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Abstract: A new method is proposed for small area estimation. The prin-
ciple is based upon the splitting of the sampling weights between the areas.
A matrix of weights is defined. Each column of this matrix enables us to
estimate the total of the variables of interest at the level of an area. This
method automatically satisfies the coherence property between the local
estimates and the overall estimate. Moreover, the local estimators are cal-
ibrated on auxiliary information available at the level of the small areas.
This methodology also enables the use of composite estimators that are
weighted means between a direct estimator and a synthetic estimator. Once
the weights are computed, the estimates can be easily computed for any
variable of interest. A set of simulations shows the interest of the proposed
method.
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1. Introduction

Three main families of estimators are usually used by statisticians to increase
the quality of estimates at the level of small areas: direct estimators and indirect
estimators based on implicit or explicit models (see, for instance, Rao, 2003).

The direct estimators are based on the survey data provided only by the
considered area. When available, the auxiliary information only depends on the
units of the area. The family of direct estimators gathers the estimator pro-
posed by Horvitz and Thompson (1952) also called π-estimator, the generalized
regression estimators (Särndal, Swensson and Wretman, 1992) and the calibra-
tion estimators (Deville and Särndal, 1992). The main problem with this family
of estimators is the increasing variance when the area size decreases. A wise
choice of auxiliary information can reduce the variance.
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The indirect estimators can depend on all the sampled units for the estima-
tion of a particular area. These estimators are based on the notion of deriving
strength from space because a unit of a given area can help for the estima-
tion of any area. Two sub-families of estimators are distinguished: synthetic and
composite estimators.

According to Gonzalez (1973), “an unbiased estimate is obtained from a sam-
ple survey for a large area; when this estimate is used to derive estimates for
sub-areas on the assumption that the small areas have the same characteristics
as the larger area, we identify these estimates as synthetic estimates”. Practi-
cally, these estimators are based on the hypothesis of the equality of a parameter
within the areas and in the overall population. The synthetic estimator can thus
be a prediction by means of a linear model of a total based upon the assumption
that the regression coefficient does not vary from an area to another. These esti-
mators generally have a low variance since they depend on all the observations,
i.e. the size of the sample is thus large. Unfortunately, these estimators can miss
a specificity of a given area. The composite estimators are weighted means of a
direct estimator and a synthetic one. For each area, the weight of the mean can
be chosen by minimizing the mean squared error.

The indirect estimators built from explicit modeling are based on linear mixed
models, generalized linear mixed models and Bayesian procedures which derive
Best Linear Unbiased predictors (blup), Empirical Best Linear Unbiased Pre-
dictors (Eblup) and empirical Bayes estimators (see, among others, Fuller and
Battese, 1973; Prasad and Rao, 1990, 1999; Rao, 2003). The most famous model
using linear mixed models is the one developed by Fay and Herriot (1979). The
authors begin by modeling a function of the mean in a given area, explained on
the one hand, by the auxiliary information, and on the other hand, by a ran-
dom part explaining the variability across areas that are not considered in the
auxiliary information. Then, they show that the blup is a composite estimator.

In small area estimation, an important factor to bear in mind is that local
estimates are not always consistent with the overall population estimate. Indeed,
in general, the sum of estimates at the level of small areas does not coincide
with the estimate at the level of the overall population. In order to satisfy a
benchmarking property, Prasad and Rao (1999) propose a two-step procedure
to obtain a pseudo-Eblup of a small area mean. They combine area models using
survey weights with unit level models. Using a nested error regression model, You
and Rao (2002) developed a method that provides coherent estimates thanks to
a skillful variable change in the regression and the use of sampling weights so
as to build a pseudo-Eblup. Also, under a nested error regression model, You
and Rao (2003) use a pseudo-hierarchical Bayes approach to obtain posterior
estimators of small area means. Ugarte, Militino and Goicoa (2009) propose an
Eblup based upon a linear mixed model with restrictions. They force the sum
of small area estimates to equal the calculated estimate of the overall population
using a synthetic estimator.

In this paper, a new approach is proposed. The method consists of splitting
the sampling weights of the overall population estimator to construct local es-
timators. Each weighting system corresponds to a small area. The idea is to
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define weights for the areas that depend on the sampled units as well as the
other small areas. Each statistical unit can contribute to all the small areas.

In order to satisfy a benchmarking principle, the sum of the weights of a
particular unit relative to each area must be equal to its global weight, which
automatically implies that the global estimator is the sum of the local estimates.
Furthermore, the weights are calibrated in such a way that, in each area, the
estimates of the totals are equal to the population total for the auxiliary variables
that are known at the level of the small areas.

The main tool of this method is a matrix Q for which the number of rows
is equal to the number of units and the number of columns is equal to the
number of small areas. This matrix embodies the way the global weights are
split into the areas. The benchmarking principle is obtained by the simple fact
that the sum of the elements of each row is equal to 1. For each unit, two
kinds of contributions are distinguished: its contribution to its own area (“auto-
contribution”) and its contribution to the other areas (“extra-contribution”). A
consequence of the benchmarking principle is that the more a unit contributes to
its own area, the less it contributes to the other ones. A composite estimator is
built with an “area” part by a direct estimation and with an “extra-contribution”
part, given the Q probability matrix. At the level of each small area, these two
parts are balanced with a parameter (tuning constant) obtained by minimizing
the statistical dispersion of the variable of interest.

This paper is structured as follows. In Section 2, the notation is defined. The
direct estimators are presented in Section 3. In Section 4, the weight splitting
estimation is developed. Next, in Section 5, the composite estimator is presented.
The choice of the tuning constant is discussed in Section 6. A simulation study is
presented in Section 7, and the paper ends with some brief concluding remarks
in Section 8.

2. Notation

Consider a finite population U of N statistical units belonging to D disjoint areas{A1, . . . ,Ad, . . . ,AD} of sizes {N1, . . . ,Nd, . . . ,ND}. The units can be identified
by a label k ∈ {1, . . . , k, . . . ,N}. Consider also J auxiliary variables x1, . . . , xj ,

. . . , xJ . We are interested in estimating the overall total

ty = ∑
k∈U

yk.

of the interest variable y. Moreover, we want to estimate the total of y in each
area, i.e. for area Ad

tdy = ∑
k∈U∩Ad

yk.

The estimation is based upon the availability of J auxiliary variables. The values
of the jth variable for all the units are denoted x1j , . . . , xkj , . . . , xNj . The values
of the J variables of unit k are denoted by the column vector of RJ

xk = (xk1 ⋯ xkj ⋯ xkJ)⊺ .
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The J variables of the population are represented by N × J matrix

XU = (x1 ⋯ xk ⋯ xN)⊺ .
The totals of the J variables for the population are represented by the row
vector of size J

tx = (∑k∈U xk1 ⋯ ∑k∈U xkj ⋯ ∑k∈U xkJ) .
The totals of the J variables for the population belonging to area Ad are repre-
sented by the row vector of size J

tdx = ( ∑k∈U∩Ad
xk1 ⋯ ∑k∈U∩Ad

xkj ⋯ ∑k∈U∩Ad
xkJ ) ,

and the totals of the J variables for the population belonging to each of the
areas are represented by the matrix of size D × J

tAx =
⎛⎜⎜⎜⎜⎜⎝

t1x⋮
tdx⋮
tDx

⎞⎟⎟⎟⎟⎟⎠
. (2.1)

Below, matrix tAx is supposed to be known. This matrix can thus be used to
improve estimation of the totals in domains tdy.

A sample s is a subset of U , and a sampling design p(s) is a probability
distribution on all possible samples that can be drawn from U , such that

p(s) ≥ 0, and ∑
s⊂U

p(s) = 1.
For a given sampling design p(s), a sample s is the realization of a random
sample S, i.e. Pr(S = s) = p(s) for all s ⊂ U. We note {n1, . . . , nd, . . . , nD} the
sizes of the areas {#(S ∩ A1), . . . ,#(S ∩ Ad), . . . ,#(S ∩AD)}. The first order
inclusion probability of unit k is denoted by πk = Pr(k ∈ S).
3. Direct estimation

At the level of an area, direct estimation consists of building an estimator of
tdy without using any information outside of the given area. Then, in a direct
estimation, a unit can only contribute to its own area. For instance, the Horvitz
and Thompson (1952) estimator (or π-estimator) which directly uses the sam-
ple weights 1/πk is a direct estimator. A calibrated estimator is also a direct
estimator.

Let ty = ∑k∈U yk be the total of the quantitative variable y. The “Horvitz and
Thompson (1952) estimator” or “π-estimator” of ty is defined by

t̂y,π = ∑
k∈S

yk

πk

.
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At the level of area Ad, the Horvitz and Thompson (1952) estimator of the total
of the variable y denoted by tdy = ∑k∈U∩Ad

yk is given by the quantity:

t̂dy,π = ∑
k∈S∩Ad

yk

πk

.

This method of calibration was formalized by Deville and Särndal (1992) who
gave a common framework for the calibration estimation and the properties of
these estimators. Suppose that a vector of totals tx of J auxiliary variables is
known at the level of the population. The calibration estimator of the total of
the quantitative variable y depends on a weighting system wk. The estimator is
defined by

t̂y,w = ∑
k∈S

wkyk,

where the wk weighting system depends on the sample S and satisfies the cali-
bration equation:

∑
k∈S

wkx
⊺
k = tx. (3.1)

The calibration equation (3.1) means that the weighting system of the calibrated
estimator must reproduce exactly the values of the totals of the auxiliary vari-
ables that are known at the population level.

The weights wk are computed in such a way to be as close as possible to
the Horvitz-Thompson weights dk = 1/πk. Moreover, the weights must satisfy
the calibration equation (3.1). In order to find such weights, Deville and Särn-
dal (1992) propose several pseudo-distances denoted by Gk(wk, dk) that is as-
sumed to be positive, derivable, strictly convex with regard to wk and such that
Gk(dk, dk) = 0 for all k ∈ U. The wk weights are obtained by minimizing the
quantity

∑
k∈S

Gk(wk, dk)
qk

subject to the constraints of the calibration equation given in (3.1). The qk
−1

are coefficients which determine the importance of each unit in the calculation
of the distance.

Many different distances can be used and are discussed in Deville and Särndal
(1992). In general, if gk(wk, dk) denotes the derivative of Gk(wk, dk)with respect
to wk, then the weights are defined by

wk = dkFk(qkλ⊺xk), (3.2)

where λ is the vector of Lagrangian multiplier and dkFk(.) is the reciprocal
function of gk(., dk). The value of the Lagrangian multipliers λ can be identified
by inserting (3.2) in (3.1) and by solving the calibration equation by the Newton-
Raphson method.

Below, we mainly use the raking-ratio method which is defined by means of
the Kullback-Leibler measure. In this case, qk = 1, k ∈ S

Gk(wk, dk) = wk log
wk

dk
+ dk −wk,



1840 T. Randrianasolo and Y. Tillé

gk(wk, dk) = log wk

dk
,

and
wk = dkFk(qkλ⊺xk) = dk exp(λ⊺xk).

At the level of small areas, a direct estimator cannot be used when the sample
size within the area is small because its variance becomes very large. For a
given area Ad of size nd, the variance of a direct estimator is O(1/nd). The
smaller the size nd, the larger the variance. Hence, the quality of small area
direct estimates is debatable. When the size of a given area is not large enough
to have a satisfactory direct estimation, we attempt to improve the quality of
the estimates by borrowing information at the level of the other areas. And so
we use the method of splitting the sampling weights.

4. Weight splitting or extra-contribution estimation

4.1. Constraints on the split weights

The proposed method consists of splitting the weights into the areas. In a direct
estimator, only the weights of the units that belong to an area Ad can contribute
to a local estimation at the level of Ad, which is called “auto-contribution part”.
In the weight splitting method, any unit can contribute to the estimation of any
area through a certain weight, which is called “extra-contribution part”.

Suppose that a weighting system has already been computed for the overall
estimation. These weights can be the inverse of the inclusion probabilities or
can be obtained by means of a calibration procedure on the total tx. The main
idea of the proposed weight-splitting approach is to build a weight wkd which
depends both on unit k and area Ad. This weight is defined as the product of
the basic wk weight with a splitting coefficient qkd that distributes the weights
in the areas, i.e.

wkd = wkqkd, for all k ∈ S and for d = 1, . . . ,D.

The D × J matrix tAx of the D totals of the auxiliary variables, given in (2.1) is
supposed to be known. The knowledge of this auxiliary information at the level
of the areas is used to calibrate the weighting system.

More precisely we would like to have weights for the areas that are calibrated
on the totals of the areas, i.e.

∑
k∈S

wkdx
⊺
k = ∑

k∈S

wkqkdx
⊺
k = tdx, for all d,= 1, . . . ,D. (4.1)

Moreover, we want to impose a coherence between the sum of small areas esti-
mates and the overall estimates. Since wkd = wkqkd, the coherence

D∑
d=1

∑
k∈S

wkdx
⊺
k = ∑

k∈S

wkx
⊺
k
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can be obtained if

D∑
d=1

wkd = D∑
d=1

wkqkd = wk, for all k ∈ S.
The splitting coefficients must thus satisfy

D∑
d=1

qkd = 1. (4.2)

To sum up, the n ×D weights qkd must satisfy D × J + n constraints:

• the D×J constraints of calibration on the totals of the areas given in (4.1),
• the n constraints of consistency given in (4.2).

Note also that the constraints of consistency given in (4.2) are based on an
important practical interpretation. If, in small area estimation, the estimate is
written in the form of a weighting system, the constraints of consistency imply
that units that strongly contribute to other areas contribute less to their own
area. Extra-contribution works like an exchange of information, if there are few
units in an area, this area needs to borrow strength from other areas, but in
exchange, the units of this small area must contribute more to the other areas.

The weights qkd can be gathered in a Q matrix with n rows and D columns.
The sum of the elements in each row is thus equal to 1:

Q =
⎛⎜⎜⎜⎜⎜⎝

q11 . . . q1d . . . q1D⋮ ⋮ ⋮
qk1 . . . qkd . . . qkD⋮ ⋮ ⋮
qn1 . . . qnd . . . qnD

⎞⎟⎟⎟⎟⎟⎠
,

which can be written
Q1D = 1n,

where 1D (resp. 1n) is a column vector of D ones (resp. of n ones).
The constraints given in (4.1) can be rewritten with a matrix notation:

⎛⎜⎜⎜⎜⎜⎝

q11 . . . qk1 . . . qn1⋮ ⋮ ⋮
q1d . . . qkd . . . qnd⋮ ⋮ ⋮
q1D . . . qkD . . . qnD

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

w1 . . . 0 . . . 0⋮ ⋱ ⋮ ⋮
0 . . . wk . . . 0⋮ ⋮ ⋱ ⋮
0 . . . 0 . . . wn

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

x⊺
1⋮

x⊺
k⋮

x⊺n

⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎝

t1x⋮
tdx⋮
tDx

⎞⎟⎟⎟⎟⎟⎠
.

In short, the two following properties must be satisfied:

1. the sum of the rows of Q must equal 1,
2. Q

⊺ diag(w1, . . . ,wk, . . . ,wn)XS = tAx , where XS = (xkj)k∈S,j=1,...,J .
Each coefficient qkd embodies the contribution of unit k to the estimator for
area Ad.
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4.2. Computation of matrix Q

In order to compute a matrix Q which satisfies both the coherence property and
the totals at the level of each area, we propose a simple algorithm which repeats
two successive calibrations. The columns on the totals of the areas are calibrated
on the values of the x-variables. Next, the rows of the matrix are calibrated again
to ensure that the sum is equal to 1. These steps are repeated until convergence.
This method is a generalization of the raking-ratio method that enables us to
calibrate a contingency table on marginal totals (see for instance Ireland and
Kullback, 1968; Arora and Brackstone, 1977).

More specifically, the algorithm begins with the initialization of the matrix
by

Q{0} = ⎛⎜⎝
N1

N
. . . Nd

N
. . . ND

N⋮ ⋮ ⋮
N1

N
. . . Nd

N
. . . ND

N

⎞⎟⎠ .
This first matrix of splitting coefficients simply shares the weights proportionally
to the size of the areas in the population.

Next, at step 2t, for t = 1,2,3, . . . the following two operations are repeated:

• Each column of Q{2t−2} is calibrated on the vector of known totals of each
area by solving in λ for each area Ad, d = 1 . . .D the equations system:

tdx = ∑
k∈S

wkq
{2t−2}
kd

x⊺k exp (xkλd)
The coefficients of the new matrix Q{2t−1} can be obtained by:

q
{2t−1}
kd

= q{2t−2}
kd

exp(xkλd).
• Then the sum of the rows is calibrated so as to equal 1:

q
{2t}
kd
= q

{2t−1}
kd

∑D
d=1 q

{2t−1}
kd

.

The iteration stops when the sum of the rows is almost equal to 1 after a column
calibration, or more specifically when

n∑
k=1

∣ D∑
d=1

q
{2t−1}
kd

− 1∣ < ε,
where ε is a sufficiently small positive real.

The use of an exponential calibration function guarantees that the weights qkd
remain nonnegative at each step of the method. Once the Q matrix is computed,
the totals of areas for any variable of interest can be estimated. At the level of
a given area Ad, the extra-contribution estimator of the total of a quantitative
variable y is defined by

t̂dy,q = ∑
k∈S

wkqkdyk. (4.3)

The sum of the area estimators is always equal to the estimator in the popula-
tion.
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5. Composite estimator

The weight splitting method is a synthetic estimator because all the statistical
units can contribute to each area. In order to avoid to miss some area specifici-
ties, a composite estimator can be obtained by mixing the direct estimator with
the extra-contribution estimator so as to propose a method where each area is
estimated by a part of auto-contribution built from a direct estimation and by
a part of extra-contribution built thanks to the Q matrix.

A matrix C of new composite weights is constructed by means of weights αd

for d = 1, . . . ,D. The procedure starts with the construction of a n ×D matrix
G = (gkd), where

gkd = αdqkd + (1 − αd)1{k∈Ad}, k ∈ S,d = 1, . . . ,D,

where 1{C} equals 1, if condition C is true and 0 otherwise. The coefficients αd

depend on the areas. The smaller the area, the larger the αd. It is desirable that,
in large areas, the estimator depends more on the units of these areas. Whereas
in small areas, the estimator depends more on the units outside of these areas.

Next, matrix G is calibrated again on the two sets of constraints in such a
way that the totals of the areas are reproduced for the auxiliary variables and
that the sum of the rows equals 1. The algorithm described in Section 4.2 is
thus applied again. We obtain matrix C = (ckd) the elements of which can be
written as ckd = gkdhkd where the hkd are the matrix calibration adjustments.

Considering a quantitative variable of interest y, the composite estimator of
the total of y at the level of Ad is a weighted average given by:

t̂dy,c = ∑
k∈S

ckdwkyk

= αd ∑
k∈S

hkdqkdwkyk + (1 − αd) ∑
k∈S∩Ad

hkdwkyk. (5.1)

The estimator is a weighted average of two terms. The first one is a synthetic
estimator that depends on all the statistical units of the sample. The second
one is a direct estimator that only depends on the selected units in the small
area.

6. Determination of a tuning constant αd

6.1. Approximation of the variance of the composite estimator

In order to obtain a reasonable value for the tuning constants, one can use
heuristic reasoning. Since the first term of the composite estimator given in (5.1)
depends on all the units, we assume that its variance can be written σ2

d,1/n. Since
the second term only depends on the units that belong to Ad, we assume that
its variance is equal to σ2

d,2/nd.
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Moreover, if we assume that the correlation coefficient between the first and
the second term is equal to ρ, the variance of the composite estimator is equal
to the following quantity:

Var(t̂dy,c) = α2

d

σ2

d,1

n
+ (1 − αd)2σ

2

d,2

nd

+ 2αd(1 − αd)ρσd,1σd,2√
ndn

.

If we assume that the covariance term is negligible,

Var(t̂dy,c) ≈ α2

d

σ2

d,1

n
+ (1 − αd)2 σ

2

d,2

nd

. (6.1)

This kind of approximation is done for composite estimators for instance in Rao
(2003, p. 57).

By setting the derivative of (6.1) with respect to αd to zero, we obtain:

αd

σ2

d,1

n
− (1 − αd)σ

2

d,2

nd

= 0.
The value for αd that minimizes (6.1) is then given by:

αd(nd) ≈ 1

1 + σ2

d,1

σ2

d,2

nd

n

.

If

θd = σ2

d,1

σ2

d,2

,

we can see that when nd tends to 0 (resp. +∞), then αd(nd) tends to 1 (resp.
0). If σ2

d,1 and σ2

d,2 do not depend on d, then we obtain a simplification:

αd(nd) ≈ 1

1 + θnd

n

.

6.2. Eblup and pseudo-Eblup under a mixed model

6.2.1. Nested error linear regression model

Let us now assume that we are interested in small area means. Henderson (1975);
Battese, Harter and Fuller (1988); Prasad and Rao (1990); You and Rao (2002);
Rao (2003) proposed a nested error linear regression model to estimate small
area means. Using the Prasad and Rao (1990); You and Rao (2002); Rao (2003)
notation, we can consider the mixed model approach

ydk = x⊺dkβ + vd + εdk (6.2)

where k = 1, . . . , nd, d = 1, . . . ,D, vd are independent centered normal variables
with variances σ2

v, εdk are independent centered normal variables with variances
σ2

ε . Moreover, the vd are assumed to be independent from the εdk.
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The mean for area Ad, denoted Y d, can be approximated by the parameter

µd = X
⊺

dβ + vd
where

Xd = 1

Nd

Nd∑
k=1

xdk.

You and Rao (2002) proposed a combination of the basic unit level model (6.2)
with sample weights and obtained the following weighted area level model

ydw =
nd∑
k=1

ydk

πdk∑nd

l=1
1

πdl

= x⊺dwβ + vd + εdw (6.3)

where
E(εdw) = 0

and

Var(εdw) = σ2

ε

nd∑
k=1

(πdk

nd∑
l=1

1

πdl

)−2 = σ2

εδdw.

6.2.2. Eblup under a mixed model

When σ2

v and σ2

ε are known, it follows from Rao (1973); Henderson (1975);
Battese, Harter and Fuller (1988); Prasad and Rao (1990); You and Rao (2002);
Rao (2003) that the best linear unbiased predictor (blup) of µ is given by

µ̃d = γdyd + (Xd − γdxd)⊺β̃, (6.4)

where β̃ is the generalized least square estimator of β,

yd = 1

nd

nd∑
k=1

ydk,

xd = 1

nd

nd∑
k=1

xdk

and

γd = (1 + σ2

ε

σ2
vnd

)
−1

.

The variances σ2

v and σ2

ε can be estimated using two ordinary least squares
regressions and the method of moments (see, for instance, Fuller and Battese,
1973; You and Rao, 2002; Rao, 2003).

The expression of µ̃d in (6.4) can be re-written as

µ̃d = γd [yd + (Xd − xd)⊺β̃] + (1 − γd)X⊺dβ̃.
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The empirical best linear unbiased predictor estimator (Eblup) of µ̃d, denoted
µ̂d, is then obtained by replacing σ2

v and σ2

ε by σ̂2

v and σ̂2

ε in the expression of γd

µ̂d = γ̂d [yd + (Xd − xd)⊺β̂] + (1 − γ̂d)X⊺dβ̂,
where β̂ = β̃(σ̂2

u, σ̂
2

ε).
It follows that the expression of the total estimator is obtained by

t̂dy,Eblup
= Ndµ̂d,

= γ̂d (Ndyd + (tdx −Ndxd)⊺β̂) + (1 − γ̂d)tdx⊺β̂,
= γ̂dt̂

d
y,Eblup,direct + (1 − γ̂d)t̂dy,Eblup,synth (6.5)

6.2.3. Pseudo-Eblup under a mixed model

The pseudo-blup estimator is obtained from a combination of the model (6.2)
with the sample weights. From assuming that σ2

v and σ2

ε are known, the pseudo-
blup estimator of µd from the aggregated model (6.3) is given by

µ̃dw = γdw [ydw + (Xdw − xdw)⊺β̃w] + (1 − γdw)Xdwβ̃w, (6.6)

where

γdw = (1 + σ2

εδdw

σ2
v

)
−1

and

β̃w = [
D∑
d=1

nd∑
k=1

xdk

πdk

(xdk − γdwxdw)⊺]
−1

[ D∑
d=1

nd∑
k=1

(xdk − γdwxdw) ydk
πdk

] .
The pseudo-empirical best linear unbiased predictor estimator (pseudo-Eblup)
of µ̃dw, denoted µ̂dw, is then obtained by replacing σ2

v and σ2

ε by σ̂2

v and σ̂2

ε

µ̂dw = γ̂dw [ydw + (Xdw − xdw)⊺β̂w] + (1 − γ̂dw)Xdwβ̂w,

where β̂w = β̃w(σ̂2

u, σ̂
2

ε).
It also follows that the expression of the total estimator is obtained by

t̂dy,p-Eblup
= Ndµ̂dw,

= γ̂dw (Ndydw + (tdx −Ndxdw)⊺β̂w) + (1 − γ̂dw)tdx⊺β̂w,

= γ̂dw t̂
d
y,p-Eblup,direct + (1 − γ̂dw)t̂dy,p-Eblup,synth (6.7)

For a given area Ad, when the weights are calibrated with the known size Nd

i.e.
nd∑
k=1

1

πdk

= Nd,
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and when the unit level model (6.2) includes the intercept term, the estimator
t̂dy,p-Eblup

satisfies the benchmarking property without any adjustment (see for
instance You and Rao, 2002; Rao, 2003).

In the case that the weights are not calibrated with the known size Nd, a pre-
liminary calibration on the weights can be done in order to obtain a coherent
pseudo-Eblup estimator. It follows that under a simple random sampling with-
out replacement, a preliminary calibration on the weights leads to the equality
γd = γdw. In fact, under a simple random sampling without replacement, the
sampling weights are all equal: 1/πdk = N/n for all k. Then, new weights cal-
ibrated on the known size Nd are obtained: 1/πdk,w = Nd/nd. It follows that

δdw = ∑nd

k=1( Nd/nd

∑
nd
l=1

Nd/nd
)2 = 1/nd and then γd = γdw.

6.2.4. Composite form of the Eblup and the pseudo-Eblup

The Eblup and the pseudo-Eblup can be seen as composite estimators. They
are weighted averages of a regression synthetic estimator and a pseudo-direct
estimator. Similarly to the proposed method, when nd tends to 0 (resp. +∞),
γd and γdw tend to 0 (resp. +∞): when the size of an area is large enough,
more weight is attached to the direct estimation part and vice versa. Then, an
estimation of the tuning constant αd can be obtained using an analogy with the
parameters γd and γdw of the blup:

α̂
{1}
d
= 1 − γ̂d, (6.8)

or
α̂
{2}
d = α̂dw = 1 − γ̂dw. (6.9)

7. Simulation study

7.1. Simulated data with a mixed model

In order to test the performance of the proposed methodology, we ran a set of
simulations.

7.1.1. Simulated population

A population of N = 2,000 units, with D = 20 disjoint areas of sizes (N1, . . . ,ND),
is created from a linear mixed model given in (6.2):

xdk = (1 xdk)⊺ with xdk,
iid∼ N (20, σ2

x = 9),
β = (12 0.4)⊺ ,
vd

iid∼ N (0, σ2

v = 4),
εdk

iid∼ N (0, σ2

ε = 1).
The Figure 1 gives an overview of a generated population.
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Fig 1. Generated population from the linear mixed model given in 7.1.1: the different colors
indicate the areas).

7.1.2. Precision comparison between the weights splitting estimator and some

classical small area estimators

From the generated population, B = 10,000 samples of size n = 200 are drawn
by a simple random sampling without replacement. Within areas, the Eblup

estimator, the pseudo-Eblup estimator and the proposed estimator (with their
respective direct and synthetic components) are computed to estimate the totals
tdy, for d = 1, . . . ,20. The relative root mean square error (%RRMSE) is used to
quantify the performance of the estimators.

For a given estimator t̂dy, the %RRMSEd is obtained as follows

%RRMSEd = 100 ×
√

MSEd

tdy
, (7.1)

where MSEd is the sum of the square of the bias and the variance

MSEd = ( 1
B

B∑
b=1

t̂dy,b − tdy)
2

+ N − n
N − 1

1

B − 1
B∑
b=1

(t̂dy,b − 1

B

B∑
b=1

t̂dy,b)
2

.

Table 1 shows a comparison between the proposed method and the Eblup

estimator. Table 2 shows a comparison between the proposed method and the
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Table 1

Computed %RRMSE of the Eblup estimator, of the proposed estimator, and their
respective component estimators, from 10,000 drawn samples of size 200 by a simple
random sampling without replacement from the generated population (see Figure 1)

Eblup components Weights Splitting method

Area nd α̂d Direct Synthetic Eblup Calibration Extra Composite
1 3.45 0.14 5.26 24.68 5.95 49.14 24.10 9.70
2 10.03 0.04 1.94 10.62 1.92 27.72 10.09 2.96
3 5.66 0.07 2.68 8.65 2.55 37.40 8.14 3.24
4 17.40 0.02 1.10 1.34 1.07 20.50 0.67 0.98
5 4.69 0.09 2.58 1.48 2.32 41.11 1.52 1.91
6 12.53 0.03 1.29 3.60 1.26 25.07 3.03 1.31
7 18.67 0.02 1.09 2.03 1.07 19.91 2.20 1.06
8 2.81 0.17 3.94 11.88 4.02 53.72 12.22 5.53
9 7.28 0.05 2.02 7.82 1.96 32.72 7.31 2.62

10 15.01 0.02 1.41 12.35 1.41 22.41 11.83 2.61
11 4.41 0.10 2.20 7.38 2.14 43.12 7.73 3.05
12 18.15 0.02 1.14 7.11 1.12 20.45 6.59 1.59
13 3.51 0.14 2.97 1.10 2.57 48.92 0.71 2.08
14 7.76 0.05 1.76 1.11 1.67 31.96 0.65 1.46
15 4.88 0.09 2.46 14.11 2.63 40.50 14.44 5.08
16 12.40 0.03 1.28 5.36 1.25 24.86 5.69 1.60
17 16.82 0.02 1.22 1.62 1.19 21.13 0.95 1.12
18 11.60 0.03 1.25 3.65 1.22 25.65 3.95 1.39
19 6.48 0.06 1.84 5.57 1.76 35.13 5.89 2.19
20 16.46 0.02 1.08 10.76 1.10 21.53 11.11 2.23

pseudo-Eblup estimator. For each simulation run, each size nd (for d = 1, . . . ,D)
is not fixed because the sampling design is a simple random sampling without
replacement from the overall population. That is why, the second columns of
Table 1 and Table 2 represent the means nd (for d = 1, . . . ,D) of each area size
through the B = 10,000 drawings. The tuning constants α̂d and α̂dw also are re-
estimated in each simulation run. That also is why, the third columns of Table
1 and Table 2 represent the means α̂d (resp. α̂wd) (for d = 1, . . . ,D) of each area
tuning constant through the B = 10,000 drawings. As discussed in Section 6.2.3,
the equalities α̂d = α̂wd and α̂d = α̂wd are obtained because the sampling design
is a simple random sampling without replacement from the overall population.

In Table 1, the direct estimation component of the Eblup estimator appears
to be generally better than the global calibration which is the direct estimation
part of the weights splitting method. This can be explained by the fact that
the direct estimation component of the Eblup is a regression estimator built
from the parameter β̂ of the synthetic estimation component of the Eblup.
The synthetic part of the Eblup and the extra-contribution part seem to have
equivalent performance. In spite of the weakness of the direct estimation part
of the proposed composite estimator relative to the direct estimation part of
the Eblup, the two composite estimators perform equivalently thanks to the
matrix calibration computed during the weights splitting method procedure.
The result shown in Table 1 is quite difficult to interpret, because the weight-
splitting estimator incorporates sampling weights and is benchmarked, while the
Eblup estimator does not.
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Table 2

Computed %RRMSE of the pseudo-Eblup estimator, of the proposed estimator, and their
respective component estimators, from 10,000 drawn samples of size 200 by a simple
random sampling without replacement from the generated population (see Figure 1)

pseudo-Eblup components Weights Splitting method

Area nd α̂dw Direct Synthetic pseudo-Eblup Calibration Extra Composite
1 3.45 0.14 5.25 24.58 5.97 49.14 24.10 9.70
2 10.03 0.04 1.94 10.49 1.92 27.72 10.09 2.96
3 5.66 0.07 2.67 8.51 2.54 37.40 8.14 3.24
4 17.40 0.02 1.10 0.86 1.07 20.50 0.67 0.98
5 4.69 0.09 2.58 1.16 2.30 41.11 1.52 1.91
6 12.53 0.03 1.29 3.38 1.26 25.07 3.03 1.31
7 18.67 0.02 1.09 1.83 1.07 19.91 2.20 1.06
8 2.81 0.17 3.94 11.90 4.03 53.72 12.22 5.53
9 7.28 0.05 2.02 7.68 1.96 32.72 7.31 2.62

10 15.01 0.02 1.41 12.23 1.41 22.41 11.83 2.61
11 4.41 0.10 2.20 7.38 2.14 43.12 7.73 3.05
12 18.15 0.02 1.14 6.97 1.12 20.45 6.59 1.59
13 3.51 0.14 2.97 0.49 2.55 48.92 0.71 2.08
14 7.76 0.05 1.76 0.49 1.66 31.96 0.65 1.46
15 4.88 0.09 2.47 14.14 2.64 40.50 14.44 5.08
16 12.40 0.03 1.28 5.33 1.25 24.86 5.69 1.60
17 16.82 0.02 1.22 1.22 1.19 21.13 0.95 1.12
18 11.60 0.03 1.25 3.58 1.22 25.65 3.95 1.39
19 6.48 0.06 1.84 5.55 1.76 35.13 5.89 2.19
20 16.46 0.02 1.08 10.78 1.10 21.53 11.11 2.23

Table 2 seems to be fairer in terms of comparison because both the pseudo-
Eblup estimator and the proposed estimator respect the benchmarking prop-
erty and use sampling weights. As previously, whereas the synthetic part of the
pseudo-Eblup and of the proposed method seem to perform equivalently, the di-
rect estimation component of the pseudo-Eblup performs better than the direct
estimation part of the weights splitting method. This also can be explained by
the construction of the direct estimation of the pseudo-Eblup with the param-
eter β̂w which is derived from the synthetic part of the pseudo-Eblup. Despite
this disadvantage, when the calibration and the extra-contribution parts of the
weights splitting method are mixed and are re-calibrated on the rows (bench-
marking constraints) and on the columns (calibration constraints on the areas),
the pseudo-Eblup estimator and the weights splitting estimator appear to per-
form equivalently. These obtained similar efficiencies can also partly be explained
by the same weight attached to the synthetic component of the pseudo-Eblup

and attached to the extra-contribution component of the proposed composite
estimator.

7.1.3. Resampling procedure to estimate the variance of the weights splitting

estimator

From the generated artificial population (see Figure 1), a resampling procedure
can be performed to estimate the variance of the weights splitting estimator.
Given a sample drawn from the generated population, B samples are drawn from
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this initial sample (for instance B = 500). The B weights splitting estimators
are computed from these B new samples. The variance by bootstrap is obtained
from computing the empirical variance of the B weights splitting estimators.
The considered sampling design is always a simple random sampling without
replacement.

In order to test the efficiency of the variance estimation by bootstrap, the
Algorithm 1 is considered.

Algorithm 1 Resampling procedure for testing the efficiency of the variance
estimation by bootstrap

Consider the generated artificial population (see Figure 1)
Consider B∗ = B∗∗ = 500 the number of iterations
Consider D = 20 the number of areas
Consider n = 200 the sample size
for b∗ = 1 to B∗ do

Draw a sample sb
∗

of size n by a simple random sampling without replacement from the
generated population

Compute the weights splitting estimators (t̂1y,c)
b∗ , . . . , (t̂dy,c)

b∗ , . . . , (t̂Dy,c)
b∗

for b∗∗ = 1 to B∗∗ do

Draw a sample sb
∗

b∗∗
of size n = 200 by a simple random sampling with replacement

from sb
∗

Compute the weights splitting estimators (t̂1y,c)
b∗

b∗∗
, . . . , (t̂dy,c)

b∗

b∗∗
, . . . , (t̂Dy,c)

b∗

b∗∗

end for

Compute (σ̂b∗

1
, . . . , σ̂b∗

d
, . . . , σ̂b∗

D
), the empirical variances of the B∗∗ obtained weights

splitting estimators (t̂1y,c)
b∗

b∗∗
, . . . , (t̂dy,c)

b∗

b∗∗
, . . . , (t̂Dy,c)

b∗

b∗∗

end for

Compute the empirical variances of the B∗ weights splitting estimators

(t̂1y,c)
b∗ , . . . , (t̂dy,c)

b∗ , . . . , (t̂Dy,c)
b∗

Compute the empirical means of the B∗ variances (σ̂b∗

1
, . . . , σ̂b∗

d
, . . . , σ̂b∗

D ) (bootstrap vari-
ance).

In the Algorithm 1, each sample sb
∗

drawn from the generated population leads
to weights splitting estimators (t̂dy,c)b∗ with bootstrap variances σ̂b

∗

d for d =
1 . . .D, where

σ̂b∗

d = Var{(t̂dy,c)b∗b∗∗}
= N − n

N − 1
1

B∗∗ − 1
B
∗∗

∑
b∗∗=1

⎛
⎝(t̂dy,c)b

∗

b∗∗ − 1

B∗∗

B
∗∗

∑
b∗∗=1

(t̂dy,c)b∗b∗∗⎞⎠
2

.

For d = 1 . . .D, for b∗ = 1 . . . B∗, consider

Var{(t̂dy,c)b∗} = N − n
N − 1

1

B∗ − 1
B∗∑
b∗=1

⎛
⎝(t̂dy,c)b

∗ − 1

B∗

B∗∑
b∗=1

(t̂dy,c)b∗⎞⎠
2

the simulated variance of the weights splitting estimator and consider

Ẽsim{σ̂b∗

d } = 1

B∗

B
∗

∑
b∗=1

σ̂b∗

d
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Table 3

Variance of the weights splitting estimators vs Mean of the bootstrap variances of the
weights splitting estimators

Area Var{(t̂dy,c)
b∗} Ẽsim{σ̂

b∗

d
}

1 1264.0 989.3
2 1566.2 1550.0
3 612.8 570.0
4 1021.0 1163.5
5 324.6 274.9
6 778.4 810.6
7 1288.8 1573.6
8 574.2 432.9
9 713.8 699.0

10 2555.2 2768.5
11 505.2 409.1
12 2088.3 1981.9
13 218.0 164.5
14 485.1 472.0
15 1442.2 1264.0
16 1134.5 1290.5
17 1275.3 1383.5
18 813.8 837.5
19 528.9 543.1
20 3438.0 3849.4

Table 4

Numbers of times (%) the true total values tdy (for d = 1 . . .D), from the generated population
(see Figure 1), lie within the 95% confidence intervals built with bootstrap variances

Area Nd Numbers of times (%)
1 34 75
2 100 84
3 57 78
4 174 93
5 47 84
6 125 91
7 187 93
8 28 65
9 73 85

10 150 87
11 44 75
12 182 87
13 35 88
14 78 91
15 49 73
16 124 89
17 168 94
18 116 87
19 65 86
20 164 87

the simulated expectation of the weights splitting bootstrap variance estimator.
Table 3 gives a comparison between these two quantities. It shows that the two
quantities are very closed.

Once the bootstrap variances computed, construction of confidence intervals
can be processed. Table 4 reports the numbers of times (%) the true total values
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tdy (for d = 1 . . .D), from the generated population, lie within the 95% confidence
intervals built with bootstrap variances. Table 4 shows that given an area, the
number of times the true total value lies within the 95 % confidence interval
increases with the size of the area.

7.2. Data with county crop areas

We compare the pseudo-Eblup and the weights splitting procedures applied to
a real data given by Battese, Harter and Fuller (1988) and taken up by You and
Rao (2002); Rao (2003). These authors wanted to estimate the mean of hectares
of corn per segment for D = 12 counties in north-central Iowa. Each county is
divided into area segments and the areas under corn are in the area segments.
The authors used a sample s of n = 36 segments and assumed simple random
sampling within areas. The population is assumed to follow the linear mixed
model given in (6.2) where the function of interest is the number of hectares
of corn per segment per county, and the auxiliary information is the number of
pixels seen as corn and as soybeans.

Table 5 reports the pseudo-Eblup and weights splitting estimates of hectares
of corn with their respective coefficients of variation. The variances are obtained
by a resampling procedure of 1,000 iterations (see Algorithm 2). The two es-

Table 5

Estimated hectares of corn with coefficients of variation

pseudo-Eblup Weights Splitting Method
County nd Estimate c.v. (%) Estimate c.v. (%)

Corn
Cerro Gordo 1 120.5 2.6 121.8 3.0

Hamilton 1 125.3 2.7 122.7 3.2
Worth 1 106.3 7.8 108.3 6.4

Humboldt 2 107.3 8.4 111.1 5.7
Franklin 3 143.8 4.5 142.8 5.3

Pocahontas 3 111.5 5.0 111.8 6.0
Winnebago 3 112.1 5.5 113.8 4.6

Wright 3 121.3 3.8 120.2 3.3
Webster 4 115.1 3.3 114.7 4.5
Hancock 5 124.5 3.4 124.2 3.1
Kossuth 5 106.6 3.2 109.3 3.8
Hardin 5 143.5 3.3 141.0 3.0

Source: LandSat data from Table 1 in Battese, Harter and Fuller (1988, p. 29)

Algorithm 2 Resampling procedure for the variance estimation by bootstrap
Consider B = 1,000 the number of iterations
Consider n = 36 the sample size
for b = 1 to B do

Draw a sample sb of size n by a simple random sampling with replacement within areas
from the sample s (the area sample sizes are fixed and are the same as those in s).
Compute the pseudo-Eblup and weights splitting estimators from the sample sb.

end for

Compute the variances of the B obtained pseudo-Eblup and weights splitting estimators
with considering the finite population correction factor.
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timators automatically respect the benchmarking property. Indeed, we have∑D
d=1Ndµ̂dw = t̂y,π + (tx − t̂x,π)⊺β̂w = 815016,3 and ∑D

d=1 t̂
d
y,c = t̂y,w = 817087,2.

Table 5 gives quite similar estimates with similar efficiencies.

8. Concluding remarks

The simulations show that, even when the data are really generated by a mixed
model, the proposed estimator does not seem worse than the Eblup and pseudo-
Eblup estimators. The proposed estimators offer several advantages. The re-
gional estimates are coherent with the overall estimates. The estimator takes
the sampling weights into account. The estimator can be written as a weighting
system and can thus be applied on any variable of interest.

As for all the composite estimators, the proposed estimator clearly states that
the parameters αd (for d = 1 . . .D) depend on the variable of interest. In the case
of a set of variables of interest belonging to a specified theme, the constant αd

can be chosen as the mean of the tuning constants obtained from each variable
of interest.

The next step will consist of computing a variance estimator of the composite
estimator. Since the proposed estimator is obtained by successive matrix calibra-
tions, the computation of this variance is complex, which is thus a challenging
objective. If a closed form of variance estimator is intractable, resampling pro-
cedures for simple random sampling as seen in Section 7.1.3 can be considered;
resampling procedures for sampling design with unequal inclusion probabilities
can be based on Antal and Tillé (2011) methodology.

The proposed method is not particularly robust for the resistance to outliers.
It could be an interesting further topic of research.
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