S, and note that
since v and v′ belong to the same cell we have ‖y −y′‖2 ≤ γ . Since g is (ε/2,2γ )-
indistinguishable from f�, we assume that the motion of v′ from time 0 to � is
such that its density function is a renormalization of g. Then, for any point z such
that z − y′ ∈ QR , we have

g
(
z − y′) = g

(
z − y − (

y′ − y
)) ≤ f�(z − y),

since y′ −y ∈ Q2γ and z−y = (z−y′)−(y −y′) ∈ QR+2γ . Then we have that the
function g is smaller than the densities for the motions of v and v′ to the location z

for all z such that z − y′ ∈ QR and y − y′ ∈ Q2γ .
Define g̃(x) = g(x)1(x ∈ QR) and

ψ =
∫
QR

g̃(x) dx =
∫
QR

g(x) dx ≥ 1 − ε

2
.(5)

Hence, with probability ψ we can use the density function g̃(x)
ψ

to sample a sin-
gle location y′ + x for the position of both v and v′ at time �. Then the second
Poisson point process in the construction of �, which we denote by �′

0, is defined
as a Poisson point process of intensity ψ(1 − ε/2)β obtained by thinning �0 (i.e.,
deleting each node of �0 with probability 1 − ψ). At this step, we have used the
fact that the function g̃(x) is oblivious of the location of v and, consequently, is
independent of the point process 
0.

Then the third Poisson point process �′
� is obtained from �′

0 after the nodes

have moved according to the density function g̃(z)
ψ

. Thus, since g is translation
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invariant, we have that �′
� is a Poisson point process and, due to the coupling

described above, the nodes of �′
� are a subset of the nodes of 
� and are inde-

pendent of the nodes of 
0, where 
� is obtained by letting the nodes of 
0 move
from time 0 to time � according to the density function f�.

Note that �′
� is a nonhomogeneous Poisson point process. It remains to show

that the intensity of �′
� is strictly larger than (1 − ε)β in S′ so that � can be

obtained from �′
� via thinning; since �′

� is independent of 
0, so is �.
For z ∈Rd , let μ(z) be the intensity of �′

�. Since �′
0 has no node outside S, we

obtain, for any z ∈ S′,

μ(z) ≥ ψ(1 − ε/2)β

∫
z+QR

g̃(z − x)

ψ
dx = (1 − ε/2)β

∫
QR

g̃(x) dx,

where the inequality follows since z + QR ⊂ S for all z ∈ S′. Using (5), we have
μ(z) ≥ (1 − ε/2)(1 − ε/2)β ≥ (1 − ε)β , which is the intensity of �. Therefore,
when {�0 � 
0} holds, which occurs with probability given by (4), the nodes of �

are a subset of the nodes of 
�, which completes the proof of Proposition 2.1.
�

Now we illustrate an application of Proposition 2.1 by giving an example that
we will use later in our proofs. Consider a node that, at time 0, is located at an
arbitrary position x ∈ Q�. Let this node move for time � according to a Brow-
nian motion and, for each z > 0, define F�(z) to be the event that this node
never leaves the cube x + Qz during the interval [0,�]. Let M ≥ � and, for
y = (y1, y2, . . . , yd) ∈ Q2M , define f̃�(y) to be the probability density function
for the location of this node at position x + y at time � conditioned on F�(3M).
It follows from the reflection principle of Brownian motion that

f̃�(y)P
(
F�(3M)

)

≥
d∏

i=1

(
1√

2π�
exp

(
− y2

i

2�

)
− 1√

2π�
exp

(
−(3M − yi)

2

2�

)

− 1√
2π�

exp
(
−(3M + yi)

2

2�

))
(6)

= 1

(2π�)d/2 exp
(
−‖y‖2

2

2�

)

×
d∏

i=1

[
1 − exp

(
−9M2

2�

)(
exp

(
6Myi

2�

)
+ exp

(
−6Myi

2�

))]

≥ 1

(2π�)d/2 exp
(
−‖y‖2

2

2�

)(
1 − 2d exp

(
−3M2

2�

))
,
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where the last step follows since the function ea + e−a is increasing in |a| and
yi ∈ [−M,M] for all y ∈ Q2M .

Our goal is to apply Proposition 2.1 with f� = f̃�. In order to do this, we
will use the technical lemma below, which constructs a subdensity function that is
indistinguishable from f̃�.

LEMMA 2.2. Let ξ ∈ (0,1) and m > 0. Let

� ≥ d3m2

ξ2 and M ≥
√

8� log
(
8dξ−1

)
.

For z ∈ QM , define

g(z) = 1

(2π�)d/2 exp
(
−(‖z‖2 + m

√
d/2)2

2�

)(
1 − 2d exp

(
−3M2

2�

))
,

and, for z /∈ QM , set g(z) = 0. Then, g is (ξ,m)-indistinguishable from f̃� over
QM , where f̃� is the probability density function for the location of a Brownian
motion at time � given that it never leaves the cube Q3M during the interval [0,�].

PROOF. Note that, for any x ∈ Qm, the triangle inequality gives that ‖z −
x‖2 ≤ ‖x‖2 +‖z‖2 ≤ m

√
d

2 +‖z‖2. Thus, for all x ∈ Qm and z ∈ QM , we have that
z − x ∈ QM+m ⊆ Q2M and, from (6), we obtain that g(z) ≤ f̃�(z − x) as required
by the first condition in (3). Now, let ρ = m

√
d/2 and

υ(x) = 1√
2π�

exp
(
−(|x| + ρ)2

2�

)
,

for x ∈ R. Note that
∑d

i=1(|zi | + ρ)2 = ‖z‖2
2 + 2ρ‖z‖1 + dρ2 ≥ (‖z‖2 + ρ)2, so(

1 − 2d exp
(
−3M2

2�

)) d∏
i=1

υ(zi) ≤ g(z) for z = (z1, . . . , zd) ∈ QM.(7)

Next, observe that∫ ∞
−∞

υ(x) dx = 1 −
∫ ρ

−ρ

1√
2π�

exp
(
− y2

2�

)
dy

≥ 1 − 2ρ√
2π�

≥ 1 − ρ√
�

≥ 1 − ξ

2d
,

where the last step follows from � ≥ d3m2

ξ2 = 4d2ρ2

ξ2 . Now, since M−m
2 + ρ ≥ M

2 ≥√
�, we apply the Gaussian tail bound (cf. Lemma A.2) to obtain∫ ∞

(M−m)/2
υ(x) dx ≤ 1√

2π

√
�

(M − m)/2 + ρ
exp

(
−((M − m)/2 + ρ)2

2�

)

≤ 1√
2π

√
�

M/2
exp

(
−M2

8�

)
≤ ξ

8d
,
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for any ξ ∈ (0,1) since M ≥
√

8� log(8dξ−1). Thus,
∫ (M−m)/2
−(M−m)/2 υ(x) dx ≥ 1 −

ξ
2d

− 2 ξ
8d

= 1 − 3ξ
4d

. We can now deduce from (7) that
∫
QM−m

g(z) dz ≥
(

1 − 2d exp
(
−3M2

2�

))∫
QM−m

d∏
i=1

υ(zi) dz

≥
(

1 − 2d exp
(
−3M2

2�

))(
1 − 3ξ

4d

)d

≥
(

1 − 2d

(
ξ

8d

)12)(
1 − 3ξ

4

)

≥
(

1 − ξ

4

)(
1 − 3ξ

4

)
≥ 1 − ξ

4
− 3ξ

4
= 1 − ξ. �

The next proposition is a special case of Proposition 2.1 that we will use in our
proofs.

PROPOSITION 2.3. Fix K > � > 0 and consider the cube QK tessellated into
subcubes of side length �. Let 
0 be an arbitrary point process at time 0 that
contains at least β�d nodes in each subcube for some β > 0. For any z > 0, let

�(z) be the point process obtained by letting the nodes of 
0 move for time �

according to independent Brownian motions that are conditioned on being inside
Qz throughout the interval [0,�]. Fix ε ∈ (0,1). There are constants c1, c2, c3

depending only on d such that, if � ≥ c1�
2

ε2 and K ′ ≤ K − c2

√
� log(16dε−1) > 0,

we can couple the nodes of 
�(3(K − K ′ + 2
√

d�)) with those of a Poisson point
process � that is independent of 
0 and has intensity (1 − ε)β so that the nodes
of � are a subset of the nodes of 
�(3(K − K ′ + 2

√
d�)) inside the cube QK ′

with probability at least

1 − Kd

�d
exp

(−c3ε
2β�d)

.

PROOF. Denote by f̃�(y) the probability density function for the location
of a Brownian motion at time � conditioned on the motion never leaving
Q3(K−K ′+2

√
d�) during the whole of [0,�]. Now, if c1 and c2 are large enough

with respect to d , we can apply Lemma 2.2 with ξ = ε/2, M = K − K ′ + 2
√

d�

and m = 2
√

d�, which gives that g is (ε/2,2
√

d�)-indistinguishable from f̃� over
QK−K ′+2

√
d�. Thus, we apply Proposition 2.1 with S = QK and S′ = QK ′ . This

gives that R = K − K ′ and γ = �
√

d . Thus, we have that a Poisson point process
� with intensity (1 − ε)β over QK ′ can be coupled with 
�(3(K − K ′ + 2

√
d�))

so that � is a subset of 
�(3(K − K ′ + 2
√

d�)) with probability at least

1 − Kd

�d
exp

(−c3ε
2β�d)

for some positive constant c3 = c3(d). �
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3. Space–time percolation. In this section, we develop the main technical
result of this paper, which we stated in a simplified form in Theorem 1.2. In order
to state this theorem in full generality, we need to introduce some notation, which
will extend the setting introduced in the part space–time percolation in Section 1.

We tessellate Rd into cubes of side length �. We index the cubes by integer
vectors i ∈ Zd such that

cube i = (i1, i2, . . . , id) corresponds to the region
d∏

j=1

[
ij �, (ij + 1)�

] ⊂ Rd .

Let t > 0, and tessellate the time interval [0, t] into subintervals of length β . We
index the subintervals by τ ∈ Z+, where

subinterval τ represents the time interval
[
τβ, (τ + 1)β

] ⊂R.

We call each pair (i, τ ) of the space–time tessellation a cell, and define the region
of a cell as

R1(i, τ ) =
d∏

j=1

[
ij �, (ij + 1)�

] × [
τβ, (τ + 1)β

]
.

The space–time tessellation defined above will be sufficient when we apply in
Section 4 the technique developed in this section to the detection problem. How-
ever, in previous works, being able to handle overlapping cells turned out to be
very useful; for example, in the study of the spread of infection [15] and in the es-
timation of the length of the shortest path between nodes [13]. For this reason, we
generalize our framework slightly by introducing bigger, overlapping cells. Con-
sider an integer parameter η ≥ 1 and, for each cube i = (i1, i2, . . . , id) and time
interval τ ,

define the super cube i as
d∏

j=1

[
ij �, (ij + η)�

]
and

the super interval τ as
[
τβ, (τ + η)β

]
.

Then define the super cell (i, τ ) as the Cartesian product of the super cube i and
the super interval τ .

For a sequence of point processes (�s)s≥0, we say that

an event E is increasing for (�s)s≥0 if the fact that E holds for (�s)s≥0

implies that it holds for all (�′
s)s≥0 for which �′

s ⊇ �s for all s ≥ 0.

We also say that an event E is restricted to a region X ⊂ Rd and a time interval
[t0, t1] if it is measurable with respect to the σ -field generated by the nodes that are
inside X at time t0 and their positions from time t0 to t1. For an increasing event
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E that is restricted to a region X and a time interval [t0, t1], we have the following
definition:

νE is called the probability associated to E if, for any μ ≥ 0
and region X′ ⊂ Rd , νE(μ,X′) is the probability that E hap-
pens given that, at time t0, the nodes in X are given by a Poisson
point process of intensity μ and their motions from t0 to t1 are in-
dependent Brownian motions conditioned to have displacement
inside X′ from t0 to t1.

(8)

In other words, if (xt )t≥0 are the locations of one such node, then xt0 ∈ X and, for
each s ∈ [t0, t1], we have xs − xt0 ∈ X′.

We say that:

two distinct cells (i, τ ) and (i′, τ ′) are adjacent if ‖i − i′‖∞ ≤ 1
and |τ − τ ′| ≤ 1.

For each (i, τ ) ∈ Zd+1, let E(i, τ ) be the indicator random variable for an increas-
ing event restricted to the super cube i and the super interval τ . We say that a
cell (i, τ ) is bad if E(i, τ ) = 0, and in this case, we define the bad cluster K(i, τ )

of (i, τ ) as the following set of cells:

K(i, τ ) = {(
i ′, τ ′) ∈ Zd+1 :E

(
i ′, τ ′) = 0 and ∃ a path

(9)
of adjacent bad cells from (i, τ ) to

(
i ′, τ ′)}.

If E(i, τ ) = 1, we let K(i, τ ) = ∅. Finally, define

Rt
1 = {

(i, τ ) ∈ Zd+1 :R1(i, τ ) ⊂ (−t, t) × [0, t)
}
.(10)

Our main technical result, Theorem 3.1 below, establishes a bound on the bad
cluster of the origin.

THEOREM 3.1. For each (i, τ ) ∈ Zd+1, let E(i, τ ) be the indicator random
variable for an increasing event that is restricted to the super cube i and the super
interval τ , and let νE be the probability associated to E as defined in (8). Fix a
constant ε ∈ (0,1), an integer η ≥ 1 and the ratio β/�2 > 0. Fix also w such that

w ≥
√

18η
β

�2 log
(

8d

ε

)
.

Then there exist positive numbers α0 and t0 so that if

α = min
{
ε2λ�d, log

(
1

1 − νE((1 − ε)λ,Qw�)

)}
≥ α0,
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we have a positive constant c = c(d) and a positive value C independent of t such
that, for all t ≥ t0,

P
(
K(0,0)�Rt

1
) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
−C

√
t

(log t)c

)
, for d = 1,

exp
(
−C

t

(log t)c

)
, for d = 2,

exp(−Ct), for d ≥ 3.

REMARK 3.1. (i) Theorem 1.2 is a special case of Theorem 3.1 with η = 1
and E(i, τ ) corresponding to the event that the cell i has at least (1 − ε)λ�d nodes
at time τβ . Note that, in this case, w can be taken to be any positive constant since
νE does not depend on w.

(ii) In Theorem 3.1, C may depend on all the parameters (including λ), but does
not depend on t .

(iii) Note that, in Theorem 3.1, we first fix the values of ε, η and β/�2. Given
these values, we fix w, and only then we set λ and � so that the condition on α is
satisfied. Note that setting � in this last step is equivalent to setting β , since the ratio
β/�2 is fixed. It is important that w does not depend on λ or �. In typical applica-
tions of Theorem 3.1, w is set to be sufficiently large so that νE((1−ε)λ,Qw�) can
be made arbitrarily close to 1 by setting λ or � large enough after having fixed w.
This is usually the case since, if w is large enough with respect to η and β/�2, we
have that the probability that a standard Brownian motion stays inside Qw� during

[0, ηβ] is at least 1 − exp(− cw2�2

ηβ
) for some positive constant c. Then we have that

most of the nodes of the Poisson point process of intensity (1 − ε)λ in the defi-
nition of νE stay inside the cube of side length w� that is centered at their initial
position.

(iv) As observed in [14, 17], if we define E(i, τ ) = 0 when there is no node
in the cube i at time τβ , then P(K(0,0) �Rt

1) is at least exp(−c
√

t) for d = 1,
exp(−c t

log t
) for d = 2 and exp(−ct) for d ≥ 3, where c does not depend on t . This

lower bound is achieved by the event that E(0, τ ) = 0 for all τ = 0,1, . . . , �t/β�.
Hence, with respect to t , the exponents in the bound of Theorem 3.1 are tight up
to logarithmic factors for d = 1,2 and up to constants for d ≥ 3.

In order to prove Theorem 3.1, we will do a multi-scale analysis, where, at each
scale, we tessellate Rd+1 into cells of a given size. We then analyze the density of
nodes in these cells using the framework of fractal percolation. The proof of The-
orem 3.1 is rather lengthy and, for this reason, we split the proof in many parts.
We start by introducing the multi-scale tessellation in Section 3.1. Then, in Sec-
tion 3.2, we define the fractal percolation process we will analyze. In Section 3.3,
we present a high-level sketch of the proof using the notation established in the
previous two sections, and also discuss the relation with standard fractal perco-
lation. In Section 3.4, we define the support of a cell and prove some geometric
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properties of the support. In Section 3.5, we use the definition of the support of a
cell to introduce a new notion of path of cells, and also prove some lemmas about
the paths. Finally, in Section 3.6, we put these results together to give the proof of
Theorem 3.1.

3.1. Multi-scale tessellation of space and time. We start with the tessellation
of space. Let m be a sufficiently large integer. For each scale k ≥ 1, tessellate Rd

into cubes of length �k such that

�1 = � and �k = mk3�k−1 = mk−1(k!)3�.(11)

We also set �0 = �/m.

REMARK 3.2. We let m be sufficiently large with respect to ε, η, w and the
ratio β/�2; however, m does not depend on λ or �. Hence, after having m fixed,
we can make α arbitrarily large by setting either λ or � large enough.

It will be useful to refer to Figure 1 in the discussion below. We index the
cubes by integer vectors i ∈ Zd and denote them by Sk(i). Therefore, for i =
(i1, i2, . . . , id), we have

Sk(i) =
d∏

j=1

[
ij �k, (ij + 1)�k

]
.

So, S1(i) is exactly the cube i introduced in the beginning of Section 3. Note that
Sk(i) is the union of (mk3)d cubes of scale k − 1; in particular, a cube of scale

FIG. 1. Illustration of the tessellation of Rd . Different scales are represented by the thickness of

the lines; for example, S2(π
(1)
1 (i)) is the square with thick borders that contains S1(i), which is the

black square. Note that S1(i) is at the same position in both the left and the right pictures above,

illustrating that Sbase
1 (i) ⊂ Sext

2 (π
(1)
1 (i)) as given in (13).
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smaller than k is contained inside a unique cube of scale k. With this, for each k,
j ≥ 0 and i ∈ Zd , we can define

π
(j)
k (i) = i ′ iff Sk(i) ⊆ Sk+j

(
i ′

)
.

Thus, π
(j)
k defines a hierarchy over cubes since, for all j ′ ≤ j , π

(j)
k (i) =

π
(j−j ′)
k+j ′ (π

(j ′)
k (i)). Using this notion, for i, i′ ∈ Zd and k ≥ 0, we say that (k + 1, i ′)

is the parent of (k, i) if π
(1)
k (i) = i′; in this case, we also say that (k, i) is a child

of (k + 1, i ′). We define the set of descendants of (k, i) as (k, i) and the union of
the descendants of the children of (k, i), or only (k, i) in case (k, i) has no child.

We now introduce a new variable n that satisfies

nd = m

7η
.(12)

The variable m must be large enough so that n > 1. We also assume that m is
specified in a way that makes n an integer.

We define some larger cubes based on Sk(i). For k ≥ 0, define the base Sbase
k (i)

of Sk(i) and the area of influence Sinf
k (i) of Sk(i) by

Sbase
k (i) = ⋃

i′ : ‖i−i′‖∞≤ηmn(k+1)3

Sk

(
i ′

)

and

Sinf
k (i) = ⋃

i′ : ‖i−i′‖∞≤2ηmn(k+1)3

Sk

(
i ′

)
.

We also define the extended cube Sext
k (i) by

Sext
k (i) = ⋃

i′ : π
(1)
k−1(i

′)=i

Sbase
k−1

(
i ′

)
.

Note that Sext
k (i) is the union of the bases of the children of (k, i), which are the

(k − 1)-cubes contained in Sk(i). It is easy to see that Sk(i) ⊂ Sbase
k (i) ⊂ Sinf

k (i)

and

Sext
k+1

(
π

(1)
k (i)

) = ⋃
i′ : π

(1)
k (i′)=π

(1)
k (i)

Sbase
k

(
i ′

) ⊃ Sbase
k (i).(13)

REMARK 3.3. One important property obtained from these definitions is that
an extended cube of scale 1 has side length � + 2ηmn�0 = (1 + 2ηn)�. Therefore,
for any i ∈ Zd , the extended cube Sext

1 (i) contains the super cell i defined in the
beginning of Section 3.
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FIG. 2. Time scale. The horizontal axis represents time and the vertical axis represents the scale.

Note that γ
(1)
1 (τ ) = γ

(1)
1 (τ + 1) = γ

(1)
1 (τ + 2).

Now, we define a multi-scale tessellation of time. In this discussion, it will be
useful to refer to Figure 2. We define

ε1 = ε and εk = εk−1 − ε

k2 for all k ≥ 1.

There will be no scale 0 for time, but we have defined ε0 = 2ε for consistency.
Now we define

βk = Cmix
�2
k−1

(εk−1 − εk)2 = Cmix
�2
k−1k

4

ε2 for all k ≥ 1,(14)

where Cmix ≥ 4c1 and c1 is the constant in Proposition 2.3 that depends on d only.
Note that, for k = 1, we have

β = β1 = Cmix
(�/m)2

ε2 .(15)

Hence, given β/�2 and ε, we can set m sufficiently large so that Cmix ≥ 4c1. Also,
note that

βk+1

βk

= �2
k(k + 1)4

�2
k−1k

4
= m2k2(k + 1)4 for all k ≥ 1.(16)

Now, for scale k ≥ 1, we tessellate time into intervals of length βk . We index
the time intervals by τ ∈ Z and denote them by Tk(τ ), where

Tk(τ ) = [
τβk, (τ + 1)βk

]
.

We allow time to be negative, and note that βk+1/βk is always an integer by (16),
which gives that

a time interval of scale k is contained inside a unique time interval
of scale k + 1.

(17)

At scale 1, we will consider the time intervals that intersect [0, t].
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We also introduce a hierarchy over time, but it is important to emphasize that
this time hierarchy is conceptually different than the spatial hierarchy induced
by π . For all k and τ , let γ

(0)
k (τ ) = τ , and, for j ≥ 1, define

γ
(j)
k (τ ) = τ ′ if γ

(j−1)
k (τ )βk+j−1 ∈ Tk+j

(
τ ′ + 1

)
.

In the spatial tessellation, we constructed the hierarchy π based on whether a large
cell contains a small cell. For the time tessellation, if τ ′ = γ

(1)
k (τ ), then the interval

at scale k + 1 that contains Tk(τ ) [which is uniquely defined as noted in (17)] is
Tk+1(τ

′ + 1). In other words, as we move from scale k + 1 to k, this hierarchy
shifts time forward. The reason for this definition is that this shift in time will be
used to allow nodes to mix inside their cells using the techniques of Section 2. This
will become clearer in Section 3.5.

Now note that γ indeed establishes a hierarchy over time since, for any j ′ ≤ j ,

we have γ
(j)
k = γ

(j−j ′)
k+j ′ (γ

(j ′)
k ). Thus, for τ, τ ′ ∈ Z and k ≥ 1, we say that (k+1, τ ′)

is the parent of (k, τ ), if γ
(1)
k (τ ) = τ ′; in this case we also say that (k, τ ) is a child

of (k + 1, τ ′). We also define the set of descendants of (k, τ ) as (k, τ ) and the
union of the descendants of the children of (k, τ ), or only (k, τ ) in case (k, τ ) has
no child.

Now, for any i ∈ Zd, k ≥ 1, τ ∈ Z, we define the space–time parallelogram

Rk(i, τ ) = Sk(i) × Tk(τ ),

and note that these parallelograms induce a tessellation over space and time. From
now on, we reserve the word cube to refer to the spatial region defined by Sk(i),
interval to refer to the time region defined by Tk(τ ) and cell to refer to the space–
time region Rk(i, τ ).

For k ≥ 1, define Sk to be the set of indices i ∈ Zd given by

Sk = {
i ∈ Zd :Sk(i) intersects [−t, t]d}

.

Equivalently, we can see Sk as the set of cubes of scale k that have a descendant of
scale 1 intersecting [−t, t]d . Similarly, we define Tk as the set of indices τ ∈ Z for
time intervals of scale k that have a descendant at scale 1 intersecting [0, t]. More
formally, we have

Tk = {
τ ∈ Z :∃τ ′ s.t. γ

(k−1)
1

(
τ ′) = τ and T1

(
τ ′) intersects [0, t]}.

Note that an interval in Tk with k ≥ 2 may not intersect [0, t]. Using these defini-
tions, we set

Rk = Sk × Tk.

Note that R1 ⊃ Rt
1, where Rt

1 is defined in (10). Also, for any cell (i, τ ) ∈ Rt
1, the

cells that are adjacent to (i, τ ) belong to R1. Now define

R = {
(k, i, τ ) : 1 ≤ k ≤ κ and (i, τ ) ∈ Rk

};
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that is, R is set of tuples of the form (k, i, τ ) giving the index set of all cells of
all scales we consider. Later in the proof of Theorem 3.1 we will set κ = c

log t
log log t

for some sufficiently large constant c, but we define the tessellation now for all
scales. We extend the hierarchy of space and time to the cells of R. Then, for
(k, i, τ ) ∈ R, we define the descendants of (k, i, τ ) as the cells (k′, i ′, τ ′) so that
(k′, i ′) is a descendant of (k, i) and (k′, τ ′) is a descendant of (k, τ ). As usual, we
say that (k, i, τ ) is an ancestor of (k′, i′, τ ′) if (k′, i ′, τ ′) is a descendant of (k, i, τ ).

3.2. A fractal percolation process. Here, we define the percolation process we
will analyze. For k ≥ 1, define Sk(i) to be k-dense if each cube of scale k−1 that is
contained in Sk(i) has at least (1 − εk)λ�d

k−1 nodes. For (k, i, τ ) ∈ R, let Dk(i, τ )

be the indicator random variable such that

Dk(i, τ ) = 1 iff Sk(i) is k-dense at time τβk .

Now, take a node v ∈ �0 and let (xt )t be the locations of v in Rd . For a time
interval [t0, t1] ⊂ R and a region X ⊂ Rd , we say that:

the displacement of v throughout [t0, t1] is in X if
t1⋃

s=t0

(xs − xt0) ⊂ X.

In other words, v never leaves the region xt0 + X during the interval [t0, t1].
We need to introduce a more restrictive notion of density. For this, we define the

indicator random variable Dext
k (i, τ ) for each (k, i, τ ) ∈R so that

Dext
k (i, τ ) = 1 iff, at time τβk , all cubes of scale k − 1 contained

in Sext
k (i) have at least (1 − εk)λ�d

k−1 nodes whose displacement
throughout [τβk, (τ + 2)βk] is in Qηmnk3�k−1

,

where Qz denotes the cube of side length z given by [−z/2, z/2]d . Clearly,
Dext

k (i, τ ) ≤ Dk(i, τ ) for all (k, i, τ ) ∈R.

REMARK 3.4. An important property of this definition is that, when
Dext

k (i, τ ) = 1, if (k − 1, i ′, τ ′) is a child of (k, i, τ ), then we know that there
are enough nodes in Sbase

k−1(i ′) at time τβk and these nodes never leave the cube
Sinf

k−1(i
′) during the interval [τβk, τ

′βk−1]. This will allow us to apply the mixing
technique of Section 2 to show that if Dext

k (i, τ ) = 1 then Dext
k−1(i

′, τ ′) is likely to
be 1.

Now, for k ≤ κ − 1, let

Dbase
k (i, τ ) = 1 iff, at time γ

(1)
k (τ )βk+1, all cubes of scale k inside

Sbase
k (i) contain at least (1 − εk+1)λ�d

k nodes whose displacement

throughout [γ (1)
k (τ )βk+1, τβk] is in Qηmn(k+1)3�k

.
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Note that if Dext
k+1(π

(1)
k (i), γ

(1)
k (τ )) = 1 then Dbase

k (i, τ ) = 1. This gives that

Dbase
k (i, τ ) ≥ Dext

k+1
(
π

(1)
k (i), γ

(1)
k (τ )

)
for all (k, i, τ ) ∈ R.(18)

For scale κ , we define

Aκ(i, τ ) = Dext
κ (i, τ ),

and, for k satisfying 2 ≤ k ≤ κ − 1, we set

Ak(i, τ ) = max
{
Dext

k (i, τ ),1 − Dbase
k (i, τ )

}
.

Finally, for scale 1 we set

A1(i, τ ) = max
{
E(i, τ ),1 − Dbase

1 (i, τ )
}

and define

A(i, τ ) =
κ∏

k=1

Ak

(
π

(k−1)
1 (i), γ

(k−1)
1 (τ )

)
.(19)

We will analyze the random variables A(i, τ ) instead of E(i, τ ). We say that a cell
(i, τ ) ∈R1 has a bad ancestry if A(i, τ ) = 0, and in this case we define

K ′(i, τ ) = {(
i ′, τ ′) ∈ Zd+1 :A

(
i ′, τ ′) = 0 and ∃ a path of adjacent cells

from (i, τ ) to
(
i ′, τ ′) where each cell of the path has a bad ancestry

}
.

If A(i, τ ) = 1 then K ′(i, τ ) = ∅. In words, K ′(i, τ ) is the set of cells of scale 1
with bad ancestry that can be reached from (i, τ ) via a path of cells of scale 1 with
bad ancestry. The lemma below shows that we can bound K(i, τ ) by K ′(i, τ ).

LEMMA 3.2. For each cell (i, τ ) ∈ Zd+1 of scale 1, we have that E(i, τ ) ≥
A(i, τ ). This implies that K(i, τ ) ⊆ K ′(i, τ ).

PROOF. We first fix (i, τ ) ∈ Zd+1. Then, for k = 1, define X1 = E(i, τ ) and,
for k ≥ 2, define Xk = Dext

k (π
(k−1)
1 (i), γ

(k−1)
1 (τ )). Also, let Yk = Dbase

k (π
(k−1)
1 (i),

γ
(k−1)
1 (τ )). Therefore, by the definition of A in (19), we have

A(i, τ ) =
(

κ−1∏
k=1

max{Xk,1 − Yk}
)
Xκ.(20)

By (18), we have that Yk ≥ Xk+1 for all k. Thus, for any k ≤ κ − 1, we have

max{Xk,1 − Yk}Xk+1 ≤ max{Xk,1 − Xk+1}Xk+1 = XkXk+1.

Therefore, applying the inequality above repetitively in (20) we have

A(i, τ ) ≤
(

κ−2∏
k=1

max{Xk,1 − Yk}
)
Xκ−1Xκ ≤

κ∏
k=1

Xk ≤ X1 = E(i, τ ).
�
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FIG. 3. Illustration of a fractal percolation process with μ = 3 and its 1-cubes (a), 2-cubes (b) and
3-cubes (c). Black squares represent closed cubes and white squares represent open cubes.

3.3. High-level overview. In this section, we give some intuition for the def-
initions of Sections 3.1 and 3.2, and give a high-level overview of the proof of
Theorem 3.1.

First, we give the definition of standard fractal percolation. Take the cube [0,1]d
and partition it into μd identical subcubes of side length 1/μ, where μ > 1 is
an integer. We refer to such subcubes as 1-cubes, and declare each 1-cube to be
open independently with probability p ∈ (0,1); otherwise, declare it to be closed.
Now repeat this process independently for each open 1-cube, splitting it into μd

identical subcubes of size 1/μ2 that we call 2-cubes and declaring each 2-cube
to be open independently with probability p. The 1-cubes that are closed are not
partitioned again, and all the region spanned by these cubes is considered to be
closed (see Figure 3). We continue this procedure until we obtain z-cubes of side
length 1/μz. Many results in this area [4–6, 12, 21, 24] study properties of the set
of open z-cubes as z → ∞.

Now, we discuss the intuition behind our definitions and the connection with
fractal percolation. We start at scale κ . We tessellate space and time into very large
cells. These are the cells indexed by the tuples in Rκ , and each cell corresponds
to a cube in space and a time interval. Then, for each cell (i, τ ) ∈ Rκ , we check
whether the cell contains sufficiently many nodes at the beginning of its time inter-
val; that is, we check whether Aκ(i, τ ) = Dext

κ (i, τ ) = 1. If Aκ(i, τ ) = 1, we do a
finer tessellation of the cell in both space and time. In terms of fractal percolation,
this corresponds to the event that a large cube is open and then is subdivided into
smaller cubes. On the other hand, if Aκ(i, τ ) = 0, we skip that cell and tessellate
it no further, similarly to what happens to cubes that are closed in a fractal perco-
lation process. We iterate this procedure until we obtain cells of volume �dβ (i.e.,
cells of scale 1). The main reason for employing this idea instead of analyzing the
events Dk(i, τ ) directly is that the Dk(i, τ ) are highly dependent.

In the analysis, we start with the random variables Ak(i, τ ) of scale k = κ , where
cells are so large that we can easily obtain that Aκ(i, τ ) = 1 for all (i, τ ) ∈ Rκ .
Then we move from scale k + 1 to scale k. Let (i, τ ) ∈ Rk . In order to analyze
Ak(i, τ ), we need to observe Ak+1(i

′, τ ′) such that π
(1)
k (i) = i′ and γ

(1)
k (τ ) = τ ′;
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that is, (k + 1, i ′, τ ′) is the parent of (k, i, τ ) with respect to the hierarchies
π and γ . If Ak+1(i

′, τ ′) = 0, then we do not need to observe Ak(i, τ ) since we
will not do the finer tessellation of Rk+1(i

′, τ ′) that produces the cell (k, i, τ ). In
this case, we will consider all the descendants at scale 1 of the cell (k + 1, i ′, τ ′) as
“bad,” and hence we will not need to observe any other descendant of (k+1, i ′, τ ′)
such as (k, i, τ ). On the other hand, if Ak+1(i

′, τ ′) = 1, we know that there is
a sufficiently large density of nodes in the region Sbase

k (i) ⊂ Sext
k+1(i

′) that sur-
rounds Sk(i) at time τ ′βk+1. Then, by allowing these nodes to move from τ ′βk+1
to τβk , we obtain that many of these nodes move inside Sk(i), giving that the
probability that Ak(i, τ ) = 0, which corresponds to the event Dbase

k (i, τ ) = 1 and
Dext

k (i, τ ) = 0, is small. We then apply this reasoning for all (k, i, τ ) ∈R. The key
fact is that a dense cell at scale k makes the children of this cell likely to be dense.

We now give the intuition behind the different types of cubes. Let (k, i, τ ) ∈ R
and assume that (k + 1, i′, τ ′) is the parent of (k, i, τ ). We consider the extended
cube Sext

k+1(i
′) instead of just Sk+1(i

′) to assure that, when Dext
k+1(i

′, τ ′) = 1, then
there is a large density of nodes around Sk(i) at time τ ′βk+1 even if Sk(i) lies
near the boundary of Sk+1(i

′); this happens since {Dext
k+1(i

′, τ ′) = 1} guarantees
that there are sufficiently many nodes in Sbase

k (i) ⊂ Sext
k+1(i

′). We then let the nodes
move for time τβk − τ ′βk+1 ≥ βk+1, thereby allowing them to mix in Sbase

k (i)

and move inside Sk(i). While these nodes move in the interval [τ ′βk+1, τβk], they
never leave the area of influence Sinf

k (i). This allows us to argue that cells that are
sufficiently far apart in space are “roughly independent” since we only observe
nodes that stay inside the area of influence of their cells.

Now, we give a brief sketch of the proof. We want to give an upper bound for
the probability that K(0,0) is not contained in Rt

1. When K(0,0) � Rt
1, then

there exists a very large path of adjacent bad cells of scale 1. A natural strategy
is to consider any fixed path of adjacent cells from the cell (0,0) to a cell outside
Rt

1 and show that the probability that all cells in this path are bad is exponentially
small, and then take the union bound over all such paths. However, this strategy
seems challenging due to the dependencies among the events that the cells of a
given path are bad. We use two ideas to solve this problem: path of cells of varying
scales and well separated cells.

We start with cells of scale κ , which are so large that we can show that, with very
large probability, Aκ(i, τ ) = 1 for all (i, τ ) ∈ Rκ . Therefore, if a cell (i, τ ) of scale
1 has A(i, τ ) = 0, we know that there exists an ancestor (k′, i ′, τ ′) of (1, i, τ ) such
that (k′, i ′, τ ′) is bad but its parent is good [i.e., Ak′(i ′, τ ′) = 0]. With this, we have
that if a path of bad cells of scale 1 exists, then there is a path of bad cells of varying
scales. This path must contain sufficiently many cells because it must connect the
cell (0,0) to a cell outside Rt

1. We take any fixed path of cells of varying scale
and show that, given that this path contains sufficiently many cells, we can obtain
a subset of the cells of the path so that these cells are “well separated” in space
and time. This implies that the Ak(i, τ ) are “roughly” independent for the well
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separated cells. Using this, we can show that the probability that all cells in this
subset are bad is very small. Then, by applying the union bound over all sets of
well separated cells that can be obtained from a path of cells of varying scales, we
establish Theorem 3.1.

3.4. The support of a cell. We define the time of influence T inf
k (τ ) of (k, τ ) as

T inf
1 (τ ) = [

γ
(1)
1 (τ )β2,

(
τ + max{η,2})β1

]
and

T inf
k (τ ) = [

γ
(1)
k (τ )βk+1, (τ + 2)βk

]
for k ≥ 2

and set the region of influence as

Rinf
k (i, τ ) = Sinf

k (i) × T inf
k (τ ).

Intuitively, the event {Ak(i, τ ) = 1} depends on the motion of nodes during a subin-
terval of T inf

k (τ ) and these nodes never leave the region Sinf
k (i). Thus, we will be

able to argue later that two cells with disjoint regions of influence are “roughly
independent.”

We assume that m is sufficiently large with respect to η so that max{η,2}β ≤
β2 = 16m2β , which gives that

T inf
k (τ ) ⊆ Tk+1

(
γ

(1)
k (τ )

) ∪ Tk+1
(
γ

(1)
k (τ ) + 1

) ∪ Tk+1
(
γ

(1)
k (τ ) + 2

)
.(21)

We define the time support T
sup
k (τ ) of (k, τ ) as

T
sup
k (τ ) =

8⋃
i=0

Tk+1
(
γ

(1)
k (τ ) − 3 + i

)
(22)

= [(
γ

(1)
k (τ ) − 3

)
βk+1,

(
γ

(1)
k (τ ) + 6

)
βk+1

]
,

and note that, by (21),

T inf
k (τ ) ⊂ T

sup
k (τ ).

We also define the spatial support S
sup
k (i) of (k, i) as

S
sup
k (i) = ⋃

i′ : ‖i′−π
(1)
k (i)‖∞≤m

Sk+1
(
i ′

)
,(23)

and, for any (k, i, τ ) ∈ R, we define

R
sup
k (i, τ ) = S

sup
k (i) × T

sup
k (τ ).(24)

The main idea behind the definition of the support is that, in order to control de-
pendencies, we will not only need to consider path of cells of varying scales, but
we will also need to restrict our attention to paths of cells that are sufficiently far
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apart in both space and time; we will define later two cells to be far apart if the
support of one cell does not contain the support of the other. We now prove some
useful geometric properties of the support.

The lemma below gives that if the regions of influence of two cells intersect,
then the region of influence of the cell of smaller scale is contained in the support
of the other cell. In other words, the support of a given cell contains all the cells
of smaller scale whose region of influence intersects the region of influence of the
given cell.

LEMMA 3.3. For any sufficiently large m the following is true. For any
(k, i, τ ), (k′, i ′, τ ′) ∈ R with k ≥ k′, if Rinf

k′ (i ′, τ ′) � R
sup
k (i, τ ) then Rinf

k′ (i ′, τ ′) ∩
Rinf

k (i, τ ) = ∅.

PROOF. Note that, if Rinf
k′ (i ′, τ ′) � R

sup
k (i, τ ), then either T inf

k′ (τ ′) � T
sup
k (τ )

or Sinf
k′ (i ′) � S

sup
k (i). We first assume that T inf

k′ (τ ′) � T
sup
k (τ ) and show that this

implies

T inf
k′

(
τ ′) ∩ T inf

k (τ ) = ∅,

which yields Rinf
k′ (i ′, τ ′) ∩ Rinf

k (i, τ ) = ∅.
Note that the interval T inf

k′ (τ ′) has length at most 3βk′+1 by (21). Then, since
T inf

k′ (τ ′)� T
sup
k (τ ),

T inf
k′

(
τ ′) ∩ [(

γ
(1)
k (τ ) − 3

)
βk+1 + 3βk′+1,

(
γ

(1)
k (τ ) + 6

)
βk+1 − 3βk′+1

] = ∅.(25)

Using the fact that βk′ ≤ βk , we obtain[(
γ

(1)
k (τ ) − 3

)
βk+1 + 3βk′+1,

(
γ

(1)
k (τ ) + 6

)
βk+1 − 3βk′+1

]
⊇ [

γ
(1)
k (τ )βk+1,

(
γ

(1)
k (τ ) + 3

)
βk+1

]
= Tk+1

(
γ

(1)
k (τ )

) ∪ Tk+1
(
γ

(1)
k (τ ) + 1

) ∪ Tk+1
(
γ

(1)
k (τ ) + 2

)
⊇ T inf

k (τ ),

where the last step follows from (21). This, together with (25), implies that T inf
k′ (τ ′)

does not intersect T inf
k (τ ).

Now, we turn to the case Sinf
k′ (i ′)� S

sup
k (i), for which we want to show

Sinf
k′

(
i ′

) ∩ Sinf
k (i) = ∅.

Let x1, x2, . . . , xd be defined so that Sk(i) = ∏d
j=1[xj , xj +�k]. Then we can write

Sinf
k (i) =

d∏
j=1

[
xj − 2ηmn(k + 1)3�k, xj + �k + 2ηmn(k + 1)3�k

]
.(26)
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Now, let y1, y2, . . . , yd be defined so that S
sup
k (i) = ∏d

j=1[yj , yj + (2m+ 1)�k+1].
Since Sinf

k′ (i ′) is a cube of side length (1 + 4ηmn(k′ + 1)3)�k′ ≤ (1 + 4ηmn(k +
1)3)�k and Sinf

k′ (i ′) is not contained in S
sup
k (i), we have that

Sinf
k′

(
i ′

) ∩
d∏

j=1

[
yj + (

1 + 4ηmn(k + 1)3)
�k,

(27)
yj + (2m + 1)�k+1 − (

1 + 4ηmn(k + 1)3)
�k

] = ∅.

Now, we use the fact that m�k+1 ≤ xj − yj ≤ (m + 1)�k+1 − �k for all j =
1,2, . . . , d . This and (26) give

Sinf
k (i) ⊆

d∏
j=1

[
yj + m�k+1 − 2ηmn(k + 1)3�k,

(28)
yj + (m + 1)�k+1 + 2ηmn(k + 1)3�k

]
.

Now, using the relation between m and n in (12), we have that

m�k+1 = m2(k + 1)3�k = 7ηmnd(k + 1)3�k ≥ (
1 + 6ηmn(k + 1)3)

�k.(29)

Using this result in (27) we get that Sinf
k′ (i ′) does not intersect

d∏
j=1

[
yj + (

1 + 4ηmn(k + 1)3)
�k, yj + (m + 1)�k+1 + 2ηmn(k + 1)3�k

]
.(30)

Similarly, plugging (29) into (28) we see that Sinf
k (i) is contained in the space–

time region given by (30). These two facts establish that Sinf
k′ (i ′) does not intersect

Sinf
k (i). �

The second important property we will use is given in the next lemma, which
establishes that the support of a cell contains all its descendants. The main use
of this lemma is that, once we encounter a cell (k, i, τ ) for which Ak(i, τ ) = 0,
then we want to regard all its descendants as bad. However, the set of descendants
of (k, i, τ ) may be a complicated set. With the lemma below, we then just consider
all cells that are contained inside the support of (k, i, τ ) as bad [which includes all
descendants of (k, i, τ )].

LEMMA 3.4. Assume m ≥ 3. For any (k, i, τ ) ∈ R, if (k′, i ′, τ ′) is a descen-
dant of (k, i, τ ) then

Rk′
(
i ′, τ ′) ⊆ R

sup
k (i, τ ).

Moreover, R
sup
k (i, τ ) contains all the neighbors of (k′, i ′, τ ′); that is,⋃

(i′′,τ ′′) : ‖(i′′,τ ′′)−(i′,τ ′)‖∞≤1

Rk′
(
i ′′, τ ′′) ⊆ R

sup
k (i, τ ).
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PROOF. Fix (i′′, τ ′′) such that (k′, i ′′, τ ′′) is adjacent to (k′, i ′, τ ′) and assume
that the ancestor of (k′, i ′′, τ ′′) of scale k is not (k, i, τ ), otherwise the second part
of the lemma follows from the first part. We prove this lemma first for space and
then for time. For space, since (k′, i ′, τ ′) is a descendant of (k, i, τ ) we have that
Sk′(i ′) ⊆ Sk(i) ⊆ S

sup
k (i). Also, (k′, i′′) is adjacent to (k′, i ′) which implies that the

ancestor of (k′, i′′) of scale k is adjacent to (k, i). Since S
sup
k (i) contains all cells

of scale k that are adjacent to (k, i), it also contains Sk′(i ′′).
It remains to establish the lemma for the time dimension. For the first part of the

lemma, this corresponds to showing that Tk′(τ ′) ⊆ T
sup
k (τ ). Recall that Tk′(τ ′) =

[τ ′βk′, (τ ′ + 1)βk′ ], which is contained in [τβk, (τ
′ + 1)βk′ ] since (k′, i ′, τ ′) is a

descendant of (k, i, τ ). Now, note that

τβk = γ
(k−k′)
k′

(
τ ′)βk ≥ γ

(k−k′−1)
k′

(
τ ′)βk−1 − 2βk ≥ τ ′βk′ − 2

k∑
j=k′+1

βj .

Then, since k′ ≥ 1, we can use the bound
k∑

j=2

βj = Cmix

k∑
j=2

�2
j−1j

4

ε2 ≤ Cmix
2�2

k−1k
4

ε2 = 2βk,

where the last inequality can be proved by induction on k. Therefore, we conclude
that

τβk ≥ τ ′βk′ − 4βk.(31)

Since k > k′ ≥ 0, we have k ≥ 1 and

4βk + βk′ ≤ 5βk = 5
βk+1

m2k2(k + 1)4 ≤ βk+1.

This and the inequality in (31) yield

Tk′
(
τ ′) ⊆ [τβk, τβk + 4βk + βk′ ] ⊆ [τβk, τβk + βk+1] ⊆ T

sup
k (τ ).

This establishes the first part of the lemma. For the second part, using the fact that
(k′, τ ′′) is adjacent to (k′, τ ′) together with the result above, we have

Tk′
(
τ ′′) ⊆ [τβk − βk′, τβk + βk+1 + βk′ ] ⊆ T

sup
k (τ ). �

3.5. Support connected paths. We start defining the extended support of a cell.
Given a cell (k, i, τ ) ∈R, define

T
2sup
k (τ ) =

26⋃
i=0

Tk+1
(
γ

(1)
k (τ ) − 12 + i

)
and

S
2sup
k (i) = ⋃

i′ : ‖i′−π
(1)
k (i)‖∞≤3m+1

Sk+1
(
i ′

)
.
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Also, we let

R
2sup
k (i, τ ) = S

2sup
k (i) × T

2sup
k (τ ).

The extended support is defined so that the following property is satisfied. Let
(k1, i1, τ1), (k2, i2, τ2) ∈ R with k1 ≥ k2. Then

if R
sup
k1

(i1, τ1) intersects R
sup
k2

(i2, τ2), we have R
sup
k2

(i2, τ2) ⊆ R
2sup
k1

(i1, τ1).(32)

Note that the extended support of (k, i, τ ) is three times larger than the support
of (k, i, τ ) [defined in (24)] since S

sup
k (i) is a cube of side length (2m + 1)�k+1

while S
2sup
k (i) is a cube of side length 3(2m + 1)�k+1, and T

sup
k (τ ) is an interval

of length 9βk+1 while T
2sup
k (τ ) is an interval of length 27βk+1.

We define the extended support because on the one hand we want to look at cells
that are well separated (in the sense that the support of one cell does not contain
the support of the other), but on the other hand we want to have a notion of a path
of well separated cells. In such a path, cells must be well separated but should
not be excessively far from one another. We will use the extended support to say
that two cells are adjacent (in this new notion of path) if their extended supports
intersect; we will call this a support connected path. We make this notion rigorous
in the following.

Recall that a cell (i, τ ) ∈ R1 is said to have a bad ancestry if A(i, τ ) = 0. Also,
in the beginning of Section 3, we defined a cell (i, τ ) of scale 1 to be bad if
E(i, τ ) = 0. Here, we change this definition slightly and extend it to cells of arbi-
trary scales: we say that a cell (k, i, τ ) ∈ R is bad if Ak(i, τ ) = 0. Our goal is to
show that, if t is sufficiently large, then the probability that K(0,0)�Rt

1 is small.
First, recall that two cells (k, i1, τ1) and (k, i2, τ2) at the same scale are adjacent if
‖i − i′‖∞ ≤ 1 and |τ − τ ′| ≤ 1. For arbitrary scales k1 > k2, we define that

(k1, i1, τ1) and (k2, i2, τ2) are adjacent if (k1, i1, τ1) is adjacent to

(k1, π
(k1−k2)
k2

(i2), γ
(k1−k2)
k2

(τ2)).

In other words, (k1, i1, τ1) and (k2, i2, τ2) are adjacent if the cell at scale k1 that is
the ancestor of (k2, i2, τ2) is adjacent to (k1, i1, τ1). Note that two adjacent cells of
different scales may be disjoint, whereas two adjacent cells of the same scale must
at least intersect at a point.

We refer to a path as a sequence of distinct cells for which any two consecutive
cells in the sequence are adjacent, and we say that a sequence of cells is a cluster if
each cell of the sequence is adjacent to some other cell in the sequence. Note that,
unlike in a path, the order of the cells of a cluster is not important, so we regard a
cluster as a set of cells.

For any two cells (k1, i1, τ1) and (k2, i2, τ2), we say that

(k1, i1, τ1) and (k2, i2, τ2) are well separated if

Rk1(i1, τ1)�R
sup
k2

(i2, τ2) and Rk2(i2, τ2)�R
sup
k1

(i1, τ1).
(33)
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We will look at path of cells that are mutually well separated. (Recall that from
Lemma 3.3, well separated cells have disjoint regions of influence and, therefore,
we will be able to argue that they behave roughly independently from one another.)
We define that

(k1, i1, τ1) and (k2, i2, τ2) are support adjacent if

R
2sup
k1

(i1, τ1) ∩ R
2sup
k2

(i2, τ2) �=∅.

Finally, we say that a sequence of cells P = ((k1, i1, τ1), (k2, i2, τ2), . . . ,

(kz, iz, τz)) is a support connected path if the cells in P are mutually well
separated and, for each j = 1,2, . . . , z − 1, (kj , ij , τj ) is support adjacent to
(kj+1, ij+1, τj+1). We also define a sequence of cells P = ((k1, i1, τ1), (k2, i2, τ2),

. . . , (kz, iz, τz)) to be a support connected cluster if the cells in P are mutually well
separated and, for each j = 1,2, . . . , z, there exists a j ′ ∈ {1,2, . . . , z} \ {j} such
that (kj , ij , τj ) is support adjacent to (kj ′, ij ′, τj ′).

Now, define � as the set of all paths of cells of scale 1 (i.e., cells of R1) so
that the first cell of the path is (0,0) and the last cell of the path is the only cell
not contained in Rt

1. Also, define �
sup
κ as the set of all support connected paths of

cells of scale at most κ (i.e., cells in
⋃κ

k=1 Rk) so that the extended support of the
first cell of the path contains R1(0,0) and the last cell of the path is the only cell
whose extended support is not contained in

⋃
(i,τ )∈Rt

1
R1(i, τ ). The lemma below

will allow us to turn our attention to support connected paths of bad cells instead of
paths of cells with bad ancestry, whose dependencies seem challenging to control.

LEMMA 3.5. We have that

P(∃P ∈ � s.t. all cells of P have a bad ancestry)

≤ P
(∃P ∈ �sup

κ s.t. all cells of P are bad
)
.

PROOF. The proof is split into two stages. In the first stage, we show that, if
there exists a path P ∈ � such that each cell of P has a bad ancestry, then there
exists a path of bad cells of arbitrary scales. In the second stage, we show that,
given the existence of such a path of bad cells of arbitrary scales, then there exists
a path of �

sup
κ such that all cells of the path are bad.

We now prove the first stage. Let �κ be the set of all paths of cells of arbitrary
scale (i.e., cells in R) such that the first cell of the path is an ancestor of (0,0) ∈ R1
and the last cell of the path is the only cell whose support is not contained in⋃

(i,τ )∈Rt
1
R1(i, τ ). In this stage, we establish that

P(∃P ∈ � s.t. all cells of P have a bad ancestry)
(34)

≤ P(∃P ∈ �κ s.t. all cells of P are bad).

Let P = ((1, i1, τ1), (1, i2, τ2), . . . , (1, iz, τz)) ∈ � be a path of cells with bad an-
cestries; hence (i1, τ1) = (0,0) and (iz, τz) /∈ Rt

1. For each j , since A(ij , τj ) = 0,
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we know by the definition of A in (19) that there exists a k′
j so that, if we

set i′j = π
(k′

j−1)

1 (ij ) and τ ′
j = γ

(k′
j−1)

1 (τj ), we obtain Ak′
j
(i ′j , τ ′

j ) = 0. Define

J ⊆ {1,2, . . . , z} such that j ∈ J if and only if there exists no j ′ < j with
(k′

j , i
′
j , τ

′
j ) = (k′

j ′, i ′j ′, τ ′
j ′) and there exists no j ′ ∈ {1,2, . . . , z} \ {j} for which

(k′
j , i

′
j , τ

′
j ) is a descendant of (k′

j ′, i ′j ′, τ ′
j ′). In other words, J contains only dis-

tinct elements of the set {(k′
j , i

′
j , τ

′
j ) : j = 1,2, . . . , z} which have no ancestor in

the set. With this, we define

P̃ = {(
k′
j , i

′
j , τ

′
j

)
: j ∈ J

}
,

and show that P̃ is a cluster. Before, note that, since each cluster contains a path,
this establishes the existence of a path of bad cells of arbitrary scales. In particular,
we obtain a path starting from an ancestor of (1, i1, τ1) and such that there exists
a cell (k′, i ′, τ ′) ∈ P̃ that is an ancestor of a cell of P that is not contained in Rt

1.
Then, by Lemma 3.4, we know that this cell of P is contained in R

sup
k′ (i ′, τ ′),

which gives that the union of the support of the cells in P̃ is not contained in⋃
(i,τ )∈Rt

1
R1(i, τ ). Such a path belongs to �κ , so it only remains to show that P̃

is a cluster. Note that, by construction, each cell of P has exactly one ancestor
in P̃ . Now, for any two adjacent cells (1, ij , τj ), (1, ij+1, τj+1) of P , either they
have the same ancestor in P̃ or their ancestors are adjacent since two nonadjacent
cells cannot have descendants at scale 1 that are adjacent. This shows that each cell
in P̃ is adjacent to at least one other cell in P̃ and, consequently, P̃ is a cluster.
Therefore, we obtain (34).

Now we turn to the second stage of the proof, where we establish that

P(∃P ∈ �κ s.t. all cells of P are bad)
(35)

≤ P
(∃P ∈ �sup

κ s.t. all cells of P are bad
)
.

Let P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)) ∈ �κ be a path of bad cells; thus,
the support of (kz, iz, τz) is not contained in

⋃
(i,τ )∈Rt

1
R1(i, τ ). We show the exis-

tence of a support connected cluster P ′ of bad cells. First, we order the cells of P

in the following way. If two cells have the same scale, we order them by taking
an arbitrary order of Zd+1; for two cells of different scales, we say that the cell
with the larger scale precedes the other cell in the order. This clearly establishes
a total order of the cells of P . Then let L be the list of cells of P following this
order, where the first cell of L is the cell that precedes all the other cells of P in
the order. We construct P ′ in a step-by-step manner, where at each step we add the
first element of L to P ′, remove some elements from L and repeat until L has no
element. During this procedure, we associate each cell of P to a cell of P ′; we use
this association later to show that P ′ is a support connected cluster. Below we give
the formal description of each step in the construction of P ′, where we assume that
(k′, i ′, τ ′) is the first element of L:
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(i) Add (k′, i ′, τ ′) to P ′ and remove it from L. Since (k′, i ′, τ ′) is both in P

and P ′, associate (k′, i ′, τ ′) to itself.
(ii) Remove from L all the cells (k′′, i ′′, τ ′′) that are not well separated from

(k′, i ′, τ ′) [see the definition of well separated cells in (33)], and associate each
such (k′′, i ′′, τ ′′) to (k′, i ′, τ ′).

We repeat these steps until L is empty. Note that the set P ′ obtained at the end
contains only cells that are mutually well separated. Also, note that there exists
a cell of P ′ such that the extended support of this cell contains R1(0,0). This
follows since, by definition, R

sup
k1

(i1, τ1) contains R1(0,0) and, by construction
of P ′, there exists a cell of P ′ whose support contains Rk1(i1, τ1). So, by (32), the
extended support of this cell contains R

sup
k1

(i1, τ1) which contains R1(0,0).
It remains to show that P ′ is support connected and that⋃

(k′,i′,τ ′)∈P ′
R

2sup
k′

(
i ′, τ ′) � ⋃

(i′′,τ ′′)∈Rt
1

R1
(
i ′′, τ ′′).

The second property is easy to check and follows from (32) by noting that the cell
(kz, iz, τz) ∈ P is contained in the support of the cell to which it has been associated
in the construction of P ′ and, moreover, the support of (kz, iz, τz) is not contained
in

⋃
(i′′,τ ′′)∈Rt

1
R1(i

′′, τ ′′) by the definition of P . Then (32) gives that the extended
support of the cell to which (kz, iz, τz) has been associated contains the support
of (kz, iz, τz) and, hence, cannot be contained in

⋃
(i′′,τ ′′)∈Rt

1
R1(i

′′, τ ′′). Here, we
used the order of L, which guarantees that kz is no larger than the scale of the cell
to which (kz, iz, τz) has been associated, thereby allowing us to apply (32).

Now, we assume, for the sake of establishing a contradiction, that P ′ is not sup-
port connected. Then it must be the case that P ′ can be partitioned into two set of
cells Q and Q′ so that, for any cell of Q, the extended support of this cell does
not intersect the extended support of any cell of Q′. In this part, it will be useful
to refer to Figure 4. Let P0 be the cells of P that are not associated to any cell

FIG. 4. Illustration for the proof of Lemma 3.5. It shows that R
2sup
k′ (i′, τ ′) intersects R

2sup
k′′ (i′′, τ ′′)

since R
sup
k̂

(î, τ̂ ) intersects both R
sup
k′ (i′, τ ′) and R

sup
k′′ (i′′, τ ′′).
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of Q but are adjacent to at least one cell of P that is associated to a cell of Q.
Since P is a set of adjacent cells, P0 has at least one cell. Let (k′′

1 , i ′′1 , τ ′′
1 ) be a cell

in P0 and let (k′′, i ′′, τ ′′) be the cell of P ′ that has been associated to (k′′
1 , i ′′1 , τ ′′

1 ).
So (k′′, i ′′, τ ′′) ∈ Q′. Let (k′

1, i
′
1, τ

′
1) be a cell of P that has been associated to

(k′, i ′, τ ′) ∈ Q and is adjacent to (k′′
1 , i ′′1 , τ ′′

1 ). Thus, Rk′
1
(i ′1, τ ′

1) ⊆ R
sup
k′ (i ′, τ ′) and

Rk′′
1
(i ′′1 , τ ′′

1 ) ⊆ R
sup
k′′ (i ′′, τ ′′). We now assume that k′

1 ≥ k′′
1 ; the other case follows

by the same argument. Since k′
1 ≥ k′′

1 , we have a cell (k̂, î, τ̂ ) at scale k̂ = k′
1 that

is adjacent to (k′
1, i

′
1, τ

′
1) and is an ancestor of (k′′

1 , i ′′1 , τ ′′
1 ). Then, by adjacency

and Lemma 3.4, R
sup
k̂

(î, τ̂ ) contains both Rk′
1
(i ′1, τ ′

1) and Rk′′
1
(i ′′1 , τ ′′

1 ). Therefore,

R
sup
k̂

(î, τ̂ ) intersects both R
sup
k′ (i ′, τ ′) and R

sup
k′′ (i ′′, τ ′′). Also, by the order of L,

we have that k̂ ≤ k′ since k̂ = k′
1 and (k′

1, i
′
1, τ

′
1) is associated to (k′, i ′, τ ′). Then,

by (32), we have that R
sup

k̂
(î, τ̂ ) ⊆ R

2sup
k′ (i ′, τ ′) which gives that R

2sup
k′ (i ′, τ ′) inter-

sects R
sup
k′′ (i ′′, τ ′′), thereby contradicting the fact that (k′, i ′, τ ′) and (k′′, i ′′, τ ′′) are

not support adjacent. This establishes (35) and completes the proof of the lemma.
�

The next lemma is a technical result bounding the probability that a Brownian
motion stays inside a cube.

LEMMA 3.6. Let � > 0 and, for any z > 0, define F�(z) to be the event that
a Brownian motion starting from the origin stays inside Qz throughout the time
interval [0,�]. Then, for any z ≥ 3

√
�, we have

P
(
F�(z)

) ≥ 1 − d exp
(
− z2

18�

)
.

PROOF. In order to bound P(F�(z)), we use the bound for f� in (6) with
M = z/3, where f�

P(F�(z))
is the probability density function of the position of a

Brownian motion at time � given that the motion never leaves Qz during the
whole of [0,�]. With this, we have

P
(
F�(z)

) =
∫
Qz

f�(y) dy ≥
∫
Q2z/3

f�(y) dy

≥
(

1 − 2d exp
(
− z2

6�

))(
1 − 2d

∫ ∞
z/3

1√
2π�

exp
(
− y2

1

2�

)
dy1

)

≥
(

1 − 2d exp
(
− z2

6�

))(
1 − 2d

3
√

�√
2πz

exp
(
− z2

18�

))

≥ 1 − d exp
(
− z2

18�

)
,
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where we use the fact that z ≥ 3
√

� to apply the Gaussian tail bound in the sec-
ond inequality (cf. Lemma A.2) and also to obtain the simplifications in the last
inequality. �

We now give a key lemma that we will use to argue that well separated cells
are roughly independent. Let Fk(i, τ ) be the σ -field generated by all Ak′(i ′, τ ′)
for which T inf

k′ (τ ′) does not intersect [γ (1)
k (τ )βk+1,∞) or both τ ′βk′ ≤ τβk and

Sinf
k (i) ∩ Sinf

k′ (i ′) = ∅. An important property of this definition is that an event in
Fk(i, τ ) may reveal information about nodes that affect Ak(i, τ ) but only regarding
time steps that occur before γ

(1)
k (τ )βk+1. Because of this, we are able to get an

upper bound for the probability that Ak(i, τ ) = 0 given any event in Fk(i, τ ). The
following quantity will be used in many of the subsequent lemmas to simplify the
equations

ψ1 = min
{
ε2λ�d, log

(
1

1 − νE((1 − ε)λ,Qw�)

)}
and

(36)

ψk = ε2λ�d
k−1

(k + 1)4 = ε2λ�dmd(k−2)((k − 1)!)3d

(k + 1)4 for k ≥ 2.

LEMMA 3.7. Let w ≥
√

18ηβ

�2 log(8d
ε

) and

α = min
{
ε2λ�d, log

(
1

1 − νE((1 − ε)λ,Qw�)

)}
as in Theorem 3.1. Fix any (k, i, τ ) ∈ R and any F ∈ Fk(i, τ ). If m is suffi-
ciently large with respect to d , β/�2, η and ε, then there are positive constants
c = c(d) ≥ 1 and α0 so that, for all α ≥ α0, we have:

(i) P(Ak(i, τ ) = 0) ≤ exp(−cψk) for all k = 1,2, . . . , κ ,
(ii) P(Ak(i, τ ) = 0|F) ≤ exp(−cψk) for all k = 1,2, . . . , κ − 1.

PROOF. Note that the Ak are defined differently for k = 1 and 2 ≤ k ≤ κ − 1.
In the sequel, we assume that k ≥ 2 and establish part (ii) of the lemma. At the
end, we address both part (i) and the case k = 1 for part (ii). Since

P
(
Ak(i, τ ) = 0|F ) = P

({
Dext

k (i, τ ) = 0
} ∩ {

Dbase
k (i, τ ) = 1

}|F )
,

if F ∩ {Dbase
k (i, τ ) = 1} = ∅, then the lemma clearly holds. So, we now assume

that F ∩ {Dbase
k (i, τ ) = 1} �=∅ and write

P
(
Ak(i, τ ) = 0|F ) ≤ P

(
Dext

k (i, τ ) = 0|F ∩ {
Dbase

k (i, τ ) = 1
})

.

Recall that {Dbase
k (i, τ ) = 1} gives that all cubes of scale k contained in Sbase

k (i)

have at least (1 − εk+1)λ�d
k nodes at time γ

(1)
k (τ )βk+1 and the displacement of

these nodes throughout [γ (1)
k (τ )βk+1, τβk] is in Qηmn(k+1)3�k

. Note that F only re-

veals information about the location of these nodes before time γ
(1)
k (τ )βk+1 since
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these nodes never leave the cube Sinf
k (i) during the whole of [γ (1)

k (τ )βk+1, τβk]
(cf. Remark 3.4).

Now, we apply Proposition 2.3. To avoid ambiguity, we add a bar to the vari-
ables appearing in the statement of Proposition 2.3. We apply this proposition with
K̄ = (1 + 2ηmn(k + 1)3)�k , �̄ = �k , β̄ = (1 − εk+1)λ, �̄ = τβk − γ

(1)
k (τ )βk+1 ∈

[βk+1,2βk+1], K̄ ′ such that 3(K̄ − K̄ ′ + 2
√

d�̄) = ηmn(k + 1)3�k and ε̄ such that
(1 − ε̄)(1 − εk+1) = (1 − εk+1+εk

2 ), which gives that ε̄ ≥ εk−εk+1
2 = ε

2(k+1)2 . Now,
using these values and the fact that m is large enough, we have that

K̄ ′ = �k + mk3�k−1
(5

3ηmn(k + 1)3 + 2
√

d
) ≥ �k + 2ηmnk3�k−1,

which is the side length of Sext
k (i). Note also that we have �̄ ≥ c1�̄

2

ε̄2 since

Cmix ≥ 4c1 in the definition of βk+1. It remains to check whether K̄ − K̄ ′ ≥
c2

√
�̄ log(16dε̄−1), which is satisfied if the following is true:

ηmn(k + 1)3�k ≥ 4c2
√

2Cmix
�k(k + 1)2

ε

√
log

(
32d(k + 1)2

ε

)
.(37)

Using the definition of βk from (14) for k = 1, we can write Cmix = ε2m2β

�2 , which
allows us to write the right-hand side of (37) as

4
√

2c2m�k(k + 1)2

√
β

�2 log
(

32d(k + 1)2

ε

)
.

Note that, in the left-hand side of (37), ηn increases with m. So, since m is suf-
ficiently large with respect to d , β/�2 and ε, we obtain that n is also sufficiently
large and (37) is satisfied for all k.

Then, we obtain a coupling between the nodes in Sbase
k (i) and an independent

Poisson point process � with intensity (1 − ε̄)(1 − εk+1)λ ≥ (1 − εk

2 − εk+1
2 )λ that

succeeds with probability at least

1 − K̄d

�̄d
exp

(−c3ε̄
2β̄�̄d)

≥ 1 − (
1 + 2ηmn(k + 1)3)d exp

(
−c3

ε2

4(k + 1)4 (1 − εk+1)λ�d
k

)
,

where c3 is a constant depending on d only. Note that, up to this moment, we never
used the fact that k ≥ 2 and the argument above holds also for k = 1.

Now, for the case k ≥ 2, we define a Poisson point process �′ consisting of the
nodes of � whose displacement throughout [τβk, (τ + 2)βk] is in Qηmnk3�k−1

. For

each node of �, this condition is satisfied with probability P(F2βk
(ηmnk3�k−1)),

independently over the nodes of �. Using Lemma 3.6 and the thinning property of
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Poisson processes, we have that �′ is a Poisson point process with intensity

(1 − ε̄)(1 − εk+1)P
(
F2βk

(
ηmnk3�k−1

))
λ

≥
(

1 − εk

2
− εk+1

2

)(
1 − d exp

(
−(ηmnk3�k−1)

2

36βk

))
(38)

≥
(

1 − εk

2
− εk+1

2

)(
1 − d exp

(
−(ηmnkε)2

36Cmix

))

≥
(

1 − εk

2
− εk+1

2

)(
1 − d exp

(
− (ηnk)2

36(β/�2)

))
,

where the second inequality follows by the definition of βk in (14) and the third
inequality follows by the definition of Cmix. Then, setting m sufficiently large with
respect to d , η, ε and β/�2, which makes ηn sufficiently large, we obtain that

intensity of �′ ≥
(

1 − 3εk

4
− εk+1

4

)
.(39)

Once the coupling is established, the probability that all (
�k+2ηmnk3�k−1

�k−1
)d =

(mk3 + 2ηmnk3)d subcubes of scale k − 1 in Sext
k (i) have at least (1 − εk)λ�d

k−1
nodes of �′ is

P
(
Dext

k (i, τ ) = 1|F ∩ {
Dbase

k (i, τ ) = 1
})

≥ 1 − (
mk3 + 2ηmnk3)d

(40)

× exp
(
−1

2

(
εk − εk+1

4

)2(
1 − 3εk

4
− εk+1

4

)
λ�d

k−1

)

≥ 1 − (
mk3 + 2ηmnk3)d exp

(
−1

2

(
ε2

16(k + 1)4

)(
1 − 15ε

16

)
λ�d

k−1

)
,

where we used the fact that εk is decreasing in k to infer that 1 − 3εk

4 − εk+1
4 ≥

1− 3ε
4 − ε2

4 = 1− 15ε
16 . Now, for large k, the result follows since �k−1 = mk−2((k −

1)!)3� and, for small k ≥ 2, the result follows since ε2λ�d ≥ α is large enough.
For part (i), a similar argument works. Since in this case we want to bound

the unconditioned probability, at time τβk the nodes in Sext
k (i) consists of a Pois-

son point process with intensity λ. So, using the derivation in (38) and (39) with
εk+1 = 0, the nodes of this Poisson point process for which the displacement
throughout [τβk, (τ + 2)βk] is in Qηmnk3�k−1

is also a Poisson point process with
intensity at least 1 − εk

2 . Then, using a derivation similar to (40) we have

P
(
Dext

k (i, τ ) = 1
) ≥ 1 − (

mk3 + 2ηmnk3)d exp
(
−1

2

ε2
k

4
(1 − εk/2)λ�d

k−1

)

≥ 1 − (
mk3 + 2ηmnk3)d exp

(
− 1

128
ε2(1 − ε/2)λ�d

k−1

)
,
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where we used the fact that εk = ε − ∑k
i=2

ε
i2 ≥ ε − ε

4 − ε
∫ ∞

2
1
x2 dx = ε

4 .
Now, for part (ii) with k = 1, we again use the Poisson point process � of

intensity at least

1 − εk

2
− εk+1

2
= 1 − 7ε

8

over Sext
1 (i) defined above. We also use the fact that E(i, τ ) is an event restricted to

the super cell i (see the definition of super cells in the beginning of Section 3) and
Sext

1 (i) contains the super cell i (cf. Remark 3.3). Recall that, for the event E(i, τ ),
we only consider the nodes of � whose displacement from time τβ to (τ + η)β is
inside Qw�. Let the event that this happens for a given node of � be denoted by
Fηβ(w�). Then we apply Lemma 3.6 with � = ηβ and z = w� to obtain

P
(
Fηβ(w�)

) ≥ 1 − d exp
(
−(w�)2

18ηβ

)
.

Using the fact that w2� ≥ 18ηβ log(8dε−1), we have P(Fηβ(w�)) ≥ 1 − ε
8 . There-

fore, by thinning, we have that the nodes of � for which Fηβ(w�) hold consist of a
Poisson point process with intensity at least (1 − 7ε

8 )(1− ε
8) ≥ 1− ε. Since E(i, τ )

is increasing, we have that

P
(
E(i, τ ) = 0|F ∩ {

Dbase
k (i, τ ) = 1

}) ≤ 1 − νE

(
(1 − ε)λ,Qw�

) ≤ e−α,

which establishes the lemma for k = 1. �

The lemma below gives an upper bound to the probability that a support con-
nected path is bad. Here, we use that all cells in a supported connected path are
mutually well separated so that we can apply Lemma 3.7. Henceforth, we consider
paths in �

sup
κ−1 only since the cells of scale κ will be handled in a different way

latter; these cells are just so large that a much simpler bound can be applied.

LEMMA 3.8. Assume the conditions in Lemma 3.7 are satisfied and let P ∈
�

sup
κ−1 be the path ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)). Then, with ψ defined as

in (36), we have

P

(
z⋂

j=1

{
Akj

(ij , τj ) = 0
}) ≤ exp

(
−c2

z∑
j=1

ψkj

)
.

PROOF. We derive the probability that all cells of P are bad. Consider the
following order for the cells of P . First, take an arbitrary order of Zd . Then we
say that (kj , ij , τj ) precedes (kj ′, ij ′, τj ′) in the order if τjβkj

< τj ′βkj ′ or if both

τjβkj
= τj ′βkj ′ and ij precedes ij ′ in the order of Zd . Then, for any j , we let
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Jj be a subset of {1,2, . . . , z} containing all j ′ for which (kj ′, ij ′, τj ′) precedes
(kj , ij , τj ) in the order. Using this order, we write

P

(
z⋂

j=1

{
Akj

(ij , τj ) = 0
})

=
z∏

j=1

P
(
Akj

(ij , τj ) = 0
∣∣∣ ⋂
j ′∈Jj

{
Akj ′ (ij ′, τj ′) = 0

})
.

Note that, for each j ′ ∈ Jj , we have that (kj , ij , τj ) and (kj ′, ij ′, τj ′) are well sepa-
rated. Using the definition of well separated cells (33), we have that Rinf

kj ′ (ij ′, τj ′)�

R
sup
kj

(ij , τj ) and Rinf
kj

(ij , τj ) � R
sup
kj ′ (ij ′, τj ′). Hence, by Lemma 3.3, we obtain

Rinf
kj ′ (ij ′, τj ′) ∩ Rinf

kj
(ij , τj ) = ∅. By the ordering of the cells described above, we

also have τjβkj
≥ τj ′βkj ′ , which gives that the event

⋂
j ′∈Jj

{Akj ′ (ij ′, τj ′) = 0} is
measurable with respect to Fkj

(ij , τj ). Then we apply Lemma 3.7 to obtain a pos-
itive constant c2 such that

P

(
z⋂

j=1

{
Akj

(ij , τj ) = 0
}) ≤ exp

(
−c2

z∑
j=1

ψkj

)
.

�

At the end, we will take the union bound over all support connected cells. For
this, we need to obtain an upper bound for the number of support connected path,
which is given in the following lemma.

LEMMA 3.9. Let z be a positive integer and k1, k2, . . . , kz ≥ 1 be fixed. Then,
if α is sufficiently large, the total number of support connected paths containing z

cells whose scales are k1, k2, . . . , kz is at most exp( c2
2

∑z
j=1 ψkj

), where c2 is the
same constant of Lemma 3.8 and ψ is defined in (36).

PROOF. For any j, j ′ ≥ 1, define

φj,j ′ = max
(i1,τ1)∈Rj

∣∣{(i2, τ2) : (j, i1, τ1) is support adjacent to and well

separated from
(
j ′, i2, τ2

)}∣∣.
Hence, given a cell at scale j , φj,j ′ is an upper bound for the number of cells of
scale j ′ that are support adjacent to and well separated from the cell of scale j .
Also, let χj be the number of cells of scale j whose extended support contains
R1(0,0). With this notation, we obtain that

the number of support connected paths with z cells of scales
k1, k2, . . . , kz ≤ χk1

∏z
j=2 φkj−1,kj

.(41)
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First, we derive a bound for χj . Note that, at scale j , the number of cells that have

the same extended support is (
�j+1
�j

)d
βj+1
βj

= md+2j2(j + 1)3d+4. Furthermore, the

extended support of a cell of scale j contains exactly 27 · (3(2m + 1))d different
cells of scale j + 1. Thus, the number of different extended supports for a cell of
scale j that contains R1(0,0) can be upper bounded by

χj ≤ 27 · 3dmd+2(2m + 1)dj2(j + 1)3d+4.

In order to derive a bound for φj,j ′ , fix a cell (j, i1, τ1) of scale j . Now, a cell of
scale j ′ can only be support adjacent to (j, i1, τ1) if it is inside the region⋃

x∈R
2sup
j (i1,τ1)

(
x + [−(3m + 2)�j ′+1, (3m + 2)�j ′+1

]d × [−14βj ′+1,14βj ′+1]).

Therefore, if j ≥ j ′, we have

φj,j ′ ≤
(

3(2m + 1)�j+1 + 2(3m + 2)�j ′+1

�j ′

)d(
27βj+1 + 28βj ′+1

βj ′

)

≤
(

6
(
m + 1

2

)
mj−j ′+1

j+1∑
i=j ′+1

i3 + 6
(
m + 2

3

)
m

(
j ′ + 1

)3
)d

×
(

27m2(j−j ′+1)
j∑

i=j ′
i2(i + 1)4 + 28m2j ′2(

j ′ + 1
)4

)
.

Using that for any a ∈ (0,1) and any x ≥ 1 it holds that x + a ≤ 2x, we have

φj,j ′ ≤
(

12mj−j ′+2
j+1∑

i=j ′+1

i3 + 12m2(
j ′ + 1

)3
)d

×
(

27m2(j−j ′+1)
j∑

i=j ′
i624 + 28m2j ′624

)

≤ c3m
(j−j ′+2)dj4dm2(j−j ′+1)j7 ≤ c3m

(d+2)(j−j ′+2)j4d+7,

where in the derivation above we used the definition of �j and βj in (11) and (14),
respectively, and c3 is a universal positive constant. We then set c4 in such a way
that, for the case j < j ′, we obtain

φj,j ′ ≤ (
1 + 2(3m + 2)m(j + 1)3)d(

1 + 28m2j2(j + 1)4)
≤ (

1 + 12m2j323)d(
1 + 28m2j624)

≤ c4m
2d+2j3d+6.
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Now, for any j, j ′, j ′′ such that j ≥ j ′ and j ≥ j ′′, we have that

φj,j ′φj ′′,j ≤ c3c4m
(d+2)(j−j ′+2)+2d+2j4d+7+3d+6 ≤ exp

(
c2

2
ψj

)
,

where the last inequality holds for all j ≥ 1 since α is sufficiently large. Similarly,
by having α sufficiently large, we can guarantee that, for any j, j ′ such that j ≥ j ′,
we have

χjφj ′,j ≤ c5m
4d+4j6d+12 ≤ exp

(
c2

2
ψj

)

for some constant c5. Then, if we consider each term φkj−1,kj
of (41) and use the

bounds above for φ and χ , we establish the lemma. �

For any support connected path P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)) in
�

sup
κ−1, we define the weight of P as

∑z
j=1 ψkj

. When we take the union bound
over all support connected paths later, we will group the paths by their weight.
The lemma below shows that the paths in �

sup
κ−1, which are the paths we need to

consider, have a large enough weight.

LEMMA 3.10. Let P = ((k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)) be a path in
�

sup
κ−1. If α is sufficiently large and κ = O(log t), then there exist a positive constant

c = c(d) and a value C independent of t such that

z∑
j=1

ψkj
≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C

√
t

(log t)c
, for d = 1,

C
t

(log t)c
, for d = 2,

Ct, for d ≥ 3.

PROOF. Let �
2sup
k denote the diameter of the extended support of a cell of

scale k. Then we have

�
2sup
k ≤ 3(2m + 1)�k+1

√
d + 27βk+1

= 3(2m + 1)m(k + 1)3�k

√
d + 27Cmix

�2
k(k + 1)4

ε2 .

Using the definition of Cmix from (15), we obtain a constant c3 that may depend
on the ratio β/�2 such that

�
2sup
k ≤ 3(2m + 1)m(k + 1)3�k

√
d + 27

β

�2 m2�2
k(k + 1)4

≤ c3m
2(k + 1)4�2

k.
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Then, for k ≥ 2, we have

ψk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2λ�k−1

(k + 1)4 = ε2λ

(k + 1)4

(
�k

mk3

)
≥ ε2λ

m(k + 1)7

(√
c3m2(k + 1)4�2

k√
c3m2(k + 1)4

)

≥ ε2λ√
c3m2(k + 1)9

√
�

2sup
k , for d = 1,

ε2λ�d−2
k−1

(k + 1)4

(
�k

mk3

)2

≥ ε2λ�d−2
k−1

m2(k + 1)10

(
c3m

2(k + 1)4�2
k

c3m2(k + 1)4

)

≥ ε2λ�d−2
k−1

c3m4(k + 1)14 �
2sup
k , for d ≥ 2.

(42)

Now since κ = O(log t), there exists a constant c4 for which (k + 1)a ≤ c4(log t)a

for all k ≤ κ and any a ≥ 1. We use this fact for dimensions one and two. For three
and higher dimensions, we simply use the fact that c4 can be set large enough in

order to satisfy also
�d−2
k−1

(k+1)14 ≥ �d−2

mc4
for all k ≥ 1. Plugging this into (42), we obtain

ψk ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2λ√
c3c4m2

√
�

2sup
k

(log t)9 , for d = 1,

ε2λ

c3c4m4

�
2sup
k

(log t)14 , for d = 2,

ε2λ�d−2

c3c4m5 �
2sup
k , for d ≥ 3.

(43)

For k = 1, we write ψ1 ≥ c

√
�

2sup
1 for d = 1 and ψ1 ≥ c�

2sup
1 for d ≥ 2, where

c is some positive value that may depend on ε,m,λ, � and νE . Then, if a support

connected path is such that
∑z

j=1 �
2sup
kj

< t , we have that all the cells of the path

are contained in Rt
1. Therefore, for P ∈ �

sup
κ−1 we have

∑z
j=1 �

2sup
kj

≥ t . With (43),
this implies that there exists a positive C independent of t but depending on every-
thing else such that

z∑
j=1

ψkj
≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

√∑z
j=1 �

2sup
kj

(log t)9 ≥ C

√
t

(log t)9 , for d = 1,

C

∑z
j=1 �

2sup
kj

(log t)14 ≥ C
t

(log t)14 , for d = 2,

C

z∑
j=1

�
2sup
kj

≥ Ct, for d ≥ 3.
�
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For j ≥ 2, we will work with variables ψ̃j for which ψ̃j can be written as bj ψ̃2

for some positive integer bj . Set ψ̃2 = ψ2 = 3−4ε2λ�d , and for j ≥ 3, define

ψ̃j = 2ψ̃2m
(j−2)d(

(j − 1)!)3d−3(
(j − 2)!)2

(j − 3)!.
We only introduce the ψ̃ in order to simplify a combinatorial argument later for
the counting of support connected paths (we will need to do this in order to ex-
tend Lemma 3.9 to the case where the scales are not fixed). The following lemma
establishes that ψj and ψ̃j differ only by constant factors.

LEMMA 3.11. For all j ≥ 2, it holds that ψ̃j ≤ ψj ≤ 41ψ̃j .

PROOF. For j ≥ 3, we write

ψj = ε2λ�dm(j−2)d((j − 1)!)3d

(j + 1)4 = 34ψ̃2
m(j−2)d((j − 1)!)3d

(j + 1)4

= 34ψ̃2m
(j−2)d(

(j − 1)!)3d−3(
(j − 2)!)2

(j − 3)!
(

(j − 1)3(j − 2)

(j + 1)4

)
.

This implies that ψj ≤ 34

2 ψ̃j ≤ 41ψ̃j . The other direction follows from the fact

that (j−1)3(j−2)

(j+1)4 ≥ 1/32 for all j ≥ 3. �

3.6. Completing the proof of Theorem 3.1. We will need the following techni-
cal lemma.

LEMMA 3.12. Let x, y ∈ Z+. Then, for any c1, c2 > 1, we have(
x + y

x

)
e−(c1x+c2y) ≤ e−(c1−1)x+(c2−1)y .

PROOF. Since
(x+y

x

) = (x+y
y

)
, we can assume that x ≥ y. Then we use the

inequality
(x+y

x

) ≤ (
(x+y)e

x
)x to obtain(

x + y

x

)
e−(c1x+c2y) ≤

(
1 + y

x

)x

e−(c1−1)x−c2y ≤ e−(c1−1)x−(c2−1)y . �

PROOF OF THEOREM 3.1. First, for any k, note that the number of cells in Rk

satisfies

|Rk| ≤
(

2
⌈

t

�k

⌉)d⌈
1 + t

βk

⌉
.(44)

Also, using Lemma 3.2, we have that

P
(
K(i, τ )�Rt

1
) ≤ P

(
K ′(i, τ )�Rt

1
)

= P(∃P ∈ � s.t. all cells of P have bad ancestry).
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Then, with this and Lemma 3.5, we obtain

P
(
K(i, τ )�Rt

1
) ≤ P

(∃P ∈ �sup
κ s.t. all cells of P are bad

)
.

Note that the random variable Aκ is defined differently for scale κ . We handle the
cells of scale κ by showing that none of these cells are bad with high probability.
It follows by Lemma 3.7(i), (44) and the union bound over all cells in Rκ that

P
(
Aκ

(
i ′, τ ′) = 1 for all (i, τ ) ∈ Rκ

) ≥ 1 − |Rκ | exp(−cψκ) ≥ 1 − exp(−c1t),

for some positive constant c1, where the last step follows by setting κ to be the
smallest integer such that ψκ ≥ t , which gives that κ = �(

log t
log log t

). Let H be the
event that Aκ(i, τ ) = 1 for all (i, τ ) ∈ Rκ . Then we have that

P
(∃P ∈ �sup

κ s.t. all cells of P are bad
)

≤ P
(
H ∩ {∃P ∈ �sup

κ s.t. all cells of P are bad
}) + P

(
H c)

≤ P
(∃P ∈ �

sup
κ−1 s.t. all cells of P are bad

) + e−c1t .

In order to get a bound for the term above, we first fix a support connected path

P = (
(k1, i1, τ1), (k2, i2, τ2), . . . , (kz, iz, τz)

)
,(45)

and use Lemma 3.8 (with the fact that the cells in P are mutually well separated)
to get

P

(
z⋂

j=1

{
Akj

(ij , τj ) = 0
}) ≤ exp

(
−c2

z∑
j=1

ψkj

)
.

Now, taking the union bound over all support connected paths with z cells of scale
k1, k2, . . . , kz, and using Lemma 3.9, we obtain that

P
(∃P ∈ �

sup
κ−1 s.t. P has z bad cells of scales k1, k2, . . . , kz

)

≤ exp

(
−c2

2

z∑
j=1

ψkj

)
.

Note that the upper bound above depends on z and k1, k2, . . . , kz only through∑z
j=1 ψkj

, which we call the weight of the path. We will group the paths by their

weight. Let W be the set of weights for which there exists at least one path in �
sup
κ−1

with that weight. Then

P
(∃P ∈ �

sup
κ−1 s.t. all cells of P are bad

) ≤ ∑
w∈W

exp
(
−c2

2
w

)
M(w),(46)

where M(w) is the number of possible ways to choose z and k1, k2, . . . , kz such
that

∑z
j=1 ψkj

= w.
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In order to get an upper bound for M(w), we will use the ψ̃ . Consider the path P

in (45), let w = ∑z
j=1 ψkj

and take w1 = ψ1|{j :kj = 1}|. Let w2 = w −w1, so w1
is the weight given by cells of scale 1 and w2 is the weight given by the other cells
of the path. Note that, by Lemma 3.11, w2 = ∑

j : kj≥2 ψkj
≥ ∑

j : kj≥2 ψ̃kj
= h2ψ2

for some nonnegative integer h2. Similarly, we have w2 ≤ 41h2ψ2 and w1 = h1ψ1
for some nonnegative integer h1. Then we have

h1ψ1 + h2ψ2 ≥ w

41
.(47)

Let w0 be the lower bound on the weight of the path given by Lemma 3.10,
so for all w ∈ W we have w ≥ w0. Since either w1 or w2 must be larger than
w0/2, we have that either h1 ≥ � w0

2ψ1
� or h2 ≥ � w0

2·41ψ2
�. Let M(h1, h2) be the

number of ways to choose z and k1, k2, . . . , kz such that there are h1 values j

with kj = 1 and
∑

j : kj≥2 ψ̃kj
= h2ψ2. Note that, for any such choice, we have

w = ∑z
j=1 ψkj

≥ h1ψ1 + h2ψ2. Thus, the sum in the right-hand side of (46) can
be bounded above by

∞∑
h1=�w0/(2ψ1)�

∞∑
h2=0

exp
(
−c2

2
(h1ψ1 + h2ψ2)

)
M(h1, h2)

+
∞∑

h1=0

∞∑
h2=�w0/(82ψ2)�

exp
(
−c2

2
(h1ψ1 + h2ψ2)

)
M(h1, h2).

In order to bound M(h1, h2), we will consider the following pictorial way to
define the values of z and k1, k2, . . . , kz. Suppose we have h1 blocks of size ψ1 and
h2 blocks of size ψ2. Consider an ordering of the blocks, but such that permuting
blocks of the same size does not change the order. Then, for each block of size ψ2,
we color it either black or white, while blocks of size ψ1 are not colored. Now,
for each choice of z and k1, k2, . . . , kz we associate an order and coloring of the
blocks as follows. If k1 = 1, then the first block is of size ψ1. Otherwise, the first
ψ̃k1/ψ2 blocks are of size ψ2 and have black color. Then, if k2 = 1, the next block
is of size ψ1, otherwise the next ψ̃k2/ψ2 blocks are of size ψ2 and have white
color. We proceed in this way until kz, where whenever ki �= 1 we use the color
black if i is odd and the color white if i is even. Though there are orders and
colorings that are not associated to any choice of z and k1, k2, . . . , kz, each such
choice of z and k1, k2, . . . , kz corresponds to a unique order and coloring of the
blocks. Therefore, the number of ways to order and color the blocks gives an upper
bound for M(h1, h2). Note that there are

(h1+h2
h1

)
ways to order the blocks and 2h2

ways to color the size-ψ2 blocks. Therefore,

P
(∃P ∈ �

sup
κ−1 s.t. all cells of P are bad

)

≤
∞∑

h1=�w0/(2ψ1)�

∞∑
h2=0

exp
(
−c2

2
(h1ψ1 + h2ψ2)

)(
h1 + h2

h1

)
2h2
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+
∞∑

h1=0

∞∑
h2=�w0/(82ψ2)�

exp
(
−c2

2
(h1ψ1 + h2ψ2)

)(
h1 + h2

h1

)
2h2

≤
∞∑

h1=�w0/(2ψ1)�

∞∑
h2=0

exp
(
−c2(h1ψ1 + h2ψ2)

3

)

+
∞∑

h1=0

∞∑
h2=�w0/(82ψ2)�

exp
(
−c2(h1ψ1 + h2ψ2)

3

)

≤ ∑
w∈W

exp(−c4w) ≤ exp(−cw0),

where in the second inequality we use Lemma 3.12 and the fact that α is suffi-
ciently large to write c2ψ1

2 − 1 ≥ c2ψ1
3 , and similarly for ψ2. In the third inequality,

we used (47). Since w0 is the lower bound in Lemma 3.10, the proof of Theo-
rem 3.1 is completed. �

4. Detection. In this section, we use Theorem 3.1 to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Recall that we say that the displacement of a node
throughout [t0, t1] is in Qz if the node never leaves x + Qz during the whole
of [t0, t1], where x is the position of the node at time t0. Fix η = 1 and ε = 1/2.
Now, we fix the ratio β/�2 small enough so that the lower bound for w in The-
orem 3.1 is at most 1 and we can set w = 1. We tessellate Rd into cells of side
length � = r

2
√

d
. Let S be a cell of the tessellation and let v be a node of �0 that is

inside S at some time s. Then, if the displacement of v during the interval [s, s +β]
is in Qw�, we have that the distance between v and any point of S at any time in

[s, s +β] is at most �
√

d
2 + �

√
d = 3

√
d�

2 ≤ r . Therefore, for such a node v, the ball
of radius r centered at v covers the whole of S during the entire duration of the
interval [s, s + β]. Hence, if S contains at least one such node at time s and the
target enters S during [s, s + β], then the target is detected.

Now, we apply Theorem 3.1. For each (i, τ ) ∈R1, define E(i, τ ) to be the event
that there is at least one node in the cube S1(i) at time τβ for which its displace-
ment from time τβ to (τ + 1)β is inside Q�. This event is clearly increasing. Let
N be a Poisson random variable of mean λ�d

2 . Then, using the fact that ε = 1/2,
we have that

νE(λ/2,Q�) ≥ P(N ≥ 1) = 1 − exp
(
−λ�d

2

)
.

Clearly, log( 1
1−νE(λ/2,Q�)

) ≥ λ�d

2 , which increases with λ. Therefore, we can set λ

large enough so that log( 1
1−νE(λ/2,Q�)

) and ε2λ�d = λ�d/4 are larger than α0. With
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this, we apply Theorem 3.1 to obtain that

P
(
K(0,0) ⊆ Rt

1
) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp
(
−C

√
t

(log t)c

)
, for d = 1,

exp
(
−C

t

(log t)c

)
, for d = 2,

exp(−Ct), for d ≥ 3.

(48)

Note that the target is not detected at time 0 only if E(0,0) = 0. Then, in this case,
since K(0,0) is contained in Rt

1 and Rt
1 contains all the cells that are contained

in the space–time region (−t, t) × [0, t) we have that the target must be at some
time in the interval [0, t] inside a cell (i, τ ) of scale 1 for which E(i, τ ) = 1 and,
therefore, the target is detected.

This shows that the probability that the target is able to evade detection up to
time t is given by (48), which completes the proof of Theorem 1.1. �

The same proof as above can be used to establish that, for any λ > 0, there
exists a value r̄ = r̄(λ) so that with high probability the target will eventually get
within distance r̄ from at least one node. We state this slight generalization below.
In Theorem 1.1, we require λ to be large enough so that r̄ ≤ r .

THEOREM 4.1. In dimensions d ≥ 2, there exist an explicit constant c = c(d)

and a positive C independent of t so that the following holds for all large enough t .
For any λ > 0, there exists r̄ = r̄(λ) > 0 so that the probability that there exists a
trajectory g for the target so that for all s ∈ [0, t] the ball B(g(s), r̄) contains no
node of �s is at most exp(−C t

(log t)c
) in d = 2 and at most exp(−Ct) in d ≥ 3.

APPENDIX: STANDARD LARGE DEVIATION RESULTS

We use the following standard Chernoff bounds and large deviation results.

LEMMA A.1 (Chernoff bound for Poisson). Let P be a Poisson random vari-
able with mean λ. Then, for any 0 < ε < 1,

P
(
P ≥ (1 + ε)λ

) ≤ exp
(
−λε2

2
(1 − ε/3)

)

and

P
(
P ≤ (1 − ε)λ

) ≤ exp
(
−λε2

2

)
.

LEMMA A.2 (Gaussian tail bound [23], Theorem 12.9). Let X be a normal
random variable with mean 0 and variance σ 2. Then, for any R ≥ σ we have that

P(X ≥ R) ≤ σ√
2πR

exp(− R2

2σ 2 ).
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