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Global climate models aim to reproduce physical processes on a global
scale and predict quantities such as temperature given some forcing inputs.
We consider climate ensembles made of collections of such runs with dif-
ferent initial conditions and forcing scenarios. The purpose of this work is
to show how the simulated temperatures in the ensemble can be reproduced
(emulated) with a global space/time statistical model that addresses the issue
of capturing nonstationarities in latitude more effectively than current alter-
natives in the literature. The model we propose leads to a computationally
efficient estimation procedure and, by exploiting the gridded geometry of the
data, we can fit massive data sets with millions of simulated data within a few
hours. Given a training set of runs, the model efficiently emulates tempera-
ture for very different scenarios and therefore is an appealing tool for impact
assessment.

1. Introduction. There is a wide consensus among the scientific community
that climate is changing and this will bring significant imbalance to the present
state of the system [IPCC AR4; Meehl et al. (2007)]. In order to assess the poten-
tial impacts of climate change both on the environment and human life, the geo-
physical community is providing constantly growing ensembles of climate models
that include different scenarios of changing greenhouse gases (e.g., the CMIP5
archive [Taylor, Stouffer and Meehl (2012)]). The advantages of a statistical anal-
ysis of climate data lie in a framework that not only can provide insights about
the ability to reproduce the real climate, but also has crucial practical advantages.
If the climate output can be reproduced efficiently with a simple statistical model
under some scenarios, then it is possible to predict how the output will behave
for a different scenario, both in terms of its mean and its covariance structure. In
other words, a statistical model can be used to fit some climate model output under
some scenarios and reproduce (emulate) the behavior of the climate model under
a new forcing in much less time than the original computer run. This approach
can provide policy makers with a powerful tool for impact assessment. This work
focuses on temperature at surface for an initial condition/scenario ensemble of a
single General Circulation Model (GCM), where the scenarios differ only in the
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trajectory of annual values of CO> concentrations. The ultimate goal is to provide
a statistical model and to show how, given a small training set, it is possible to
reproduce the computer output of other scenarios with only a small number of pa-
rameters for the mean and the covariance structure and a reasonable computational
effort. Annual averages of temperature at the pixel level are well-approximated by
a Gaussian distribution and we will use Gaussian process models throughout this
work. A further simplification that we will examine and make use of is that the
covariance structure is independent of the scenario.

To date, most work on climate model emulation has been done on Regional Cir-
culation Models (RCMs); see Sain, Furrer and Cressie (2011), Sain, Nychka and
Mearns (2011) and especially Greasby and Sain (2011) for a statistical model of
RCMs, and Berrocal, Craigmile and Guttorp (2012) for a model to adjust RCM
output to real observations. Only a few studies have been conducted on statistical
analysis of GCMs [see, e.g., Jun, Knutti and Nychka (2008) for a statistical model
for a multi-model GCM ensemble], and this is likely due to the dearth of literature
regarding modeling data on the sphere x time domain. Recently, Lindgren, Rue and
Lindstrom (2011) introduced a Stochastic Partial Differential equation approach
to fit random fields. Jun and Stein (2007), Jun and Stein (2008) proposed a model
for processes on this domain based on taking derivatives of simpler models and
Jun (2011) extended it to the multivariate case. The latter approach relies on em-
bedding the sphere in R3, selecting an isotropic model, and then applying partial
derivatives to account for anisotropies, directional effects and nonstationarities.
This procedure generates flexible models with explicit forms for the covariance
function, but its coefficients are difficult to interpret so that it can be a challenge
to specify forms of the model that would be appropriate in any particular setting.
The main contribution of our work is to introduce a spectral approach in model-
ing GCM output that results in more interpretable coefficients, improved fits and
reduced computational cost for parameter estimation.

Since a single climate run can contain several million simulated values or even
more for annual averages, care must be taken in fitting a model. Current statistical
methods to deal with massive space time data sets often rely on different forms
of a reduced rank approach, from fixed rank kriging [Cressie and Johannesson
(2008)] to predictive processes [Banerjee et al. (2008)]. Such methods are effective
in fitting models in a feasible amount of time, but can result in loss of information
and misfit [Stein (2008)]. In this work, the particular geometry of the data set and
the use of parallel computing achieve the goal of fitting the mean and covariance
structure of a massive data set in a few hours, by using a two-stage procedure
that estimates some latitude specific parameters separately for each latitude and
then estimates a few parameters describing dependence across parameters. The
fitted model, although not exactly the global maximizer of the likelihood under the
model, has a much higher likelihood than the maximized likelihoods under current
alternative models in the literature.
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Section 2 presents the ensemble and explains how the data are preprocessed.
Section 3 introduces a general framework for the statistical analysis of this ensem-
ble. Section 4 reviews the approach in Jun and Stein (2007) for data on a spherical
domain. Section 5 presents our spectral model, the spectral decomposition of a
class of spatial processes on a regular grid and finally shows some results on the
fit compared to current alternatives in the literature. In order to emulate, Section 6
gives a parametric model for the mean, extending the work in Castruccio et al.
(2013), and shows an example of extrapolation for a different forcing scenario.
Section 7 draws some conclusions.

2. The ensemble. We use the Climate Simulation Library of the Center for
Robust Decision Making on Climate and Energy Policy (RDCEP) consisting of
model runs made with the Community Climate System Model Version 3 [CCSM3;
Yeager et al. (2006), Collins et al. (2006)] at T31 resolution (48 x 96 grid points
on a resolution of ~3.75° x 3.75°). The ensemble consists of multicentury model
forecasts for a variety of CO; trajectories (see Figure 1 for some examples), with
all other greenhouse gas concentrations held constant at preindustrial values. The
relatively coarse spatial resolution allows generation of a rich library for statistical
analysis.

Our ensemble consists of multiple realizations for each scenario: R =5 ini-
tial conditions are sampled from the restart files of well spaced out years of the
NCAR b30.048 preindustrial control run [Collins et al. (2006)]. For the purpose
of this work these runs will be treated as statistically independent, an assumption
consistent with a preliminary analysis of the data and physically realistic given
the extreme sensitivity to the initial conditions of the climate system. From the
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F1G. 1. Examples of CO; scenarios in the Climate Simulation Library. We refer to these as 1: slow,
2: moderate, 3: high and 4: drop scenario. This work mostly focuses on drop and slow (in red), while
moderate and high scenarios (in blue) will only be used in the introduction of Section 6.
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CCSM3 output files we considered only the yearly average temperature at surface,
which we denote as T. We also removed the three northernmost and southernmost
latitude bands to avoid having to model the process in the narrow strips that form
pixels near the poles. A typical length of a single run is 500 years with M =42
latitudes and N = 96 longitudes, so the data set has 42 x 96 x 500 ~ 2 million
model simulated temperatures for each realization.

3. Statistical analysis of a climate ensemble. In this section we explore
some consequences of having independent realizations of random fields in the en-
semble. We consider runs with the same forcing and treat them as independent and
identically distributed. We denote with L,, for m = 1,..., M the latitude, with
£, forn=1,..., N the longitude, with #; for k =1, ..., T the time. The latitude
bands do not need to be equally spaced in this framework.

We will assume that the rth realization has distribution

(1) T, =pn+e,, e ~N(@,X)
forr=1,..., R, where
T, = (T-(L1, 81, t1),.... T (Lpg, €1, 1), T (L1, €2, 11), ..., Tr(Lp, €N, t7))

is the vector of temperatures, [E(T,) = p is a mean, and &, is the mean 0 stochas-
tic component, which is assumed to be normally distributed and with covariance
matrix ¥. We denote by T the mean across realizations and by S = TNMR the
size of the data set made up of all realizations of a scenario. If the data set consists
of more than one realization, we have that T, — T,» ~ N (0, 2X) for r # r’. There-
fore, it is possible to estimate the covariance structure without specifying a model
for the mean.

3.1. The restricted likelihood approach for the covariance structure. Sup-
pose now that the field has a parametrized covariance structure ¥ = () that
needs to be estimated. Also, define T = (Ty,...,Tg), D, =T, — T and D =
(D1, ...,Dg)". By merging all the different realizations, we can reformulate (1) as
the following linear model:

(2) T=0Ar Irnm)Ar Q) +¢, e~N(0,1z ® (9)),

where Ig is the R x R identity matrix and 1 is a column vector of length R with
all entries equal to 1. The design matrix is 1z ® Ir s, each column allowing for
different means for every location in the grid and year, and g the mean parameter
vector of length TN M.

A natural way to estimate 0 is by restricted likelihood, and the following result
gives an explicit formula.
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RESULT 1. The restricted loglikelihood for (2) is

1(6;D) = _INMR -1 log(2m) — 1(R — 1) log(det(X(8)))
3) 2 2

1 1 _
—5TNMlog(R) - 5D’(IR ® =(0))”'D.

Also, the corresponding estimator for j obtained by generalized least squares is
n = T.

The proof can be found in the supplementary material [Castruccio and Stein
(2013)], along with further theory on how the variogram can be estimated without
bias in this context. Result 1 shows how adding independent realizations reduces
to summing R quadratic forms for D, with the same matrix 2_1(0), therefore,
it does not require storing matrices larger than in the case of a single realization.
Moreover, the REML estimate of the mean vector p does not depend on the covari-
ance structure and is just the sample average, which is expected since we assume
the realizations are independent and identically distributed.

4. Processes on a spherical domain. Throughout this section we only con-
sider the spatial part of the process, so we drop the time index. As the data have
global coverage, a specific statistical theory for random fields on a sphere is re-
quired. The theory of valid covariance functions on a sphere is different from
that of the plane [see Gneiting (2013) for a complete discussion]. Furthermore,
an isotropic process on a sphere is not the natural choice in our case, as we ex-
pect temperature fields to behave differently at different latitudes. A more natural
starting point is the following:

DEFINITION 1. A Gaussian process Z on a sphere is axially symmetric [Jones
(1963)] if it has mean only depending on latitude and

cov(Z(Ly, 1), Z(L, £2)) = K(L1, Ly, £1 — £2).
Furthermore, the process is longitudinally reversible [Stein (2007)] if
K(Ly, Ly, &y —€2) = K(Ly, La, €r — £1).

In this work we only focus on axial symmetry although we believe that such
models are not fully adequate to describe surface temperatures. In particular, ac-
counting for land/sea differences may be one of the most promising avenues for
improving what we present here.

Axially symmetric models have seen a noticeable development recently. Jun
and Stein (2007) proposed a constructive approach for generating such processes,
which results in an explicit form for the covariance function:

e define k independent isotropic random fields Z j»Jj=1,...,kon R3,
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e consider its restriction on the unit sphere,

o define
k 3 ) -
4) Z(L,¢t) ::Z(aj(l‘)ﬁ +bj(L)ﬁ —|—cj-(L)>Zj(L,E),
j=1
where

aj(L) = Zal j s1n(L)

np.
b/

bj(L) = b;;P'(sin(L)),

i=1
cj(L) = Zc,] (sin(L))

and P’ are Legendre polynomials of order i.

We will refer to this modeling framework as the partial derivative (PD) ap-
proach. Using the PD approach guarantees that Z is axially symmetric; it can be
extended to more general processes if a; and b; depend on longitude and Jun
(2011) extends the approach to the multivariate setting. Despite this flexibility, it
has some disadvantages. First, by starting out with models that must be valid in R3,
some possible models are lost, especially models with substantial negative spatial
correlation at some lags, which could occur for quantities for which mass or en-
ergy are approximately conserved over time. More importantly, the interpretation
of the coefficients a; and b; is not straightforward and limits the flexibility of the
model.

5. Spectral modeling of axially symmetric processes. We propose to repre-
sent the process in the spectral domain, and we show how this results in a more
flexible and interpretable model. We first present the temporal part of the model,
then define the model for a single latitudinal band, a model for multiple latitudi-
nal bands, the structure of the spatial covariance matrix, and finally we compare
this model with the PD approach. We work under the assumptions of model (1).
Sections 5.1-5.3 describe our model and summarize information about the param-
eter estimates. Section 5.4 shows how the axial symmetry of the spatial part of the
model can be exploited to speed up the calculations. Section 5.5 shows that our
model yields much larger loglikelihoods than some PD models.

5.1. The temporal structure. Define &, = (e(Ly, ¢1, £),....,e(LN,Lp, 1)) the
vector of the variabilities at time ¢, and D;., = T;., — Tt for r=1,...,R the
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temperature difference. We assume that the vector-valued time series &, has the
following structure:

5) & =¥+ UMD n: NN(Os ),
® =diag(9oL.t1)s -+ POLy.ly))>s

where Q(L,¢) = 1 if pixel (L, £) is land®> and Q(L, ¢) = 0 otherwise. In other
words, we are assuming a temporal AR(1) structure with different correlation pa-
rameters, ¢o and ¢, depending on whether the grid point is over land or ocean.
Diagnostic plots (see the supplementary material [Castruccio and Stein (2013)])
show that this structure is sufficient to capture the temporal features of the data. We
also assume &1 ~ N (0, ;) so the model is not exactly stationary in time, but given
the weak temporal correlation for annual temperatures, this simplification has neg-
ligible impact on the model fit. For this section we define H;., = D;., — ®D;_;.,
and H, = Hy.,,...,Hr.;).

5.2. A model for a single latitudinal band. Assume now that n, is axially
symmetric, as described in Section 4. If we consider a single latitudinal band,
the covariance K; is only a function of the longitudinal lag ¢, = 2nn/N,
n=0,...,N — 1 and is symmetric about 7. Therefore, we observe an evenly
spaced stationary process on a circlextime domain and we define fr(c) =
Z,]lv:_ol Py ¢ (€,) to be the spectral density on the circle at wavenumber c.
Since the grid we use here is the same grid on which a discretized version of
the partial differential equations underlying the GCM are solved, it makes sense
to work directly with this finite spectrum rather than to model a spectrum at all
integer wavenumbers c.

For observations on a line, a common spectral density is the Matérn:

¢

(0) fw; ¢, a, V)=m, weR.
We propose the following modification for f7 :
éL
(7) fulesor,ap,ve) = c=0,...,N—1.

(a2 +4sin?(c/Nm))vet1/2’

The parameters have similar interpretations as for the ordinary Matérn model, with
o an inverse range parameter, vy controlling the rate of decrease of the spectrum
at large wavenumbers and thus the “smoothness” of the process (even though one
cannot talk about differentiability for a process on a discrete grid), and ¢ the
overall level of variation.

A first analysis can be done by considering each band separately from the others.
Figure 2 shows the results for a training set of five drop scenarios in which the
parameters are estimated separately for each latitude using REML.

31f the grid point is on the boundary, we will consider it as land if its percentage of land is greater
than 50%.
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FIG. 2. (a): log(({;L) for different latitudes. (b): vy, vs latitude. (c): &y, vs latitude. The blue dots
are the estimates and the solid red line is a fitted cubic smoothing spline. (d): empirical and fit-
ted log periodogram for two different latitudinal bands, computed using the normalized differences

\/g% ZtT:l Hy., forr=1,...,5.

In this way, one can visualize how b1, & and Dy in (7) are changing across
latitude [Figures 2(a)—(c)]. All the parameters display complex patterns; it is espe-
cially noticeable how & and v have very similar behaviors, as they both show an
increase at midlatitudes. The tropical behavior is very different from all the other
latitudinal bands, as estimates of both parameters show a sharp drop in this region.

Figure 2(d) shows an example of the periodogram fit for two different bands:
one near the equator and one at a northern midlatitude. The spectrum near the equa-
tor drops off faster at low wavenumbers, which is reflected in the smaller value
for &z . However, at high wavenumbers, the spectrum near the equator is flatter,
which is reflected in the smaller value for vy . The functional form chosen is flexi-
ble enough to capture the different behaviors across latitudes. The supplementary
material [Castruccio and Stein (2013)] provides a table of all the estimates with
their corresponding asymptotic standard deviations. The variability of these esti-
mates is extremely small, as we would expect from an analysis of such a large data
set; therefore, the larger differences in patterns across latitudes in Figures 2(a)—(c)
are statistically significant. In the supplementary material [Castruccio and Stein
(2013)], we further show how ¢?L, ar, and vy do not substantially vary over time.

5.3. A model for multiple latitudinal bands. To define a global model, we need
to describe the following:

e how ¢r, oy and vr are changing across latitude,
e how different latitude bands are correlated.
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The first point could be addressed with a parametric model of the three parameters
as a function of L, but, as shown in Figure 2, the pattern is complex and likely
requires many parameters to be adequately captured. Instead, we use the estimates
obtained from the analysis of single latitudinal bands. Computing estimates sep-
arately for each band allows the estimates to be obtained in a parallel fashion on
multiple processors. In our analysis with 42 latitudinal bands, the entire procedure
does not require more than 5 minutes on a small 4 node cluster. In contrast, the PD
approach of Jun and Stein (2008) does not lead to any obvious algorithm to fit pa-
rameters that describe variation within latitude separately for each latitude. With
higher resolution model output, it might become more important to parametrize
how ¢, @y and vy, change with latitude.
As for the second point, we need to model

N
FimL, (© = e "KLy, Ly, £y), ¢=0,...,N—1

n=1
More specifically, if we denote by | - | the modulus of a complex number and by
arg its argument, we need to specify coherence and the phase
| fLn, L, (O]
PLy.L,, (€)= =

SFn© fr, (©

yLmaLm/ (C) = arg(fLm,Lm/ (C))7

where f1, (c) and fi ,(c) are defined in (7). A null phase results in a symmet-
ric cross-covariance between bands, which corresponds to a symmetric circulant
covariance matrix and therefore results in a longitudinally reversible process (see
Section 5.4). The flexibility of spectral methods allows one to account for longi-
tudinal reversibility independently from other features of the model. This is not
possible in the PD approach: to have a longitudinally reversible process one needs
aj(L)bj(L) =0 for j =1,...,k [Jun and Stein (2008)] and it is not straightfor-
ward to determine how such a constraint would impact other features of the model.
Since diagnostic plots (see supplementary material [Castruccio and Stein (2013)])
show that the phase is small, we work under the assumption of longitudinal re-
versibility.
We assume the following model for the coherence:

£ [Ln—L,,|
8 ,c=( ) , c=0,...,N—1,
® P L =\ s (/N

where £ € (0, 1) and t > 0. The proposed model has only 2 parameters: £ controls
the overall rate of decay of coherence across all wavenumbers as the difference
in latitude increases and t describes how much faster coherence decays at higher
wavenumbers than at lower wavenumbers. Note that we could allow T < 0 as long
as £/5% < 1 so that all absolute coherences are bounded by 1 as they must be, but
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TABLE 1
Parameter estimates for the coherence (8) in the spectral model, for five drop scenarios. All
estimates treat ¢, oy, and vy, for all L as fixed at the values estimated in the first stage of fitting

Parameter Estimate sd x 1074 95% CI

& 0.9696 0.51 (0.9695, 0.9697)
T 0.2080 2.0 (0.2076, 0.2084)
01 0.1010 3.4 (0.1004, 0.1017)
©o 0.1141 3.5 (0.1134, 0.1148)

it would be very unusual for a natural process to have stronger coherence across
latitudes at higher wavenumbers. A more flexible form for (8) has been considered
but did not result in significant improvement of the fit (see supplementary material
[Castruccio and Stein (2013)]).

Table 1 shows the estimated coefficients for the five realizations of the drop, to-
gether with their asymptotic standard deviations and 95% confidence intervals by
treating the previously estimated values of ¢y, oy and vy as known. We can see
how all the estimates have very small variability, which is expected since the data
set is very large (*10.7 million temperatures). The temporal structure is slightly
different for land and ocean, as the latter tends to show a slightly stronger tempo-
ral dependence. In the supplementary material [Castruccio and Stein (2013)] we
further show how é, 7, ¢1 and Qg are not dependent on time and, therefore, the
assumption of stationarity of the stochastic term is reasonable.

5.4. Spectral decomposition of the covariance matrix for axially symmetric pro-
cesses. The evaluation of the likelihood in this setting is a challenging problem,
as in general it requires evaluation of a quadratic form with an inverse covariance
matrix of size TNM x TN M, and computation of a log determinant. In this par-
ticular setting, the gridded geometry of the data and the axial symmetry allow for
some degree of sparsity of X, the covariance matrix for »,, in the spectral do-
main. Here we focus on describing matrix calculations for X, which in turn with
the AR(1) model in (5) for 5, allows for fast calculation of the restricted likelihood.
For simplicity of notation, we drop the time index ¢ throughout this subsection.

In general, this problem requires O((NM )3) operations and the storage of
NM(NM + 1)/2 distinct values using the Cholesky decomposition. In fact, the
resolution of our model is sufficiently coarse that a general Cholesky decomposi-
tion algorithm could be used here with some difficulty. However, by exploiting the
structure of the covariance matrices, we can greatly speed up the computation and
reduce the memory requirement, which would be essential when modeling higher
resolution of GCM output.

The regular lattice geometry for GCM output over the sphere, together with the
assumption that the model is axially symmetric, allows for some exact computa-
tions using spectral methods that drastically reduce the computational time and the
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memory needed. This approach was first introduced by Jun and Stein (2008) for
the analysis of Total Ozone Mapping Spectrometer (TOMS) Level 3 data, which
are post-processed data on a regular grid.

The key idea is that a stationary process of size N on a circle results in a (sym-
metric) circulant covariance matrix. The (real) eigenvalues can be written in terms
of the Fast Fourier Transform (FFT) of the coefficients of the first row, which
requires only O (N log(N)) operations, and the eigenvector matrix is simply the
Discrete Fourier Transform matrix [Davis (1979), page 72].

Over the sphere, 9y, = ()(Lm, £1), ..., N(Lm, £N)) is a process on a circle for
everym=1,..., M. The N x N covariance matrix for every 5 is (symmetric)
circulant and can therefore be diagonalized via FFT. The N x N cross-covariance
matrix cov(y, .1, ,) form # m’ is circulant but not necessarily symmetric, as

)
cov(1(Lns €n)s 1(Lors bns)) = K (Lons Ls b — fy) = K(Lm, L, 2nﬁ)

S
7’5 K(Lm’ Ly, _27TN)
= K(Lm, Lm/, En - en—(N—S))
= cov((Lm, n), (L', €n—(N—s)))-

Therefore, the diagonalization via FFT results in complex eigenvalues. It should
be pointed out that the condition for the cross-covariance matrix to be symmet-
ric is that the process is longitudinally reversible. If we call .% the operation of
FFT, we know that the covariance matrix of {% 5 Liseee Fn M} is a block ma-
trix with diagonal blocks, and if we rearrange rows and columns over latitude, we
have that .77 is a block diagonal matrix with N blocks with each M x M block
being an Hermitian matrix. Therefore, the evaluation of the likelihood requires
O(M*N log N) flops for the FFT and O (M 3N) for the Cholesky decompositions
of the N blocks. In terms of memory, a general axially symmetric process re-
quires M2 N values to store, while a longitudinally reversible process only requires
WN values.

5.5. Comparisons to other models. 'We compare the spectral model (model sp)
presented in the previous two sections to several other models. For all models, the
temporal structure is given by the AR(1) model (5). To model the spatial struc-
ture of the residual term », in (5), we consider the following possibilities: a model
with independent and identically distributed components (model ind), an isotropic
Matérn model (model mat) and the PD model with Matérn model for the underly-
ing isotropic fields. Referring to equation (4), we consider the following settings
for the PD models:

e Model h3: k=1,n,4 =3,np, =3 and n,, = 1.
e Model h10: k =1, n,4 =10, np, =10 and n., = 1.
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TABLE 2
Comparison between different models in terms of number of parameters, computational time
(hours) and restricted loglikelihood (3). For the spectral model, the actual number of parameters
for the global maximization is reported in parentheses

Model ind mat h3 h10 h3,2 sp

# param 3 5 12 26 17 130 (4)
time (hours) 0.1 7.3 60 379 880 1.8
Aloglik/NMT(R-1) —-1.93 —0.32 —0.17 —0.03 —0.16 0

e Model h3,2: k =2, ny4 =ng, =3, np, =np, =3, n, =1and n¢, =0.

We use 5 realizations of a drop scenario, for a total of approximately 10.7 mil-
lion GCM temperatures, and we compare the results in terms of the restricted log-
likelihood (3). For such massive data sets, we found it helpful to normalize differ-
ences in (restricted) loglikelihoods by the number of contrasts NMT (R — 1). We
will write Aloglik to generically mean a difference in loglikelihoods. For the sp
model, we first maximize the likelihood for the single band parameters in parallel
and then we maximize the likelihood for &, 7, ¢g and ¢; conditional on the values
of éL, &y and vy. All the other models are maximized over the full parameter
space. The results are reported in Table 2, where the number of parameters and
the difference in loglikelihood (normalized with respect to the size of the data set)
is shown and compared. The model ind is clearly not adequate, and the isotropic
Matérn results are a noticeable improvement. Model /23 gives better results, there-
fore underlying the need for an anisotropic model. Model /3,2 and especially 410
result in better likelihoods but the number of parameters is very large, and the
estimation requires several weeks. Model sp outperforms all the previous models
and even if the actual number of parameters is 4 4+ 42 x 3 = 130, the maximiza-
tion is done only with the 4 parameters in Table 1 and requires only 1.8 hours.
The precomputation of the parameters for the latitudinal bands (a procedure that,
as mentioned in Section 5.2, requires a few minutes using multiple processors on
a cluster) plays a crucial role in this model, as it adds flexibility and allows for a
maximization of a conditional loglikelihood with respect to only a few parameters.

Although the model presented here already provides a substantially better fit
than even the best PD model with much less computation, one might wonder if
maximizing the restricted loglikelihood over all 130 parameters would lead to a
model with a much better fit. We ran a full parameter search over all 130 pa-
rameters using fminsearch in MATLAB, which resulted in an improvement of
~(0.008Aloglik/ NMT (R — 1) after approximately 1670 hours of computation.
Our goal here is to find the best-fitting model to the data that we can for a given
computational effort and it is clear that the sp model with parameters estimated
by our proposed two-stage procedure dominates the PD models with parameters
estimated by REML in this application.
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To have a better understanding of how the model is able to capture the local spa-
tial dependence of the data, it is useful to show how variances of spatial contrasts
are reproduced by the model [see, e.g., Stein (2005)]. Figure 3 shows a comparison
between models mat, h3, h10 and sp in terms of their ability to reproduce the vari-
ances of some contrasts of H,# (the details about how the empirical estimates are
computed are found in the supplementary material [Castruccio and Stein (2013)]).
Figures 3(a)—(b) represent the east—west contrast H(L,,, ¢,) — H(L,,, £,,—1) and
the north—south contrast H(L,,, £,) — H(L,,—1, £,). In both cases the spectral
model is able to reproduce the patterns of the empirical contrast, therefore show-
ing an overall good fit of both the single band spectral model (east—west) and the
coherence (north—south). The isotropic model shows a pattern in the east-west
contrast that is only due to the geometry of the sphere: points closer to the poles
are physically closer for the same longitude spacing, therefore resulting in smaller
variances of the contrasts. Model 43 instead is able to capture some of the features
of the data, especially for the north—south contrast, but is overall too smooth and
would require more flexibility. Model #/0 shows a decent fit in the north—south
contrast, but the east—west contrast is significantly misfitted. Figures 3(c)—(d) rep-
resent the variance across latitudes and the Laplacian. The spectral model can re-
produce most of the trend for the variance, therefore proving to be flexible enough

4The index for H, will be dropped, as the distribution of the contrasts is independent of the real-
ization; note that H, depends on the estimates of the AR(1) parameters ¢ and ¢, but the values of
these parameters vary so little across models that the visual impression of Figure 3 is unaffected by
which estimates are used.
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to capture the low wavenumbers behavior. The Laplacian is overestimated for the
northern hemisphere, a sign of a lack of fit for the coherence between multiple
bands that could be fixed by allowing nonstationarity across latitudes in (8), al-
though at the cost of a substantially more complex model. The model 470 shows a
somewhat overall better fit for this contrast.

6. Emulation. Throughout this section, we drop the index r denoting the re-
alization to simplify the notation. The model we have presented can reproduce
efficiently the covariance structure for a single scenario, but in order to emulate
temperature for a different forcing, we need to determine how the mean and the
covariance structure are changing across different scenarios. Figure 4 addresses
the latter issue. The plots represent the change in parameter value for the single
latitudinal band features across four scenarios indicated in Figure 1; ¢ is not in-
cluded but shows similar patterns. For all of them, an analysis of R =5 different
realizations is performed and we show the differences with respect to the slow sce-
nario, together with the 95% Bonferroni confidence bands around 0. Since all the
standard deviations are similar across scenarios, we choose to plot the differences
of parameter estimates between the slow and the drop scenario. The differences be-
tween the slow and drop scenarios are significant for log ¢y at higher latitudes, as
shown in Figure 4(a), but all the other parameters and scenarios are largely within
the confidence bands. Therefore, it seems reasonable to assume that differences in
the covariance structure across scenarios are modest. In the supplementary material
[Castruccio and Stein (2013)], a similar diagnostic is carried out for the coherence
parameters. Therefore, only a parametrization of the mean is necessary to describe

a b
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o)) o —
g o %?ﬁ% ER
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FI1G. 4. Differences of parameter estimates for different scenarios (R =5 realizations each) for (a):
log ¢y, (b): vy, (c): af, and (d): ¢q. The reference is the slow scenario. The dashed red lines represent
the 95% Bonferroni confidence bands around 0. The estimates are computed as in Figure 2.
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the trend of the data, train the model with some scenarios, and then predict the tem-
perature for an unknown scenario. Our approach to emulation of the mean is based
on the method of Castruccio et al. (2013), where a simple model was proposed and
the analysis was performed independently for 47 regions without accounting for
spatial dependence.

6.1. A model for the mean. Before proceeding with this analysis, we stan-
dardize to account for the different variability across different grid points. This
simple adjustment was not done in the previous sections and accounts for some
of the nonstationarity in longitude that our model is not able to capture. In this
section we consider the output of a control run with constant CO, concentration,
compute its average T, and its standard deviation sd(T,) over time for every grid
point, and then for every temperature vector T in the training set normalize to
T* := (T — T,)/sd(T.).

With reference to (1), the goal of this section is to give a (scenario dependent)
parametric model for w in order to extrapolate the temperature value for another
given scenario. The model we use is the following:

1 1
THL, 6,1) = Bor.or + Brr.o (5 10g[CO21() + 5 loglCOs](t - 1))

+00

9 + Brc Yy w(i —2)1og[CO(t — i) +&(L, €, 1),
i=2
w(i) = A" (1 =),

where ¢ is modeled as in Section 5 and ¢ indexes the 47 predefined regions shown
in the supplementary materials [Castruccio and Stein (2013)].
The mean has three components:

e an intercept By, different for every grid point,
e a short term effect 81, different for every grid point,
e along term effect B, different for the 47 regions.

The last term accounts for the long term contribution of the forcing via the weights
w(i — 2), which are expected to be decreasing as the time lag i — 2 increases.
We model this decrease exponentially with decay rate A identical for every grid
point. The linear parameters can be profiled but the estimation of the parameters
describing the behavior of € and of A requires the numerical maximization of the
likelihood. The evaluation of this likelihood for a single run requires approximately
8 minutes, so to make the computation faster and reduce the optimization to A, we
plugged in the estimated spatiotemporal structure of & obtained via REML using
the same procedure as in the previous section.

We estimated the stochastic structure with R = 5 realizations of the drop sce-
nario, obtained A based on a single drop scenario (estimation of A for all scenarios



1608 S. CASTRUCCIO AND M. L. STEIN

was not computationally feasible), and finally emulate for the slow scenario. We
choose the drop scenario for the training set to show the results for a severe ex-
trapolation and because the trend is more evident under a forcing with an abrupt
change, making the estimation of the coefficients more stable. In order to repro-
duce the mean climate for less drastic scenarios such as the Representative Con-
centration Pathways in the CMIP5 archive [Van Vuuren et al. (2011)], a simpler
form of the mean function is likely preferable.

The estimated value for A is 0.95 (0.0014) and once this parameter is estimated,
each conditional simulation takes only a few seconds. Given the very large number
of temperatures and the small variability of the estimates, we choose not to account
for parameter uncertainty in the simulations. The top part of Figure 5 gives an
example of emulation of the mean and conditional simulation of the slow scenario
for a grid point in the middle of the Pacific Ocean. To assess the fit, for every grid
point we use, as in Castruccio et al. (2013), the following simple lack of fit index
(the indication of latitude and longitude has been removed for simplicity):

I S (T ) = T@)”
(R/(R—1) XK, L (T (0) = T()?

where T is the fitted value and T is the average across realizations. This index
measures how close the fitted value (emulated mean) is to the average of the real-
izations. The smaller I is the better, but since the expected value of the numerator
cannot be less than that of the denominator, values of  near 1 indicate an excellent
fit.

Figure 5(a) shows an example of conditional simulation for a point in the Pacific
Ocean. The mean and variation are similar to the original simulations, but there
is noticeable underestimation of extreme events, especially cold extremes. This
lack of ability of the statistical model to reproduce such features of the climate
poses some problems and can limit the extent of the use of this model on impact
assessment. A possible direction to address this issue is to fit the data with a model
more general than an axially symmetric, but this will require further advances in
modeling, and substantial computational resources. Another approach is to develop
direct methods to fitting and emulating extremes along the lines of Mannshardt-
Shamseldin et al. (2010).

Figure 5(b) shows I for the slow scenario over all the regions. It is evident that
the emulation does poorly in the area near the Southern Ocean stretching from the
southern tip of South Africa to near Tasmania. We speculate that the sea ice albedo
effect may create strong nonlinearities in this area, but further investigations are
needed. Also, the fit is not fully adequate in the equatorial regions, even though the
misfit is not as strong as in the Southern Ocean. The details about the algorithm
are provided in the supplementary material [Castruccio and Stein (2013)], and the
file called climate_movie shows a movie of a conditional simulation in terms of
anomalies from preindustrial conditions.

(10)
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FI1G. 5. Training set: one drop realization. Prediction set. a slow scenario. (a): an example of a
conditional simulation. The solid black line represents the fitted (emulated) value, the gray lines
represent the actual realizations from the GCM and the red lines are the conditional simulations.
(b): global plot of the lack of fit index 1, which is a measure of goodness of fit for emulation of the
mean. The upper bound at I =3 is only for visualization purposes as the fit index can be as large as
18.9. There are 74 out of 4032 points with I > 3.

7. Conclusions. Spectral modeling is a natural choice for gridded data on
sphere xtime, and we have shown how it outperforms the current alternatives in
the literature in terms of simplicity, flexibility and computational requirements. Al-
though this work has focused on temperature, a similar approach can be extended
to other climate variables such as precipitation [see Castruccio et al. (2013) for
an example of mean emulation] and possibly different time scales, as long as the
normality hypothesis is tenable. On a single latitudinal band, our model assumes
independence of the spectral process across wavenumbers, but this assumption can
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in principle be relaxed to account for more complex nonstationarities. We have
also shown an example of fit for climate model output of challenging size, and we
have carried out the analysis without appealing to reduced rank representations of
the process. The specific geometry of the climate output has played an important
role, but distributing some parts of the algorithm across different processors has
also contributed to reduce the computational burden, and further work is needed to
understand how parallel computation can be helpful in fitting massive data sets.

Acknowledgments. The authors thank Elisabeth Moyer and David Mclner-
ney at the Department of Geophysical Sciences at the University of Chicago for
providing the ensemble data and for the useful discussions. This work is part of
the RDCEP effort to improve the understanding of computational models needed
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/13-AOAS656SUPP; .pdf). Further
technical details and theoretical results can be found in the online supplementary
material.
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