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We consider a switched (queuing) network in which there are constraints
on which queues may be served simultaneously; such networks have been
used to effectively model input-queued switches and wireless networks. The
scheduling policy for such a network specifies which queues to serve at any
point in time, based on the current state or past history of the system. In
the main result of this paper, we provide a new class of online scheduling
policies that achieve optimal queue-size scaling for a class of switched net-
works including input-queued switches. In particular, it establishes the va-
lidity of a conjecture (documented in Shah, Tsitsiklis and Zhong [Queueing
Syst. 68 (2011) 375–384]) about optimal queue-size scaling for input-queued
switches.

1. Introduction. A switched network consists of a collection of, say,
N queues, operating in discrete time. At each time slot, queues are offered ser-
vice according to a service schedule chosen from a specified finite set, denoted
by S . The rule for choosing a schedule from S at each time slot is called the
scheduling policy. New work may arrive to each queue at each time slot exoge-
nously and work served from a queue may join another queue or leave the network.
We shall restrict our attention, however, to the case where work arrives in the form
of unit-sized packets, and once it is served from a queue, it leaves the network, that
is, the network is single-hop.

Switched networks are special cases of what Harrison [15, 16] calls “stochastic
processing networks.” Switched networks are general enough to model a variety
of interesting applications. For example, they have been used to effectively model
input-queued switches, the devices at the heart of high-end Internet routers, whose
underlying silicon architecture imposes constraints on which traffic streams can be
transmitted simultaneously [8]. They have also been used to model multihop wire-
less networks in which interference limits the amount of service that can be given
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to each host [35]. Finally, they can be instrumental in finding the right operational
point in a data center [31].

In this paper, we consider online scheduling policies, that is, policies that only
utilize historical information (i.e., past arrivals and scheduling decisions). The per-
formance objective of interest is the total queue size or total number of packets
waiting to be served in the network on average (appropriately defined). The ques-
tions that we wish to answer are: (a) what is the minimal value of the performance
objective among the class of online scheduling policies, and (b) how does it depend
on the network structure, S , as well as the effective load.

Consider a work-conserving M/D/1 queue with a unit-rate server in which
unit-sized packets arrive as a Poisson process with rate ρ ∈ (0,1). Then, the long-
run average queue-size scales2 as 1/(1 − ρ). Such scaling dependence of the aver-
age queue size on 1/(1 − ρ) (or the inverse of the gap, 1 − ρ, from the load to the
capacity) is a universally observed behavior in a large class of queuing networks.
In a switched network, the scaling of the average total queue size ought to depend
on the number of queues, N . For example, consider N parallel M/D/1 queues as
described above. Clearly, the average total queue size will scale as N/(1 − ρ). On
the other hand, consider a variation where all of these queues pool their resources
into a single server that works N times faster. Equivalently, by a time change, let
each of the N queues receive packets as an independent Poisson process of rate
ρ/N , and each time a common unit-rate server serves a packet from one of the
nonempty queues. Then, the average total queue-size scales as 1/(1 − ρ). Indeed,
these are instances of switched networks that differ in their scheduling set S , which
leads to different queue-size scalings. Therefore, a natural question is the determi-
nation of queue-size scaling in terms of S and (1 − ρ), where ρ is the effective
load. In the context of an n-port input-queued switch with N = n2 queues, the op-
timal scaling of average total queue size has been conjectured to be n/(1−ρ), that
is,

√
N/(1 − ρ) [29].

As the main result of this paper, we propose a new online scheduling policy
for any single-hop switched network. This policy effectively emulates an insensi-
tive bandwidth sharing network with a product-form stationary distribution with
each component of this product-form behaving like an M/M/1 queue. This crisp
description of stationary distribution allows us to obtain precise bounds on the av-
erage queue sizes under this policy. This leads to establishing, as a corollary of our
result, the validity of a conjecture stated in [29] for input-queued switches. In gen-
eral, it provides explicit bounds on the average total queue size for any switched
network. Furthermore, due to the explicit bound on the stationary distribution of
queue sizes under our policy, we are able to establish a form of large-deviations op-
timality of the policy for a large class of single-hop switched networks, including

2In this paper, by scaling of quantity we mean its dependence (ignoring universal constants)

on 1
1−ρ

and/or the number of queues, N , as these quantities become large. Of particular interest
is the scaling of ρ → 1 and N → ∞, in that order.
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the input-queued switches, and the independent-set model of wireless networks,
when the underlying interference graph is bipartite, for example, and more gener-
ally, perfect.

The conjecture from [29] that we settle in this paper, states that in the
heavy-traffic regime (i.e., ρ → 1), the optimal average total queue-size scales as√

N/(1 − ρ). The validity of this conjecture is a significant improvement over the
best-known bounds of O(N/(1 − ρ)) (due to the moment bounds of [24] for the
maximum weight policy) or O(

√
N logN/(1−ρ)2) (obtained by using a batching

policy [25]).
Our analysis consists of two principal components. First, we propose and an-

alyze a scheduling mechanism that is able to emulate, in discrete time, any
continuous-time bandwidth allocation within a bounded degree of error. This
scheduler maintains a continuous-time queuing process and tracks its own queue
size process. If, valued under a certain decomposition, the gap between the ide-
alized continuous-time process and the real queuing process becomes too large,
then an appropriate schedule is allocated. Second, we implement specific band-
width allocation named the store-and-forward allocation policy (SFA). This policy
was first considered by Massoulié, and was consequently discussed in the thesis of
Proutière [26], Section 3.4. It was shown to be insensitive with respect to phase-
type service distributions in works by Bonald and Proutière [3, 4]. The insensitiv-
ity of this policy for general service distributions was established by Zachary [41].
The store-and-forward policy is closely related to the classical product-form multi-
class queuing network, which have highly desirable queue-size scalings. By emu-
lating these queuing networks, we are able to translate results which render optimal
queue-size bounds for a switched network. An interested reader is referred to [38]
and [20] for an in-depth discussion on the relation between this policy, the propor-
tionally fair allocation, and multi-class queuing networks.

1.1. Organization. In Section 2, we specify a stochastic switched network
model. In Section 3, we discuss related works. Section 4 details the necessary
background on the insensitive store-and-forward bandwidth allocation (SFA) pol-
icy. The main result of the paper is presented and proved in Section 5. We first
describe the policy for single-hop switched networks, and state our main result,
Theorem 5.2. This is followed by a discussion of the optimality of the policy. We
then provide a proof of Theorem 5.2. A discussion of directions for future work is
provided in Section 6.

Notation. Let N be the set of natural numbers {1,2, . . .}, let Z+ = {0,1,2, . . .},
let R be the set of real numbers and let R+ = {x ∈ R :x ≥ 0}. Let I[A] be the
indicator function of an event A, Let x ∧ y = min(x, y), x ∨ y = max(x, y) and
[x]+ = x ∨ 0. When x is a vector, the maximum is taken componentwise.

We will reserve bold letters for vectors in R
N , where N is the number of queues.

For example, x = [xn]1≤n≤N . Superscripts on vectors are used to denote labels, not
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exponents, except where otherwise noted; thus, for example, (x0,x1,x2) refers to
three arbitrary vectors. Let 0 be the vector of all 0s and 1 the vector of all 1s.
The vector ei is the ith unit vector, with all components being 0 but the ith com-
ponent equal to 1. We use the norm |x| = maxn |xn|. For vectors u and v, we let
u · v = ∑N

n=1 unvn. Let AT be the transpose of matrix A. For a set S ⊂R
N , denote

its convex hull by 〈S〉. For n ∈ N, let n! = ∏n
�=1 � be the factorial of n, and by

convention, 0! = 1.

2. Switched network model. We now introduce the switched network model.
Section 2.1 describes the general system model, Section 2.2 lists the probabilistic
assumptions about the arrival process and Section 2.3 introduces some useful def-
initions.

2.1. Queueing dynamics. Consider a collection of N queues. Let time be dis-
crete, and indexed by τ ∈ {0,1, . . .}. Let Qi(τ) be the amount of work in queue
i ∈ {1, . . . ,N} at time slot τ . Following our general notation for vectors, we write
Q(τ ) for [Qi(τ)]1≤i≤N . The initial queue sizes are Q(0). Let Ai(τ ) be the total
amount of work arriving to queue i, and Bi(τ ) be the cumulative potential service
to queue n, up to time τ , with A(0) = B(0) = 0.

We first define the queuing dynamics for a single-hop switched network. Defin-
ing dA(τ ) = A(τ + 1) − A(τ ) and dB(τ ) = B(τ + 1) − B(τ ), the basic Lindley
recursion that we will consider is

Q(τ + 1) = [
Q(τ ) − dB(τ )

]+ + dA(τ ),(1)

where the operation [·]+ is applied componentwise. The fundamental switched
network constraint is that there is some finite set S ⊂ R

N+ such that

dB(τ ) ∈ S for all τ.(2)

For the purpose of this work, we shall focus on S ⊂ {0,1}N . We will refer to
σ ∈ S as a schedule and S as the set of allowed schedules. In the applications in
this paper, the schedule is chosen based on current queue sizes, which is why it
is natural to write the basic Lindley recursion as (1) rather than the more standard
[Q(τ ) + dA(τ ) − dB(τ )]+.

For the analysis in this paper, it is useful to keep track of two other quantities.
Let Zi(τ ) be the cumulative amount of idling at queue n, defined by Z(0) = 0 and

dZ(τ ) = [
dB(τ ) − Q(τ )

]+
,(3)

where dZ(τ ) = Z(τ + 1) − Z(τ ). Then, (1) can be rewritten as

Q(τ ) = Q(0) + A(τ ) − B(τ ) + Z(τ ).(4)

Also, let Sσ (τ ) be the cumulative amount of time that is spent on using schedule σ
up to time τ , so that

B(τ ) = ∑
σ∈S

Sσ (τ )σ .(5)
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A policy that decides which schedule to choose at each time slot τ ∈ Z+ is
called a scheduling policy. In this paper, we will be interested in online scheduling
policies. That is, the scheduling decision at time τ will be based on historical
information, that is, the cumulative arrival process A(·) till time τ .

2.2. Stochastic model. We shall assume that the exogenous arrival process for
each queue is independent and Poisson. Specifically, unit-sized packets arrive to
queue i as a Poisson process of rate λi . Let λ = [λi]Ni=1 denote the vector of all
arrival rates. The results presented in this paper extend to more general arrival
process with i.i.d. interarrival times with finite means, using a Poissonization trick.
We discuss this extension in Section 6.

2.3. Useful quantities. We shall assume that the scheduling constraint set S is
monotone. This is captured in the following assumption.

ASSUMPTION 2.1 (Monotonicity). If S contains a schedule, then S also con-
tains all of its sub-schedules. Formally, for any σ ∈ S , if σ ′ ∈ {0,1}N and σ ′ ≤ σ

componentwise, then σ ′ ∈ S .

Without loss of generality, we will assume that each unit vector ei belongs to S .
Next, we define some quantities that will be useful in the remainder of the paper.

DEFINITION 2.2 (Admissible region). Let S ⊂ {0,1}N be the set of allowed
schedules. Let 〈S〉 be the convex hull of S , that is,

〈S〉 =
{∑

σ∈S
ασ σ :

∑
σ∈S

ασ = 1 and ασ ≥ 0, for all σ

}
.

Define the admissible region C to be

C = {
λ ∈ R

N+ :λ ≤ σ componentwise, for some σ ∈ 〈S〉}.
Note that under Assumption 2.1, the capacity region C and the convex hull 〈S〉

of S coincide.
Given that 〈S〉 is a polytope contained in [0,1]N , there exists an integer J ≥ 1,

a matrix R ∈ R
J×N+ and a vector C ∈R

J+ such that

〈S〉 = {
x ∈ [0,1]N : Rx ≤ C

}
.(6)

We call J the rank of 〈S〉 in the representation (6). When it is clear from the
context, we simply call J the rank of 〈S〉. Note that this rank may be different
from the rank of matrix R. Our results will exploit the fact that the rank J may be
an order of magnitude smaller than N .
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DEFINITION 2.3 (Static planning problems and load). Define the static plan-
ning optimization problem PRIMAL(λ) for λ ∈ R

N+ to be

minimize
∑
σ∈S

ασ ,(7)

subject to λ ≤ ∑
σ∈S

ασ σ ,(8)

ασ ∈ R+ for all σ ∈ S.(9)

Define the induced load by λ, denoted by ρ(λ), as the value of the optimization
problem PRIMAL(λ).

Note that λ is admissible if and only if ρ(λ) ≤ 1. It also follows immediately
from Definition 2.3 that

ρ(λ) = inf{γ ≥ 0 : Rλ ≤ γ C},(10)

and λ is admissible if and only if Rλ ≤ C, componentwise.
In the sequel, we will often consider the quantities ρ̃j = ∑

i Rjiλi/Cj , for j ∈
{1,2, . . . , J }, which can be interpreted as loads on individual “resources” of the
system (this interpretation will be made precise in Section 4). They are closely
related to the system load ρ(λ). We formalize this relation in the following lemma,
whose proof is straightforward and omitted.

LEMMA 2.4. Consider a nonnegative matrix R ∈ R
J×N+ and a vector C ∈ R

J

with Cj > 0 for all j . For a nonnegative vector λ ∈ R
N+ , define ρ(λ) by (10) and

ρ̃j = (
∑

i Rjiλi)/Cj . Then ρ(λ) = maxj ρ̃j .

The following is a simple and useful property of ρ(·): for any a,b ∈ R
N+ ,

ρ(a + b) ≤ ρ(a) + ρ(b).(11)

2.4. Motivating example. An Internet router has several input ports and output
ports. A data transmission cable is attached to each of these ports. Packets arrive
at the input ports. The function of the router is to work out which output port each
packet should go to, and to transfer packets to the correct output ports. This last
function is called switching. There are a number of possible switch architectures;
we will consider the commercially popular input-queued switch architecture.

Figure 1 illustrates an input-queued switch with three input ports and three out-
put ports. Packets arriving at input k destined for output � are stored at input port k,
in queue Qk,�, thus there are N = 9 queues in total. (For this example, it is more
natural to use double indexing, e.g., Q3,2, whereas for general switched networks
it is more natural to use single indexing, e.g., Qi for 1 ≤ i ≤ N .)

The switch operates in discrete time. At each time slot, the switch fabric can
transmit a number of packets from input ports to output ports, subject to the two
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FIG. 1. An input-queued switch, and two example matchings of inputs to outputs.

constraints that each input can transmit at most one packet, and that each output
can receive at most one packet. In other words, at each time slot the switch can
choose a matching from inputs to outputs. The schedule σ ∈ R

3×3+ is given by
σk,� = 1 if input port k is matched to output port � in a given time slot, and σk,� = 0
otherwise. The matching constraints require that

∑3
m=1 σk,m ≤ 1 for k = 1,2,3,

and
∑3

m=1 σm,� ≤ 1 for � = 1,2,3. Figure 1 shows two possible matchings. On the
left-hand side, the matching allows a packet to be transmitted from input port 3 to
output port 2, but since Q3,2 is empty, no packet is actually transmitted.

In general, for an n-port switch, there are N = n2 queues. The corresponding
schedule set S is defined as

S =
{
σ ∈ {0,1}n×n :

n∑
m=1

σk,m ≤ 1,

n∑
m=1

σm,� ≤ 1,1 ≤ k, � ≤ n

}
.(12)

It can be checked that S is monotone. Furthermore, due to Birkhoff–von Neumann
theorem, [2, 37], the convex hull of S is given by

〈S〉 =
{

x ∈ [0,1]n×n :
n∑

m=1

xk,m ≤ 1,

n∑
m=1

xm,� ≤ 1,1 ≤ k, � ≤ n

}
.(13)

Thus, the rank of 〈S〉 is less than or equal to 2n = 2
√

N for an n-port switch.
Finally, given an arrival rate matrix3 λ ∈ [0,1]n×n, ρ(λ) is given by

ρ(λ) = max
1≤k,�≤n

{
n∑

m=1

λk,m,

n∑
m=1

λm,�

}
.

3. Related works. The question of determining the optimal scaling of queue
sizes in switched networks, or more generally, stochastic processing networks, has

3Not a vector, for notational convenience, as discussed earlier.
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been an important intellectual pursuit for more than a decade. The complexity of
the generic stochastic processing network makes this task extremely challenging.
Therefore, in search of tractable analysis, most of the prior work has been on trying
to understand optimal scaling and scheduling policies for scaled systems: primar-
ily, with respect to fluid and heavy-traffic scaling, that is, ρ → 1.

In heavy-traffic analysis, one studies the queue-size behavior under a diffu-
sion (or heavy-traffic) scaling. This regime was first considered by Kingman [21];
since then, a substantial body of theory has developed, and modern treatments can
be found in [5, 14, 39, 40]. Stolyar [33] has studied a class of myopic schedul-
ing policies, known as the maximum weight policy, introduced by Tassiulas and
Ephremides [35], for a generalized switch model in the diffusion scaling. In a gen-
eral version of the maximum weight policy, a schedule with maximum weight is
chosen at each time step, with the weight of a schedule being equal to the sum
of the weights of the queues chosen by that schedule. The weight of a queue is a
function of its size. In particular, for the choice of one parameter class of functions
parameterized by α > 0, f (x) = xα , the resulting class of policies are called the
maximum weight policies with parameter α > 0, and denoted as MW-α.

In [33], a complete characterization of the diffusion approximation for the
queue-size process was obtained, under a condition known as “complete resource
pooling,” when the network is operating under the MW-α policy, for any α > 0.
Stolyar [33] showed the remarkable result that the limiting queue-size vector lives
in a one-dimensional state space. Operationally, this means that all one needs to
keep track of is the one-dimensional total amount of work in the system (called
the rescaled workload), and at any point in time one can assume that the individ-
ual queues have all been balanced. Furthermore, it was established that a max-
weight policy minimizes the rescaled workload induced by any policy under the
heavy-traffic scaling (with complete resource pooling). Dai and Lin [6, 7] have es-
tablished that a similar result holds (with complete resource pooling) in the more
general setting of a stochastic processing network. In summary, under the complete
resource pooling condition, the results in [6, 7, 33] imply that the performance of
the maximum weight policy in an input-queued switch, or more generally in a
stochastic processing network, is always optimal (in the diffusion limit, and when
each queue size is appropriately weighted). These results suggest that the average
total queue-size scales as 1/(1 −ρ) in the ρ → 1 limit. However, such analyses do
not capture the dependence on the network scheduling structure S . Essentially, this
is because the complete resource pooling condition reduces the system to a one-
dimensional space (which may be highly dependent on a network’s structure), and
optimality results are then initially expressed with respect to this one-dimensional
space.

Motivated to capture the dependence of the queue sizes on the network schedul-
ing structure S , a heavy-traffic analysis of switched networks with multiple bot-
tlenecks (without resource pooling) was pursued by Shah and Wischik [32]. They
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established the so-called multiplicative state space collapse, and identified a mem-
ber, denoted by MW-0+ (obtained by taking α → 0), of the class of maximum-
weight policies as optimal with respect to a critical fluid model. In a more recent
work, Shah and Wischik [31] established the optimality of MW-0+ with respect to
overloaded fluid models as well. However, this collection of works stops short of
establishing optimality for diffusion scaled queue-size processes.

Finally, we take note of the work by Meyn [23], which establishes that a class
of generalized maximum weight policies achieve logarithmic [in 1/(1 −ρ)] regret
with respect to an optimal policy under certain conditions.

In a related model—the bandwidth-sharing network model—Kang et al. [18]
have established a diffusion approximation for the proportionally fair bandwidth
allocation policy, assuming a technical “local traffic” condition, but without as-
suming complete resource pooling.4 They show that the resulting diffusion ap-
proximation has a product-form stationary distribution. Shah, Tsitsiklis and Zhong
[30] have recently established that this product-form stationary distribution is in-
deed the limit of the stationary distributions of the original stochastic model (an
interchange-of-limits result). As a consequence, if one could utilize a scheduling
policy in a switched network that corresponds to the proportionally fair policy,
then the resulting diffusion approximation will have a product-form stationary dis-
tribution, as long as the effective network scheduling structure S (precisely 〈S〉)
satisfies the “local traffic condition.” Now, proportional fairness is a continuous-
time rate allocation policy that usually requires rate allocations that are a convex
combination of multiple schedules. In a switched network, a policy must operate
in discrete time and has to choose one schedule at any given time from a finite
discrete set S . For this reason, proportional fairness cannot be implemented di-
rectly. However, a natural randomized policy inspired by proportional fairness is
likely to have the same diffusion approximation (since the fluid models would be
identical, and the entire machinery of Kang et al. [18], building upon the work
of Bramson [5] and Williams [40], relies on a fluid model). As a consequence,
if S (more accurately, 〈S〉) satisfies the “local traffic condition,” then effectively
the diffusion-scaled queue sizes would have a product-form stationary distribution,
and would result in bounds similar to those implied by our results. In comparison,
our results are nonasymptotic, in the sense that they hold for any admissible load,
have a product-form structure, and do not require technical assumptions such as the
“local traffic condition.” Furthermore, such generality is needed because there are
popular examples, such as the input-queued switch, that do not satisfy the “local
traffic condition.”

Another line of works—so-called large-deviations analysis—concerns expo-
nentially decaying bounds on the tail probability of the steady-state distributions of

4Kang et al. [18] assume that critically loaded traffic is such that all the constraints are saturated
simultaneously.
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queue sizes. Venkataramanan and Lin [36] established that the maximum weight
policy with weight parameter α > 0, MW-α, optimizes the tail exponent of the
1 + α norm of the queue-size vector. Stolyar [34] showed that a so-called “expo-
nential rule” optimizes the tail exponent of the max norm of the queue-size vector.
However, these works do not characterize the tail exponent explicitly. See [28]
which has the best-known explicit bounds on the tail exponent.

In the context of input-queued switches, the example that has primarily mo-
tivated this work, the policy that we propose has the average total queue size
bounded within factor 2 of the same quantity induced by any policy, in the heavy-
traffic limit. Furthermore, this result does not require conditions like complete
resource pooling. More generally, our policy provides nonasymptotic bounds on
queue sizes for every arrival rate and switch size. The policy even admits exponen-
tial tail bounds with respect to the stationary distribution, and the exponent of these
tail bounds is optimal. These results are significant improvements to the state-of-
the-art bounds for best performing policies for input-queued switches. As noted
in the Introduction, our bound on the average total queue size is

√
N times better

than the existing bound for the maximum-weight policy, and logN/(1 − ρ) times
better than that for the batching policy in [25]. (Here N is the number of queues,
and ρ the system load.) For further details of these results, see [29].

For a generic switched network, our policy induces average total queue size that
scale linearly with the rank of 〈S〉, under the diffusion scaling. This is in contrast
to the best-known bounds, such as those for maximum weight policy, where the av-
erage queue-size scales as N , under the diffusion scaling. Therefore, whenever the
rank of 〈S〉 is smaller than N (the number of queues), our policy provides tighter
bounds. Under our policy, queue sizes admit exponential tail bounds. The bound on
the distribution of queue sizes under our policy leads to an explicit characterization
of the tail exponent, which is optimal for a wide range of single-hop switched net-
works, including input-queued switches and the independent-set model of wireless
networks, when the underlying interference graph is perfect.

4. Insensitivity in stochastic networks. This section recalls the background
on insensitive stochastic networks that underlies the main results of this work.
We shall focus on descriptions of the insensitive bandwidth allocation in so-called
bandwidth-sharing networks operating in continuous time. Properties of these in-
sensitive networks are provided in the Appendix.

We consider a bandwidth-sharing network operating in continuous time with
capacity constraints. The particular bandwidth-sharing policy of interest is the
store-and-forward allocation (SFA) mentioned earlier. We shall use the SFA as
an idealized policy to design online scheduling policies for switched networks. We
now describe the precise model, the SFA policy, and its performance properties.

Model. Let time be continuous and indexed by t ∈ R+. Consider a network
with J ≥ 1 resources indexed from 1, . . . , J . Let there be N routes, and suppose
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that each packet on route i consumes an amount Rji ≥ 0 of resource j , for each
j ∈ {1,2, . . . , J }. Let K be the set of all resource–route pairs (j, i) such that route
i uses resource j , that is, K = {(j, i) :Rji > 0}. Without loss of generality, we as-
sume that for each i ∈ {1,2, . . . ,N}, ∑J

j=1 Rji > 0. Let R be the J × N matrix

with entries Rji . Let C ∈ R
J+ be a positive capacity vector with components Cj .

For each route i, packets arrive as an independent Poisson process of rate λi . Pack-
ets arriving on route i require a unit amount of service, deterministically.

We denote the number of packets on route i at time t by Mi(t), and define the
queue-size vector at time t by M(t) = [Mi(t)]Ni=1 ∈ Z

N+ . Each packet gets service
from the network at a rate determined according to a bandwidth-sharing policy.
We also denote the total residual workload on route i at time t by Wi(t), and let
the vector of residual workload at time t be W(t) = [Wi(t)]Ni=1. Once a packet
receives its total (unit) amount of service, it departs the network.

We consider online, myopic bandwidth allocations. That is, the bandwidth allo-
cation at time t only depends on the queue-size vector M(t). When there are mi

packets on route i, that is, if the vector of packets is m = [mi]Ni=1, let the total
bandwidth allocated to route i be φi(m) ∈ R+. We consider a processor-sharing
policy, so that each packet on route i is served at rate φi(m)/mi , if mi > 0. If
mi = 0, let φi(m) = 0. If the bandwidth vector φ(m) = [φi(m)]Ni=1 satisfies the
capacity constraints

Rφ(m) ≤ C componentwise(14)

for all m ∈ Z
N+ , then, in light of Definition 2.2, we say that φ(·) is an admissible

bandwidth allocation. A Markovian description of the system is given by a process
Y(t) which contains the queue-size vector M(t) along with the residual workloads
of the set of packets on each route.

Now, on average, λi units of work arrive to route i per unit time. Therefore, in
order for the Markov process Y(·) to be positive (Harris) recurrent, it is necessary
that

Rλ < C componentwise.(15)

All such λ = [λi]Ni=1 ∈ R
N+ will be called strictly admissible, in the same spirit as

strictly admissible vectors for a switched network. Similarly to the corresponding
switched network, given λ ∈ R

N+ , we can define ρ(λ), the load induced by λ, us-
ing (10), as well as ρ̃j = (

∑
i Rjiλi)/Cj . Then by Lemma 2.4, ρ(λ) = maxj ρ̃j ,

where ρ̃j can be interpreted as the load induced by λ on resource j .

Store-and-forward allocation (SFA) policy. We describe the store-and-forward
allocation policy that was first considered by Massoulié and later analyzed in
the thesis of Proutière [26]. Bonald and Proutière [4] established that this pol-
icy induces product-form stationary distributions and is insensitive with respect to
phase-type distributions. This policy is shown to be insensitive for general ser-
vice time distributions, including the deterministic service considered here, by
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Zachary [41]. The relation between this policy, the proportionally fair allocation,
and multi-class queuing networks is discussed in depth by Walton [38] and Kelly,
Massoulié and Walton [20]. The insensitivity property implies that the invariant
measure of the process M(t) only depends on the parameters λ = [λi]Ni=1 ∈ R

N+ ,
and no other aspects of the stochastic description of the system.

We first give an informal motivation for SFA. SFA is closely related to quasi-
reversible queuing networks. Consider a continuous-time multi-class queuing
network (without scheduling constraints) consisting of processor sharing queues
indexed by j ∈ {1, . . . , J } and job types indexed by the routes i ∈ {1, . . . ,N}.
Each route i job has a service requirement Rji at each queue j , and a fixed service
capacity Cj is shared between jobs at the queue. Here each job will sequentially
visit all the queues (so-called store-and-forward) and will visit each queue a fixed
number of times. If we assume that jobs on each route arrive as a Poisson process,
then the resulting queuing network will be stable for all strictly admissible arrival
rates. Moreover, each stationary queue will be independent with a queue size that
scales, with its load ρ, as ρ/(1 −ρ). For further details, see Kelly [19]. So, assum-
ing each queue has equal load, the total number of jobs within the network is of the
order Jρ/(1 −ρ). In other words, these networks have the stability and queue-size
scaling that we require, but do not obey the necessary scheduling constraints (14).
However, these networks do produce an admissible schedule on average. For this
reason, we consider an SFA policy which, given the number of jobs on each route,
allocates the average rate with which jobs are transferred through this multi-class
network. Next, we describe this policy (using notation similar to those used in
[20, 38]).

Given m ∈ Z
N+ , define

U(m) =
{

m̃ = (
m̃ji : (j, i) ∈ K

) ∈ Z
|K|
+ :

∑
j : j∈i

m̃j i = mi, for all 1 ≤ i ≤ N

}
.

For L ∈ Z
J+, we also define

V (L) =
{

m̃ = (
m̃ji : (j, i) ∈ K

) ∈ Z
|K|
+ :

∑
i : i�j

m̃ji = Lj , for all 1 ≤ j ≤ J

}
.

Here, by notation j ∈ i (and i � j ) we mean Rji > 0. For each m̃ ∈ U(m), we
exploit notation somewhat and define m̃j = ∑

i : j∈i m̃j i , for all j ≤ J . Also define(
m̃j

m̃ji : i � j

)
= m̃j !∏

i : j∈i (m̃ji !) .

For m ∈ Z
N+ , we define 
(m) as


(m) = ∑
m̃∈U(m)

∏
j∈J

((
m̃j

m̃ji : i � j

) ∏
i : j∈i

(
Rji

Cj

)m̃ji
)
.(16)
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We shall define 
(m) = 0 if any of the components of m is negative. The store-
and-forward allocation (SFA) assigns rates according to the function φ :ZN+ →
R

N+ , so that for any m ∈ Z
N+ , φ(m) = (φi(m))Ni=1, with

φi(m) = 
(m − ei )


(m)
,(17)

where, recalling that m − ei is the same as m at all but the ith component, its
ith component equals mi − 1. The bandwidth allocation φ(m) is the stationary
throughput of jobs on the routes of a multi-class queuing network (described
above), conditional on there being m jobs on each route.

A priori it is not clear if the above described bandwidth allocation is even ad-
missible, that is, satisfies (14). This can be argued as follows. The φ(m) can be
related to the stationary throughput of a multi-class network with a finite number
of jobs, m, on each route. Under this scenario (due to finite number of jobs), each
queue must be stable. Therefore, the load on each queue, Rφ(m), must be less than
the overall system capacity C. That is, the allocation is admissible. The precise ar-
gument along these lines is provided in, for example, [20], Corollary 2 and [38],
Lemma 4.1.

The SFA induces a product-form invariant distribution for the number of packets
waiting in the bandwidth-sharing network and is insensitive. We summarize this in
the following result.

THEOREM 4.1. Consider a bandwidth-sharing network with Rλ < C. Under
the SFA policy described above, the Markov process Y(t) is positive (Harris) re-
current, and M(t) has a unique stationary probability distribution π given by

π(m) = 
(m)




N∏
i=1

λ
mi

i for all m ∈ Z
N+ ,(18)

where


 =
J∏

j=1

(
Cj

Cj − ∑
i : i�j Rjiλi

)
(19)

is a normalizing factor. Furthermore, the steady-state residual workload of pack-
ets waiting in the network can be characterized as follows. First, the steady-state
distribution of the residual workload of a packet is independent from π . Second,
in steady state, conditioned on the number of packets on each route of the net-
work, the residual workload of each packet is uniformly distributed on [0,1], and
is independent from the residual workloads of other packets.

Note that statements similar to Theorem 4.1 have appeared in other works, for
example, [3], [38], Proposition 4.2, and [20]. Theorem 4.1 is a summary of these
statements, and for completeness, it is proved in Appendix A.
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The following property of the stationary distribution π described in Theo-
rem 4.1 will be useful.

PROPOSITION 4.2. Consider the setup of Theorem 4.1, and let π be described
by (18). Define a measure π̃ on Z

|K|
+ as follows: for m̃ ∈ Z

|K|
+ ,

π̃(m̃) = 1




J∏
j=1

((
m̃j

m̃ji : i � j

) ∏
i : j∈i

(
Rjiλi

Cj

)m̃ji
)
.(20)

Then, for any L ∈ Z+,

π

({
m :

N∑
i=1

mi = L

})
= π̃

({
m̃ :

J∑
j=1

m̃j = L

})
.(21)

We relate the distribution π̃ to the stationary distribution of an insensitive multi-
class queuing network with a product-form stationary distribution and geometri-
cally distributed queue sizes.

PROPOSITION 4.3. Consider the distribution π̃ defined in (20). Then, for any
L = (L1, . . . ,LJ ) ∈ Z

J+,

π̃(m̃1 = L1, . . . , m̃J = LJ ) = ∑
(m̃ji )∈V (L)

π̃
(
(m̃ji)

) =
J∏

j=1

ρ̃
Lj

j (1 − ρ̃j ),(22)

where ρ̃j = (
∑

i : i�j Rjiλj )/Cj .

Using Theorem 4.1 and Propositions 4.2 and 4.3, we can compute the expected
value and the probability tail exponent of the steady-state total residual workload
in the system. Recall that the total residual workload in the system at time t is
given by

∑N
i=1 Wi(t).

PROPOSITION 4.4. Consider a bandwidth-sharing network with Rλ < C, op-
erating under the SFA policy. Denote the load induced by λ to be ρ = ρ(λ)(< 1),
and for each j , let ρ̃j = (

∑
i Rjiλi)/Cj . Then W(·) has a unique stationary prob-

ability distribution. With respect to this stationary distribution, the following prop-
erties hold:

(i) The expected total residual workload is given by

E

[
N∑

i=1

Wi

]
= 1

2

J∑
j=1

ρ̃j

1 − ρ̃j

.(23)
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(ii) The distribution of the total residual workload has an exponential tail with
exponent given by

lim
L→∞

1

L
logP

(
N∑

i=1

Wi ≥ L

)
= −θ∗,(24)

where θ∗ is the unique positive solution of the equation ρ(eθ − 1) = θ .

5. Main result: A policy and its performance. In this section, we describe
an online scheduling policy and quantify its performance in terms of explicit,
closed-form bounds on the stationary distribution of the induced queue sizes. Sec-
tion 5.1 describes the policy for a generic switched network and provides the state-
ment of the main result. Section 5.2 discusses its implications. Specifically, it dis-
cusses (a) the optimality of the policy for a large class of switched networks with
respect to exponential tail bounds, and (b) the optimality of the policy for a class of
switched networks, including input-queued switches, with respect to the average
total queue size. Section 5.3 proves the main result stated in Section 5.1.

5.1. A policy for switched networks. The basic idea behind the policy, to be
described in detail shortly, is as follows. Given a switched network, denoted by SN,
with constraint set S and N queues, let 〈S〉 have rank J and representation [cf. (6)]

〈S〉 = {
x ∈ [0,1]N : Rx ≤ C

}
, R ∈ R

N×J+ ,C ∈R
J+.

Now consider a virtual bandwidth-sharing network, denoted by BN, with N routes
corresponding to each of these N queues. The resource–route relation is deter-
mined precisely by the matrix R, and the J resources have capacities given by C.
Both networks, SN and BN, are fed identical arrivals. That is, whenever a packet
arrives to queue i in SN, a packet is added to route i in BN at the same time.
The main question is that of determining a scheduling policy for SN; this will be
derived from BN. Specifically, BN will operate under the insensitive SFA policy
described in Section 4. By Theorem 4.1 and Propositions 4.2 and 4.3, this will
induce a desirable stationary distribution of queue sizes in BN. Therefore, if we
could use the rate allocation of BN, that is, the SFA policy, directly in SN, it would
give us a desired performance in terms of the stationary distribution of the induced
queue sizes. Now the rate allocation in BN is such that the instantaneous rate is al-
ways inside 〈S〉. However, it could change all the time and need not utilize points
of S as rates. In contrast, in SN we require that the rate allocation can change
only once per discrete time slot and it must always employ one of the generators
of 〈S〉, that is, a schedule from S . The key to our policy is an effective way to
emulate the rate allocation of BN under SFA (or for that matter, any admissible
bandwidth allocation) by utilizing schedules from S in an online manner and with
the discrete-time constraint. We will see shortly that this emulation policy relies
on S being monotone; cf. Assumption 2.1.



2222 D. SHAH, N. S. WALTON AND Y. ZHONG

To that end, we describe this emulation policy. Let us start by introducing
some useful notation. Let A(·) = (Ai(·)) be the vector of exogenous, indepen-
dent Poisson processes according to which unit-sized packets arrive to both BN
and SN, simultaneously. Recall that Ai(·) is a Poisson process with rate λi . Let
M(t) = (Mi(t)) denote the vector of numbers of packets waiting on the N routes
in BN at time t ≥ 0. In BN, the services are allocated according to the SFA pol-
icy described in Section 4. Let �SFA(·) = (�SFA

i (·)) ∈ R
N+ denote the cumula-

tive amount of service allocated to the N routes in BN under the SFA policy:
�SFA

i (t) denotes the total amount of service allocated to all packets on route i dur-
ing the interval [0, t], for t ≥ 0, with �SFA

i (0) = 0 for 1 ≤ i ≤ N . By definition,
all components of �SFA(·) are nondecreasing and Lipschitz continuous. Further-
more, (�SFA(t + s) − �SFA(t))/s ∈ 〈S〉 for any t ≥ 0 and s > 0. Recall that the
(right-)derivative of �SFA(·) is determined by M(·) through the function φ(·) as
defined in (17).

Now we describe the scheduling policy for SN that will rely on �SFA(·). Let
B(τ ) = (Bi(τ )) denote the cumulative amount of service allocated in SN by the
scheduling policy up to time slot τ ≥ 0, with B(0) = 0. The scheduling policy
determines how B(·) is updated. Let Q(τ ) = (Qi(τ )) be the queue sizes measured
at the end of time slot τ . Let service be provided according to the scheduling
policy instantly at the beginning of a time slot. Thus, the scheduling policy decides
the schedule dB(τ ) = B(τ + 1) − B(τ ) ∈ S at the very beginning of time slot
τ + 1. This decision is made as follows. Let D(τ ) = �SFA(τ ) − B(τ ). We will
see shortly that under our policy, D(τ ) is always nonnegative. This fact will be
useful at various places, and in particular, for bounding the discrepancy between
the continuous-time policy SFA and its discrete-time emulation. Let ρ(D(τ )) be
the optimal objective value in the optimization problem PRIMAL(D(τ )) defined
in (7). In particular, there exists a nonnegative combination of schedules in S such
that ∑

σ∈S
α̃σ σ ≥ D(τ ) and

∑
σ∈S

α̃σ = ρ
(
D(τ )

)
.(25)

We claim that in fact, we can find nonnegative numbers ασ , σ ∈ S , such that∑
σ∈S

ασ σ = D(τ ) and
∑
σ∈S

ασ = ρ
(
D(τ )

)
.(26)

This is formalized in the following lemma.

LEMMA 5.1. Let D ∈ R
N+ be a nonnegative vector. Consider the static plan-

ning problem PRIMAL(D) defined in (7). Let the optimal objective value to
PRIMAL(D) be ρ(D). Then there exists ασ ≥ 0, σ ∈ S , such that (26) holds.

The proof of the lemma relies on Assumption 2.1, and is provided in the Ap-
pendix.
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There could be many possible nonnegative combinations of D(τ ) satisfy-
ing (26). If there exist nonnegative numbers ασ , σ ∈ S , satisfying (26) with ασ ′ ≥ 1
for some σ ′ ∈ S , then choose σ ′ as the schedule: set dB(τ ) = σ ′. If no such de-
composition exists for D(τ ), then set dB(τ ) = σ̃ , where σ̃ is a solution (ties broken
arbitrarily) of

maximize
∑
i

σi over σ ∈ S,σ ≤ D(τ ).(27)

Here first observe that for all time τ , dB(τ ) ≤ D(τ ), so D(τ ) ≥ 0. Hence, 0 is a
feasible solution for the above problem, as 0 ∈ S .

The above is a complete description of the scheduling policy. Observe that it
is an online policy, as the virtual network BN can be simulated in an online man-
ner, and, given this, the scheduling decision in SN relies only on the history of
BN and SN. The following result quantifies the performance of the policy.

THEOREM 5.2. Given a strictly admissible arrival rate vector λ, with ρ =
ρ(λ) < 1, under the policy described above, the switched network SN is posi-
tive recurrent and has a unique stationary distribution. Let ρ̃j = (

∑
i Rjiλi)/Cj ,

j = 1,2, . . . , J be the same as in Proposition 4.4. With respect to this stationary
distribution, the following properties hold:

(1) The expected total queue size is bounded as

E

[
N∑

i=1

Qi

]
≤ 1

2

(
J∑

j=1

ρ̃j

1 − ρ̃j

)
+ K(N + 2),(28)

where K = maxσ∈S(
∑

i σi).
(2) The distribution of the total queue size has an exponential tail with exponent

given by

lim
L→∞

1

L
logP

(
N∑

i=1

Qi ≥ L

)
= −θ∗,(29)

where θ∗ is the unique positive solution of the equation ρ(eθ − 1) = θ .

5.2. Optimality of the policy. This section establishes the optimality of our
policy for input-queued switches, both with respect to expected total queue-size
scaling and tail exponent. General conditions under which our policy is optimal
with respect to tail exponent are also provided.

Scaling of queue sizes. We start by formalizing what we mean by the optimal-
ity of expected queue sizes and of their tail exponents. We consider policies under
which there is a well-defined limiting stationary distribution of the queue sizes
for all λ such that ρ(λ) < 1. Note that the class of policies is not empty; indeed,
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the maximum weight policy and our policy are members of this class. With some
abuse of notation, let π denote the stationary distribution of the queue-size vector
under the policy of interest. We are interested in two quantities:

(1) Expected total queue size. Let �Q be the expected total queue size under the
stationary distribution π , defined by

�Q = Eπ

[∑
i

Qi

]
.

Note that by ergodicity, the time average of the total queue size and the expected
total queue size under π are the same quantity.

(2) Tail exponent. Let βL(Q),βU(Q) ∈ [−∞,0] be the lower and upper limits
of the tail exponent of the total queue size under π (possibly −∞ or 0), respec-
tively, defined by

βL(Q) = lim inf
�→∞

1

�
logPπ

(∑
i

Qi ≥ �

)
and(30)

βU(Q) = lim sup
�→∞

1

�
logPπ

(∑
i

Qi ≥ �

)
.(31)

If βL(Q) = βU(Q), then we denote this common value by β(Q).

We are interested in policies that can achieve minimal �Q and β(Q). For tractability,
we focus on scalings of these quantities with respect to S (equivalently, N ) and
ρ(λ), as 1/(1 − ρ(λ)) and N increase. For different λ′ and λ, it is possible that
ρ(λ) = ρ(λ′), but the scaling of �Q, for example, could be wildly different. For this
reason, we consider the worst possible dependence on 1/(1 − ρ) and N among all
λ with ρ(λ) = ρ.

Note that we are considering scalings with respect to two quantities, ρ and N ,
and we are interested in two limiting regimes, ρ → 1 and N → ∞. The optimality
of queue-size scaling stated here is with respect to the order of limits ρ → 1 and
then N → ∞. As noted in [29], taking the limits in different orders could poten-
tially result in different limiting behaviors of the object of interest, for example, �Q.
For further discussion, see Section 6. It should be noted, however, that whenever
the tail exponent is optimal, this optimality holds for any ρ and N .

Optimality of the tail exponent. Here we establish sufficient conditions un-
der which our policy is optimal with respect to tail exponent. First, we present
a universal lower bound on the tail exponent, for a general single-hop switched
network under any policy. We then provide a condition under which this lower
bound matches the tail exponent under our policy. This condition is satisfied by
both input-queued switches and the independent-set model of wireless networks.

Consider any policy under which there exists a well-defined limiting station-
ary distribution of the queue sizes for all λ such that ρ(λ) < 1. Let π0 denote
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the stationary distribution of queue sizes under this policy. The following lemma
establishes a universal lower bound on the tail exponent.

LEMMA 5.3. Consider a switched network as described in Theorem 5.2, with
scheduling set S and admissible region {x ∈ [0,1]N : Rx ≤ C}. Let π0 and λ be
as described. For each j , let ρ̃j = ∑N

i=1 Rjiλi/Cj be defined as in Theorem 5.2.
Then under π0,

lim inf
L→∞

1

L
logPπ0

(∑
i

Qi ≥ L

)
≥ − min

j=1,2,...,J
θ∗
j ,(32)

where, for each j ∈ {1,2, . . . , J }, θ∗
j is the unique positive solution of the equation

N∑
i=1

λi

(
eRjiθ − 1

) = θ.

PROOF. Consider a fixed j ∈ {1,2, . . . , J }. Without loss of generality, we as-
sume that Cj = 1, by properly normalizing the inequality (Rx)j ≤ Cj . In this case,
Rji ≤ 1 for all i, since for each i ∈ {1,2, . . . ,N}, ei ∈ S ⊂ 〈S〉, and satisfies the
constraint (Rei )j = Rji ≤ Cj = 1.

Now consider the following single-server queuing system. The arrival process is
given by the sum

∑N
i=1 RjiAi(·), so that arrivals across time slots are independent,

and that in each time slot, the amount of work that arrives is
∑N

i=1 Rjiai , where ai

is an independent Poisson random variable with mean λi , for each i. Note that the
arriving amount in a single time slot does not have to be integral. Note also that∑N

i=1 Rjiλi = ρ̃j < 1, since ρ(λ) = maxj ρ̃j < 1. In each time slot, a unit amount
of service is allocated to the total workload in the system. Then, for this system,
the workload process W(·) satisfies

W(τ + 1) = [
W(τ) − 1

]+ +
N∑

i=1

Rjiai(τ ),

where ai(τ ) is the number of arrivals to queue i in the original system in time
slot τ . We make two observations for this system. First, W(·) is stochastically
dominated by

∑N
i=1 RjiQi(·), where Qi(·) is the size of queue i in the original

system, under any online scheduling policy. This is because for all schedules σ ∈
S , σ satisfies Rσ ≤ C, and hence

∑N
i=1 Rjiσi ≤ Cj = 1 for every σ ∈ S . Second,

since Rji ≤ 1 for all i,
∑N

i=1 RjiQi(·) is stochastically dominated by
∑N

i=1 Qi(·).
Thus we have

lim inf
L→∞

1

L
logPπ0

(∑
i

Qi ≥ L

)
≥ lim inf

L→∞
1

L
logP

(
W(∞) ≥ L

)
.

We now show that

lim inf
L→∞

1

L
logP

(
W(∞) ≥ L

) ≥ −θ∗
j ,
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where θ∗
j is the unique positive solution of the equation

N∑
i=1

λi

(
eRjiθ − 1

) = θ.

Consider the log-moment generating function (log-MGF) of
∑N

i=1 Rjiai , the ar-
riving amount in one time slot. Since ai is a Poisson random variable with mean
λi for each i, its moment generating function is given by

f (θ) = exp

(
N∑

i=1

λi

(
eRjiθ − 1

))
.

Hence the log-MGF is

logf (θ) =
N∑

i=1

λi

(
eRjiθ − 1

)
.

By Theorem 1.4 of [13],

lim
L→∞

1

L
logP

(
W(∞) ≥ L

) = −θ∗
j ,

where θ∗
j = sup{θ > 0 : logf (θ) < θ}. Since logf (θ) − θ is strictly convex, θ∗

j

satisfies
N∑

i=1

λi

(
e
Rjiθ

∗
j − 1

) = θ∗
j .

j ∈ {1,2, . . . , J } is arbitrary, so

lim inf
L→∞

1

L
logPπ0

(∑
i

Qi ≥ L

)
≥ − min

j=1,2,...,J
θ∗
j .

�

For general switched networks, the lower bound above need not match the
tail exponent achieved under our policy [cf. (29)]. However, for a wide class of
switched networks, these two quantities are equal. The following corollary of
Lemma 5.3 is immediate.

COROLLARY 5.4. Consider a switched network as described in Lemma 5.3,
with scheduling set S and admissible region {x ∈ [0,1]N : Rx ≤ 1}. If for all j

and i, Rji ∈ {0,1}, then our policy achieves optimal tail exponent, for any strictly
admissible arrival-rate vector λ.

PROOF. Let λ ∈R
N+ be strictly admissible, that is, Rλ < 1. Let ρ̃j = ∑

i Rjiλi

for each j , and let ρ = ρ(λ) be the system load induced by λ. Consider the θ∗
j in
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Lemma 5.3. When Rji ∈ {0,1} for all j , and i, θ∗
j is the unique positive solution

of the equation

ρ̃j

(
eθ − 1

) = θ

for each j . Using the relation ρ = maxj ρ̃j , we see that minj θ∗
j is the unique

positive solution of the equation

ρ
(
eθ − 1

) = θ.

Comparing this with equation (29) of Theorem 5.2, we see that our policy achieves
the optimal tail exponent. �

Consider an n × n input-queued switch, defined in Section 2.4, and with the
admissible region described by (13). By Corollary 5.4, it is clear that the tail expo-
nent in input-queued switches is optimal under our policy. Moreover, input-queued
switches are not the only network model that satisfies the condition stated in Corol-
lary 5.4. For example, consider the independent-set model of a wireless network.
When the underlying interference graph is bipartite, it is easy to see that the ad-
missible region is characterized by inequalities of the form xi + xj ≤ 1 over all
edges (i, j) of the graph, and xi ≤ 1 for isolated nodes i. More generally, when
the underlying graph is perfect, inequality constraints characterizing the admissi-
ble region take the form

∑
i xi ≤ 1, where the summation is over all vertices of a

clique. This latter fact follows from a proof of the weak perfect graph theorem, see,
for example, Theorem 12.1.2 in [22]. Thus the incidence matrix R has all entries
in {0,1}, and the tail exponent under our policy is optimal for this model.

Optimality in input-queued switches. Here we argue the optimality of our pol-
icy for input-queued switches. As discussed above, the scaling of tail exponent is
optimal under our policy for input-queued switches. We would argue the optimal
scaling of the average total queue size under our policy for input-queued switches.
To that end, as argued in Shah, Tsitsiklis and Zhong [29], when all input and out-
put ports approach critical load, the average total queue size under any policy for
input-queued switch must scale at least as fast as

√
N/(1 − ρ), for any n-port

switch with N = n2 queues. For completeness, we include the proof for this lower
bound here. As in Section 2.4, we use double indexing.

LEMMA 5.5. Consider an n-port input-queued switch, with an arrival rate
vector λ. Suppose that the loads on all input and output ports are ρ, that is,∑n

k=1 λk,� = ∑
m λ�,m = ρ, for all � ∈ {1,2, . . . , n}, where ρ ∈ (0,1). Consider

any policy under which the queue-size process has a well-defined limiting station-
ary distribution, and let this distribution be denoted by π0. Then under π0, we
must have

Eπ0

[
n∑

k,�=1

Qk,�

]
≥ nρ

2(1 − ρ)
.
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PROOF. We consider the sums of queue sizes at each output port, that is, the
quantities

∑n
k=1 Qk,� for each � ∈ {1,2, . . . , n}. Since at most one packet can de-

part at each time slot,
∑n

k=1 Qk,� stochastically dominates the queue size in an
M/D/1 system, with arrival rate ρ and deterministic service rate 1. Therefore, for
each � ∈ {1,2, . . . , n},

Eπ0

[
n∑

k=1

Qk,�

]
≥ ρ

2(1 − ρ)
.

Here, ρ
2(1−ρ)

is the expected queue size in steady state in an M/D/1 system. Sum-
ming over � gives us the desired bound. �

The optimality in terms of the average total queue size is a direct consequence
of Theorem 5.2 and Lemma 5.5.

COROLLARY 5.6. Consider the same setup as in Lemma 5.5. Then in the
heavy-traffic limit ρ → 1, our policy is 2-optimal in terms of the average total
queue size. More precisely, consider the expected total queue size in the diffusion
scale in steady state, that is, (1 − ρ)�Q. Then

lim sup
ρ→1

(1 − ρ)�Q ≤ n

under our policy, and

lim inf
ρ→1

(1 − ρ)�Q ≥ n

2

under any other policy.

PROOF. Lemma 5.5 implies that

lim inf
ρ→1

(1 − ρ)�Q ≥ n

2

under any policy. For the upper bound, note that by Theorem 5.2, under our policy,

�Q ≤ J

2(1 − ρ)
+ (N + 2)K.

For input-queued switches, J ≤ 2n, as remarked in Section 5.2, N = n2 and
K = n. Therefore, we have that under our policy, the expected total queue size
satisfies

�Q ≤ n

1 − ρ
+ (

n2 + 2
)
n.(33)

Now consider the steady-state heavy-traffic scaling (1 − ρ)Q. We have that

(1 − ρ)�Q ≤ n + (1 − ρ)
(
n2 + 2

)
n.(34)
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The term (1 − ρ)(n2 + 2)n goes to zero as ρ → 1, and hence under our policy,

lim sup
ρ→1

(1 − ρ)�Q ≤ n. �

Our policy is not optimal in terms of the average total queue size, in general
switched networks. In cases where J � N , the moment bounds for the maximum-
weight policy gives tighter upper bounds. For further discussion, see Section 6.

5.3. Proof of Theorem 5.2. The proof is divided into three parts. The first part
describes a sample-path-wise relation between Q(·) and W(·), the residual work-
load vector in BN, which states that Q(·) and W(·) differ only by at most a constant
at all times. Note that this domination is a distribution-free statement. The second
part utilizes this fact to establish the positive recurrence of the SN Markov chain.
The third part, as a consequence of the first two parts, and using Theorem 4.1,
establishes the quantitative claims in Theorem 5.2.

Part 1. Dominance. We start by establishing that the queue sizes Q(·) of SN
are effectively dominated by the workloads W(·) of BN at all times. We state this
result formally in Proposition 5.9, which is a consequence of Lemmas 5.7 and 5.8
below.

LEMMA 5.7. Consider the evolution of queue sizes in both BN and SN net-
works fed by identical arrival process. Initially, Q(0) = M(0) = 0. Let W(τ ) =
(Wi(τ )) denote the amount of unfinished work in all N queues under the BN net-
work at time τ . Then for any τ ≥ 0 and 1 ≤ i ≤ N ,

Wi(τ) ≤ Qi(τ) ≤ Wi(τ) + Di(τ),(35)

where D(τ ) = �SFA(τ ) − B(τ ) is as described in Section 5.1.

PROOF. Consider any i ∈ {1,2, . . . ,N} and τ ≥ 0. From (4), in SN,

Qi(τ) = Ai(τ ) − Bi(τ ) + Zi(τ ),(36)

where Zi(τ ) is the cumulative amount of idling at the ith queue in SN. Similarly
in BN,

Wi(τ) = Ai(τ ) − �SFA
i (τ ) + Ẑi(τ ),(37)

where Ẑi(τ ) is the cumulative amount of idling for the ith queue in BN. Since by
construction, D(τ ) = �SFA(τ ) − B(τ ), and D(τ ) ≥ 0, we have that

Bi(τ ) ≤ �SFA
i (τ ) ≤ Bi(τ ) + Di(τ).(38)



2230 D. SHAH, N. S. WALTON AND Y. ZHONG

By definition, the instantaneous rate allocation to the ith queue satisfies
d

dt+ �SFA
i (t) = 0 if Wi(t) = 0 [equivalently, if Mi(t) = 0] for any t ≥ 0. There-

fore, Ẑi(τ ) = 0, and Wi(τ) = Ai(τ )−�SFA
i (τ ). On the other hand, by Skorohod’s

map,

Zi(τ ) = sup
0≤s≤τ

[
Bi(s) − Ai(s)

]+
≤ sup

0≤s≤τ

[
�SFA

i (s) − Ai(s)
]+(39)

= Ẑi(τ ) = 0,

hence for all i and τ , Zi(τ ) = 0, and Qi(τ) = Ai(τ ) − Si(τ ). It then follows that

Qi(τ) = Ai(τ ) − Bi(τ )

≤ Ai(τ ) − �SFA
i (τ ) + Di(τ)(40)

= Wi(τ) + Di(τ)

and

Wi(τ) = Ai(τ ) − �SFA
i (τ )

(41)
≤ Ai(τ ) − Bi(τ ) = Qi(τ).

Inequalities (40) and (41) together imply (35). �

LEMMA 5.8. Let D(τ ) be the same as in Lemma 5.7. Then, for all τ ≥ 0,
ρ(D(τ )) ≤ N + 2. In particular,∑

i

Di(τ ) ≤ K(N + 2) where K = max
σ∈S

∑
i

σi .(42)

PROOF. This result is established as follows. First, observe that D(0) = 0 and
therefore ρ(D(0)) = 0. Next, we show that ρ(D(τ + 1)) ≤ ρ(D(τ )) + 1. That
is, ρ(D(·)) can at most increase by 1 in each time slot. And finally, we show
that ρ(D(·)) cannot increase once it exceeds N + 1. That is, if ρ(D(τ )) ≥ N + 1,
then ρ(D(τ + 1)) ≤ ρ(D(τ )). This will complete the proof.

We start by establishing that ρ(D(·)) increases by at most 1 in unit time. By
definition,

D(τ + 1) = �SFA(τ + 1) − B(τ + 1)

= �SFA(τ ) − B(τ ) + (
�SFA(τ + 1) − �SFA(τ ) − dB(τ )

)
(43)

= D(τ ) + d�SFA(τ ) − dB(τ )

= (
D(τ ) − dB(τ )

) + d�SFA(τ ),
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where d�SFA(τ ) = �SFA(τ + 1) − �SFA(τ ). As remarked earlier, dB(τ ) ≤ D(τ )

componentwise. Therefore, by (11) it follows that

ρ
(
D(τ + 1)

) ≤ ρ
(
D(τ ) − dB(τ )

) + ρ
(
d�SFA(τ )

)
.

Note that ρ(d�SFA(τ )) ≤ 1 because the instantaneous service rate under SFA
is always admissible. Since D(τ ) ≥ D(τ ) − dB(τ ) ≥ 0, any feasible solution to
PRIMAL(D(τ )) is also feasible to PRIMAL(D(τ ) − dB(τ )), and hence

ρ
(
D(τ ) − dB(τ )

) ≤ ρ
(
D(τ )

)
.

It follows that

ρ
(
D(τ + 1)

) ≤ ρ
(
D(τ )

) + 1.(44)

Next, we shall argue that if ρ(D(τ )) ≥ N + 1, then ρ(D(τ + 1)) ≤ ρ(D(τ )). To
that end, suppose that ρ(D(τ )) ≥ N + 1. Now 1

ρ(D(τ ))
D(τ ) ∈ 〈S〉. Note that 〈S〉

is a convex set in a N -dimensional space with extreme points contained in S .
Therefore, by Carathéodory’s theorem, 1

ρ(D(τ ))
D(τ ) can be written as a convex

combination of at most N + 1 elements in S . That is, there exists αk ≥ 0 with∑N+1
k=1 αk = 1, and σ k ∈ S , k ∈ {1,2, . . . ,N + 1}, such that

1

ρ(D(τ ))
D(τ ) =

N+1∑
k=1

αkσ
k.(45)

Therefore, there exists some k∗ ∈ {1,2, . . . ,N + 1}, such that αk∗ ≥ 1/(N + 1).
Since ρ(D(τ )) ≥ N +1, ρ(D(τ ))αk∗ ≥ 1. That is, D(τ ) can be written as a nonneg-
ative combination of elements from S with one of them, σ k∗

, having an associated
coefficient that satisfies ρ(D(τ ))αk∗ ≥ 1, as required. In this case, we have

D(τ ) − σ k∗ =
N+1∑

k=1,k �=k∗
ρ

(
D(τ )

)
αkσ

k + (
ρ

(
D(τ )

)
αk∗ − 1

)
σ k∗

.(46)

Therefore,

ρ
(
D(τ ) − σ k∗) ≤ ρ

(
D(τ )

) − 1.(47)

Our scheduling policy chooses such a schedule, that is, σ k∗
; that is, dB(τ ) = σ k∗

.
Therefore,

D(τ + 1) = D(τ ) − σ k∗ + d�SFA(τ ).(48)

By another application of (11) it follows that

ρ
(
D(τ + 1)

) ≤ ρ
(
D(τ ) − σ k∗) + ρ

(
d�SFA(τ )

)
≤ ρ

(
D(τ )

) − 1 + 1,(49)

= ρ
(
D(τ )

)
,
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where again we have used the fact that ρ(d�SFA(τ )) ≤ 1, due to the feasibility of
SFA policy and (47). This establishes that ρ(D(τ )) ≤ N + 2 for all τ ≥ 0. That is,
for each τ ≥ 0, there exists ασ ≥ 0 for all σ ∈ S ,

∑
σ ρ(D(τ ))ασ ≤ N + 2 and

D(τ ) ≤ ∑
σ

ασ σ .(50)

Therefore, ∑
i

Di(τ ) = D(τ ) · 1 ≤ ∑
σ

ρ
(
D(τ )

)
ασ σ · 1

(51)

≤
(∑

σ

ρ
(
D(τ )

)
ασ

)(
max
σ∈S

∑
i

σi

)
≤ (N + 2)K,

where K = maxσ∈S
∑

i σi . This completes the proof of Lemma 5.8. �

Lemmas 5.7 and 5.8 together imply the following proposition.

PROPOSITION 5.9. Let Q(·), W(·) and M(·) be as in Lemma 5.7. Then

N∑
i=1

Qi(τ) ≤
N∑

i=1

Wi(τ) + K(N + 2) ≤
N∑

i=1

Mi(τ) + K(N + 2),(52)

where K = maxσ∈S(
∑N

i=1 σi).

PROOF. We obtain the bounds of (52) by summing inequality (35) over i ∈
{1,2, . . . ,N}, and using bound (42). �

Part 2. Positive recurrence. We start by defining the Markov chain describing
the system evolution under the policy of interest. There are essentially two systems
that evolve in a coupled manner under our policy: the virtual bandwidth-sharing
network BN and the switched network SN of interest. These two networks are
fed by the same arrival processes which are exogenous and Poisson (and hence
Markov). The virtual system BN has a Markovian state consisting of the pack-
ets whose services are not completed, represented by the vector M(·), and their
residual services. The residual services of Mi(·) packets queued on route i can be
represented by a nonnegative, finite measure μi(·) on [0,1]: unit mass is placed at
each of the points 0 ≤ s1, . . . , sMi(t) ≤ 1 if the unfinished work of Mi(t) packets
are given by 0 < s1, . . . , sMi(t) ≤ 1.

We now consider a Markovian description of the network SN in discrete time:
let X(τ ) be the state of the system defined as

X(τ ) = (
M(τ ),μ(τ ),Q(τ ),D(τ )

)
,(53)

where (M(τ ),μ(τ )) represents the state of BN at time τ , Q(τ ) is the vector of
queue sizes in SN at time τ and D(τ ) is the “difference” vector maintained by
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the scheduling policy for SN, as described in Section 5.1. Observe that the state
X(τ + 1) is a function of the previous state X(τ ) and the independent random
arrival times occurring in the time interval (τ, τ +1) according to our Poisson pro-
cess. This ensures conditional independence between X(τ +1) and X(τ −1) given
X(τ ). So, by standard arguments, X(·) is Markov and, indeed, strong Markov.

We now define the state space X of the Markov chain X(·):
X = Z

N+ ×M
([0,1])N ×Z

N+ ×D,

where M([0,1]) is the space of all nonnegative, finite measures on [0,1] and
where D = (N + 2) · C is the admissible region C expanded by a multiplicative
factor N + 2. The set D is exactly the set of vectors d ∈ RN+ for which ρ(d) ≤
N + 2; cf. (10). Thus, by Lemma 5.8, our process D(·) can never leave the set D.

We endow M([0,1]) with the weak topology, which is induced by the Pro-
horov’s metric. This results in a complete and separable metric (Polish) space. The
set D is a closed convex subset of RN+ . We endow Z+ and D with the obvious
metrics (e.g., �1). The entire product space is endowed with the metric that is the
maximum of metrics on component spaces. The resulting product space is Polish,
on which a Borel σ -algebra, BX, can be defined.

We remark that the Markov chain X(·) need not be recurrent (nor neighborhood
recurrent) for all states in X. However, we can start our Markov chain from any
state x ∈ X and it will hit state 0 in finite expected time. We can then prove that our
Markov chain is positive Harris recurrent. The resulting stationary measure defines
the subset of X for which X(·) is recurrent.

Given the Markovian description X(τ ) of SN, we establish its positive Harris
recurrence in the following lemma.

LEMMA 5.10. Consider a switched network SN with a strictly admissible
arrival rate vector λ, with ρ(λ) < 1. Suppose that at time 0 the system is empty.
Let X(·) be as defined in equation (53). Then X(·) is positive Harris recurrent and
ergodic.

The proof of the lemma is technical, and is deferred to Appendix C. The idea is
that the evolution of BN is not affected by SN, and that BN is, on its own, positive
recurrent. Hence, starting from any initial state, the Markov process (M(·),μ(·))
that describes the evolution of BN, reaches the null state, that is, (M(·),μ(·)) = 0
at some finite expected time. Once BN reaches the null state, it stays at this state for
an arbitrarily large amount of time with positive probability. By our policy, Q(·)
and D(·) can be driven to 0 within this time interval. This establishes that X(·)
reaches the null state in finite expected time and that X(·) is positive recurrent.

Part 3. Completing the proof. The positive recurrence of the Markov chain
X(·) implies that it possesses a unique stationary distribution. Let �W =
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Eπ [∑N
i=1 Wi], where, similarly to Proposition 4.4, Wi is the steady-state work-

load on queue i in BN. By ergodicity, the time average of the total queue size
equals the expected total queue size in steady state, that is, �Q, and similarly for �W .
Therefore, by Proposition 5.9,

�Q ≤ �W + K(N + 2).

By Proposition 4.4,

�W = 1

2

(
J∑

j=1

ρ̃j

1 − ρ̃j

)
.

Thus

�Q ≤ �W + K(N + 2) = 1

2

(
J∑

j=1

ρ̃j

1 − ρ̃j

)
+ K(N + 2).

We now establish the tail exponent in (29). By Proposition 5.9,

N∑
i=1

Wi(τ) ≤
N∑

i=1

Qi(τ) ≤
N∑

i=1

Wi(τ) + K(N + 2),

deterministically and for all times τ . Since K(N + 2) is a constant,
∑N

i=1 Qi(·)
and

∑N
i=1 Wi(·) have the same tail exponent in steady state. By Proposition 4.4,

the tail exponent β(W) of
∑N

i=1 Wi in steady state is given by −θ∗, where θ∗ is
the unique positive solution of the equation ρ(eθ − 1) = θ , so

β(Q) = β(W) = −θ∗.

6. Discussion. We present a novel scheduling policy for a general single-hop
switched network model. The policy, in effect, emulates the so-called Store-and-
forward (SFA) continuous-time bandwidth-sharing policy. The insensitivity prop-
erty of SFA along with the relation of its stationary distribution with that of a
multi-class queuing network leads to the explicit characterization of the stationary
distribution of queue sizes induced by our policy. This allows us to establish the
optimality of our policy in terms of tail exponent for a large class of switched net-
works, including input-queued switches, and the independent-set model of wire-
less networks when the underlying interference graph is perfect, and that with
respect to the average total queue size for a class of switched networks, includ-
ing the input-queued switches. As a consequence, this settles a conjecture stated
in [29]. On the technical end, a key contribution of the paper is creating a discrete-
time scheduling policy from a continuous-time rate allocation policy, and this may
be of independent interest in other domains of applications. We also remark that
the idea of designing a discrete-time policy by emulating a continuous-time policy
is not new; for example, similar emulation schemes have appeared in [9, 12]. Our
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emulation scheme is novel in that it captures the switched network structure where
queues may be served simultaneously. This simultaneity of service is absent from
earlier models.

The switched network model considered here requires the arrival processes to be
Poisson. However, this is not a major restriction, due to a Poissonization trick con-
sidered, for example, in [10] and [17]: all arriving packets are first passed through
a “regularizer,” which emits out packets according to a Poisson process with a rate
that lies between the arrival rate and the network capacity. This leads to the arrivals
being effectively Poisson, as seen by the system with a somewhat higher rate—by
choosing the rate of “regularizer” so that the effective gap to the capacity, that is,
(1 − ρ), is decreased by factor 2.

The scheduling policy that we propose is not optimal for general switched net-
works. For example, in the independent-set model of ad-hoc wireless networks,
there are as many constraints as the number of edges in the interference graph,
which is often much larger than the number of nodes. Under our policy, the average
total queue size would scale with the number of edges, whereas maximum-weight
policy achieves a scaling with the number of nodes.

There are many possible directions for future research. One direction is the
search for low-complexity and optimal scheduling policies. In the context of input-
queued switches, our policy has a complexity that is exponential in N , the num-
ber of queues, because one has to compute the sum of exponentially many terms
at every time instance. This begs the question of finding an optimal policy with
polynomial complexity in N . One candidate is the MW-α policy, α > 0, which
has polynomial complexity, but its optimality appears difficult to analyze. Another
possible candidate could be, as discussed in the Introduction, a randomized version
of proportional fairness. The relationship between SFA and proportional fairness is
explored in [38], where it was formally established that SFA converges to propor-
tional fairness under the heavy-traffic limit, in an appropriate sense. The question
remains whether (a version of) proportional fairness is optimal for input-queued
switches.

Another interesting direction to pursue has to do the analysis of different lim-
iting regimes. We are interested in two limits: N → ∞, and ρ → 1, where N is
the number of queues, and ρ is the system load. Again, take the example of input-
queued switches. In this paper, we have considered the heavy-traffic limit, that is,
ρ → 1, and show that our policy is optimal. However, if we take the limit N → ∞,
while keeping ρ fixed, then the average total queue-size scales as N3/2, whereas
maximum-weight policy produces a bound of N . A more interesting question is in
the regime where (1−ρ)

√
N remain bounded, and where N → ∞. In this regime,

under our policy, under the maximum-weight policy, and under the batching policy
in [25], the average total queue sizes all scale as O(N3/2). In contrast, the scaling
conjectured in [29] is O(N). It is therefore of interest to see whether the 3/2 bar-
rier can be broken. In [27], the authors device a policy that achieves Nγ scaling,
for some γ ∈ [1,3/2).
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APPENDIX A: PROPERTIES OF SFA

This section proves results stated in Section 4, specifically Theorem 4.1, Propo-
sitions 4.2, 4.3 and 4.4. First, we note that Propositions 4.2 and 4.3 are fairly easy
consequences of Theorem 4.1, and their proofs are included for completeness. We
then prove Proposition 4.4. Theorem 4.1 follows from the work of Zachary [41].

PROOF OF PROPOSITION 4.2. To verify (21), we can calculate both sides of
the equation directly. Note that by definition, m̃j = ∑

i : j∈i m̃j i , so

π̃

({
m̃ :

J∑
j=1

m̃j = L

})
= π̃

({
m̃ :

∑
(j,i)∈K

m̃ji = L

})
.(54)

On the other hand,

π

({
m :

N∑
i=1

mi = L

})

= ∑
m∈Z|I |

+

I

[
N∑

i=1

mi = L

]

(m)




N∏
i=1

λ
mi

i(55)

= 1




∑
m∈Z|I |

+

I

[
N∑

i=1

mi = L

]
(56)

× ∑
m̃∈U(m)

N∏
i=1

λ
mi

i

J∏
j=1

((
m̃j

m̃ji : i � j

) ∏
i : j∈i

(
Rji

Cj

)m̃ji
)

= 1




∑
m∈Z|I |

+

∑
m̃∈U(m)

I

[
N∑

i=1

mi = L

]
(57)

×
J∏

j=1

((
m̃j

m̃ji : i � j

) ∏
i : j∈i

(
Rjiλi

Cj

)m̃ji
)

= 1




∑
m̃∈Z|K|

+

I

[ ∑
(j,i)∈K

m̃ji = L

]
(58)

×
J∏

j=1

((
m̃j

m̃ji : i � j

) ∏
i : j∈i

(
Rjiλi

Cj

)m̃ji
)

= π̃

({
m̃ :

∑
(j,i)∈K

m̃ji = L

})
.(59)
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Equality (55) follows from the definition of π given in (18), (56) follows from the
definition of 
(m) given in (16), (57) follows from the fact that for m̃ ∈ U(m),∑

j : j∈i m̃j i = mi for all i ∈ I , (58) follows from the fact that

∑
m̃∈Z|K|

+ ,m∈Z|I |
+

I

[
N∑

i=1

mi = L,
∑

j : j∈i

m̃j i = mi

]
= I

[ ∑
(j,i)∈K

m̃ji = L

]

and (59) follows from the definition of π̃ given in (20). Equations (54) and (59)
together establish (21). �

PROOF OF PROPOSITION 4.3. We can verify (22) directly. Indeed,

π̃
({m̃j = Lj : j = 1,2, . . . , J })

= 1




∑
m̃∈Z|K|

+

I

[
N∑

i=1

m̃ji = Lj

]
J∏

j=1

((
Lj

m̃ji : i � j

) ∏
i : j∈i

(
Rjiλi

Cj

)m̃ji
)

(60)

= 1




J∏
j=1

( ∑
i : j∈i

Rjiλi

Cj

)Lj

(61)

=
J∏

j=1

(
Cj − ∑

i : i�j Rjiλi

Cj

)( ∑
i : j∈i

Rjiλi

Cj

)Lj

(62)

=
J∏

j=1

(1 − ρ̃j )ρ̃
Lj

j .

Equality (60) follows from the definition of π̃ in (20). Equality (61) collects all

terms in the Newton expansion of the term (
∑

i : i�j
Rjiλi

Cj
)Lj . Equality (62) follows

from the definition of 
. �

PROOF OF PROPOSITION 4.4. Consider
∑N

i=1 Mi , the total number of packets
waiting in BN, in steady state. By Propositions 4.2 and 4.3,

∑N
i=1 Mi has the same

distribution as the sum of J geometric random variables, with parameters 1 −
ρ̃1, . . . ,1 − ρ̃J . Hence,

E

[
N∑

i=1

Mi

]
=

J∑
j=1

ρ̃j

1 − ρ̃j

.

By Theorem 4.1, the individual residual workload in steady state is independent
from the number of packets in the network, and is uniformly distributed on [0, 1].
Thus

E

[
N∑

i=1

Wi

]
= 1

2
E

[
N∑

i=1

Mi

]
= 1

2

J∑
j=1

ρ̃j

1 − ρ̃j

.
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This establishes equation (23).
To establish equation (24), consider the following interpretation of

∑N
i=1 Wi ,

the total residual workload in steady state. By Theorem 4.1,
∑N

i=1 Wi has the same
distribution as

∑M
�=1 U�, where M = ∑N

i=1 Mi , and U� are i.i.d. uniform random
variables on [0,1], all independent from M . We first establish that

lim sup
L→∞

1

L
logP

(
M∑

�=1

U� ≥ L

)
≤ −θ∗,(63)

where θ∗ is the unique positive solution of the equation ρ(eθ − 1) = θ . By
Markov’s inequality, for any θ > 0, we have

P

(
M∑

�=1

U� ≥ L

)
≤ exp(−θL)E

[
exp

(
θ

M∑
�=1

U�

)]

= exp(−θL)E

[
E

[
exp

(
θ

M∑
�=1

U�

)∣∣∣∣∣M
]]

= exp(−θL)E

[(
eθ − 1

θ

)M]
.

For notational convenience, let x = eθ−1
θ

. We now consider the term E[xM ].
Let M̃j be independent geometric random variables with parameter 1 − ρ̃j , j =
1,2, . . . , J . Then M is distributed as

∑J
j=1 M̃j . Thus

E
[
xM] = E

[
x

∑J
j=1 M̃j

] =
J∏

j=1

E
[
xM̃j

] =
J∏

j=1

1 − ρ̃j

1 − ρ̃j x

for any x > 0 with ρx < 1 (note that ρ̃j x < 1 for all j if and only if ρx =
maxj ρ̃j x < 1, by Lemma 2.4). Therefore, for all θ > 0 such that ρx = ρ(eθ −
1)/θ < 1, we have

lim sup
L→∞

1

L
logP

(
M∑

�=1

U� ≥ L

)
≤ lim sup

L→∞
1

L
log

{
exp(−θL)

J∏
j=1

1 − ρ̃j

1 − ρ̃j x

}
= −θ.

Taking the infimum over θ satisfying ρ(eθ −1)/θ < 1, we have established (63),
that is,

lim sup
L→∞

1

L
logP

(
M∑

�=1

U� ≥ L

)
≤ −θ∗.

We now prove the converse inequality. Without loss of generality, suppose that
ρ = ρ̃1, and M̃1 is a geometric random variable with parameter 1−ρ. Then we can
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couple
∑M

�=1 U� and
∑M̃1

�=1 U� on the same probability space so that
∑M

�=1 U� ≥∑M̃1
�=1 U� with probability 1. Thus, it suffices to show that

lim inf
L→∞

1

L
logP

(
M̃1∑
�=1

U� ≥ L

)
≥ −θ∗.

Instead of calculating the quantity directly, consider a M/D/1 queue with load ρ,
under the processor-sharing (PS) policy. Note that for this queuing system, SFA

coincides with the PS policy. By Theorem 4.1,
∑M̃1

�=1 U� is the steady-state distri-
bution of the total residual workload in the system. On the other hand, consider the
same queuing system under a FIFO policy. Since the workload is the same under

any work-conserving policy,
∑M̃1

�=1 U� is also the steady-state distribution of the to-
tal workload in this system, which we denote by WFIFO. By Theorem 1.4 of [13],
we can characterize 1

L
logP(WFIFO ≥ L) as follows. Let f (θ) = logE[eθX], where

X is a Poisson random variable with parameter ρ. Then we have

lim
L→∞

1

L
logP(WFIFO ≥ L) = −θ∗,

where θ∗ = sup{θ > 0 :f (θ) < θ}. It is a simple calculation to see that f (θ) =
ρ(eθ − 1), so θ∗ > 0 satisfies f (θ∗) = θ∗. With this lower bound and the upper
bound (63), we have established (24). �

We now provide justifications for Theorem 4.1. Consider a bandwidth-sharing
network model as described in Section 4. Instead of having packets requiring a
unit amount of service, suppose each route i packet has a service requirement
that is independent identically distributed with distribution μi and mean 1. We
note that such bandwidth-sharing networks are a special case of the processor-
sharing (PS) queuing network model, as considered by Zachary [41]. In particular,
a bandwidth-sharing network is a processor-sharing network, where network jobs
depart the network after completing service. General, insensitivity results for the
bandwidth-sharing networks follow as a consequence of the work of Zachary [41].

Following Zachary [41], for i ∈ {1,2, . . . ,N}, we define the probability distri-
bution μ̄i to be the stationary residual life distribution of the renewal process with
inter-event distribution μi . That is, if μi has cumulative distribution function F ,
then μ̄i has distribution function G given by

G(x) = 1 −
∫ ∞
x

(
1 − F(y)

)
dy, x ≥ 0.

Note that if the service requests are deterministically 1, that is, μi is the distribution
of the deterministic constant 1, then μ̄i is a uniform distribution on [0,1], for all
i ∈ {1,2, . . . ,N}.
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Insensitive rate allocation. Consider a bandwidth-sharing network described
above, with rate allocation φ(·). A Markovian description of the system is given by
a process Y(t) which contains the queue-size vector M(t) along with the residual
workloads of the set of packets on each route. If the Markov process Y(t) admits
an invariant measure, then it induces an invariant measure π on the process M(t).
Such π , when it exists, is called insensitive if it depends on the statistics of the
arrivals and service requests only through the parameters λ = (λi)

N
i=1; in particu-

lar, it does not depend on the detailed service distributions of incoming packets.
A rate allocation φ(·) = (φi(·))Ni=1 is called insensitive if it induces an insensitive
invariant measure π on M(t).

It turns out that if the rate allocation φ satisfies a balance property, then it is
insensitive.

DEFINITION A.1 (Definition 1, [4]). Consider the bandwidth-sharing net-
work just described. The rate allocation φ(·) is balanced if there exists a function

 :ZN →R+ with 
(0) = 1, and 
(m) = 0 for all m /∈ Z

N+ , such that

φi(m) = 
(m − ei )


(m)
for all m ∈ Z

N+, i ∈ {1,2, . . . ,N}.(64)

Bonald and Proutiére [3] proved that a balanced rate allocation is insensitive
with respect to all phase-type service distributions. Zachary [41] showed that a
balanced rate allocation is indeed insensitive with respect to all general service
distributions. He also gave the characterization of the distribution of the residual
workloads in steady state.

THEOREM A.2 (Theorem 2, [41]). Consider the bandwidth-sharing network
described earlier. A measure π on Z

N+ is stationary for M(t) and is insensitive to
all service distributions with mean 1, if and only if it is related to the rate allocation
φ as follows:

π(m)φi(m) = π(m − ei )λi for all m ∈ Z
N+, i ∈ {1,2, . . . ,N},(65)

where we set π(m − ei ) to be 0, if mi = 0. Consequently, π is given by expression

π(m) = 
(m)

N∏
i=1

λ
mi

i .(66)

Furthermore, if π can be normalized to a probability distribution, then Y(t) is pos-
itive recurrent, and in steady state, the residual workload of each route-i packet
in the network is distributed as μ̄i , independent from π , and is conditionally inde-
pendent from the residual workloads of other packets, when we condition on the
number of packets on each route of the network.
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Note that conditions (64) and (65) are equivalent. Suppose that φ(·) satis-
fies (64), then an invariant measure π is given by (66). Substituting equation (66)
into equation (64) gives equation (65). Conversely, if equation (65) is satisfied,
then we can just set 
(m) = π(m)/

∏N
i=1 λ

mi

i , and equations (64) and (66) are
satisfied.

PROOF OF THEOREM 4.1. Theorem 4.1 is now a fairly easy consequence of
Theorem A.2. Consider a bandwidth-sharing network described in Section 4. The
additional structures are the additional capacity constraints (14), and that arriving
packets only require an unit amount of service, deterministically. The capacity
constraints (14) impose the necessary condition for stability, given by (15). Recall
that all arrival rate vectors λ that satisfy Rλ < C are called strictly admissible.

Consider the bandwith vector φ as defined by (16) and (17). As remarked earlier,
φ is admissible, that is, it satisfies the capacity constraints (14). It is balanced by
definition, and hence is insensitive by Theorem A.2. Thus, it induces an stationary
measure π on the queue-size vector M(t), given by (66). For a strictly admissible
arrival rate vector λ, the measure is finite, with the normalizing constant 
 given
by (19). Hence, we can normalize π to obtain the unique stationary probability
distribution for M(t).

Finally, using Theorem A.2 and the fact that all service requests are determinis-
tically 1, we see that the stationary residual workloads are all uniformly distributed
on [0,1] and independent. �

APPENDIX B: PROOF OF LEMMA 5.1

Let D ≥ 0, and let (α̃σ )σ∈S be an optimal solution to the program PRIMAL(D).
Then α̃σ ≥ 0 for all σ ∈ S , D ≤ ∑

σ∈S α̃σ σ , and
∑

σ∈S α̃σ = ρ(D). We will con-
struct (ασ )σ∈S from (α̃σ )σ∈S such that ασ ≥ 0 for all σ ∈ S , D = ∑

σ∈S ασ σ and∑
σ∈S ασ = ρ(D).
If D = ∑

σ∈S α̃σ σ , then there is nothing to prove. Thus, suppose that there ex-
ists i such that Di <

∑
σ∈S α̃σσi . We now modify (α̃σ )σ∈S to reduce the “gap”

between
∑

σ∈S α̃σσi and Di .
Indeed, since

∑
σ∈S α̃σσi > Di ≥ 0, there is some σ̃ ∈ S such that σ̃i = 1, and

α̃σ̃ > 0. We now modify (α̃σ ) by reducing α̃σ̃ by a positive amount

ε = min(α̃σ̃ , θi − Di),

increasing α̃σ̃−ei
by ε > 0, and keeping all other α̃σ the same (σ̃ − ei ∈ S by

Assumption 2.1). Then it is easy to check that
∑

σ∈S α̃σσi − Di is reduced by ε,∑
σ∈S α̃σσ� −D� remains the same for all � �= i, (α̃σ )σ∈S remain nonnegative and

we still have
∑

σ∈S α̃σ = ρ(D).
By repeating this procedure finitely many times, it follows that we can modify

(α̃σ )σ∈S to make it satisfy (26). This completes the proof of Lemma 5.1.
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APPENDIX C: PROOF OF LEMMA 5.10

First we note that by Theorem 4.1, BN is positive recurrent under the SFA pol-
icy, if ρ(λ) < 1. Starting from any initial state, it also has a strictly positive prob-
ability of reaching the null-state (M(·),μ(·)) = 0 at some finite time. Since the
evolution of the virtual system BN does not depend on that of SN, it is, on its own,
positive recurrent. Next we argue the positive recurrence of the entire network state
building upon this property of BN.

Sufficient conditions to establish positive Harris recurrence and ergodicity of a
discrete-time Markov chain X(τ ) with state space X are given by the following
(see, [1], pages 198–202, and [11], Section 4.2, for details):

(C1) There exists a bounded set A ∈ BX such that

Px(TA < ∞) = 1 for any x ∈ X(67)

sup
x∈A

Ex[TA] < ∞.(68)

In the above, the stopping time TA = inf{τ ≥ 1 : X(τ ) ∈ A}; notation Px(·) ≡
P(·|X(0) = x) and Ex[·] ≡ E[·|X(0) = x].

(C2) Given A satisfying (67)–(68), there exists x∗ ∈ X, finite � ≥ 1 and δ > 0
such that

Px
(
X(�) = x∗) ≥ δ for any x ∈ A(69)

Px∗
(
X(1) = x∗)

> 0.(70)

Next, we verify conditions (C1) and (C2). For the set of points where BN is
empty, say A, condition (C1) follows immediately from the following facts: (a) BN
is positive recurrent and hence (M(·),μ(·)) returns to 0 state in finite expected time
starting from any finite state; (b) D(·) is always bounded due to Lemma 5.8; and
(c) Q(·) returns to the bounded set

∑
i Qi(·) ≤ K(N + 2) whenever M(·) = 0 due

to Lemma 5.7. Condition (C2) can be verified for the null-state x∗ = 0 as follows:
(a) (M(·),μ(·)) returns to the null state with positive probability; (b) given this,
it remains there for further K(N + 2) + 1 time with strictly positive probability
due to Poisson arrival process; (c) in this additional time K(N + 2) + 1, the Q(·)
and D(·) are driven to 0. To see (c), observe that when M(·) = 0, D(·) ∈ Z

N+ . By
construction of our policy and Assumption 2.1 on structure of S , it follows that
if M(·) continues to remain 0, the

∑
i Di(·) is reduced by at least unit amount till

D(·) = 0; at which moment Q(·) reaches 0 as well. Since
∑

i Di(·) ≤ K(N + 2)

by Lemma 5.8, it follows that M(·) need to remain 0 for this to happen only for
K(N + 2) + 1 amount of time. This completes the verification of the conditions
(C1) and (C2). Consequently, we establish that the network Markov chain, repre-
sented by X(·), is positive recurrent and ergodic.
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