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Bayesian Sample Size Determination for

Binomial Proportions

Cyr E. M’Lan∗, Lawrence Joseph† and David B. Wolfson‡

Abstract. This paper presents several new results on Bayesian sample size deter-
mination for estimating binomial proportions, and provides a comprehensive com-
parative overview of the subject. We investigate the binomial sample size problem
using generalized versions of the Average Length and Average Coverage Criteria,
the Median Length and Median Coverage Criteria, as well as the Worst Outcome
Criterion and its modified version. We compare sample sizes derived from highest
posterior density and equal-tailed credible intervals. In some cases, we derive, for
the first time, closed form sample size formulae, and where this is not possible,
we describe various numerical approaches. These range in complexity from Monte
Carlo simulations to more sophisticated curve fitting techniques, third order an-
alytic approximations, and exact, but more computationally-intensive, methods.
We compare the accuracy and efficiency of the different computational methods for
each of the criteria and make recommendations about which methods are preferred.
Finally, we consider, again for the first time, issues surrounding prior robustness
on the choice of sample size. Examples are given throughout the text.

Keywords: Bayesian design, binomial distribution, Monte Carlo numerical approx-
imation, robustness, sample size determination.

1 Introduction

Sample size determination for accurate estimation of a binomial parameter is arguably
the most common design situation faced by statisticians. For example, consider de-
signing a study to estimate the prevalence of osteoporosis in women aged 80 and older.
Suppose that a previous study (Kmetic et al 2002) has provided an estimate of 42%,
with 95% credible interval of (28%, 56%), but it is now desired to estimate the accuracy
to within a total interval width of 5% (that is, ± 2.5%). What should the sample size
be?

A large literature exists for this problem, including both frequentist (Lachin 1981,
Lemeshow et al. 1990) and Bayesian approaches (Adcock 1988, Pham-Gia and Turkkan
1992, Joseph, Wolfson and du Berger 1995, Adcock 1997). From a frequentist viewpoint,
the most common methods are based on confidence interval formulae derived from
normal approximations to the binomial distribution, and require a point estimate of
the binomial parameter as input into the sample size formula. There are at least three
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drawbacks to these methods: First, the binomial parameter will almost never be known
with high accuracy at the planning stage of the experiment, since if it were accurately
known the experiment would not need to be carried out. Therefore, one of the most
crucial inputs cannot be accurately known, casting doubt on the sample size estimated.
Second, the normal approximation is well-known to be inaccurate for small sample sizes,
and even for large sample sizes when the binomial parameter is near 0 or 1 (Brown,
Cai and DasGupta 2001). Finally, the sample size formulae are typically for confidence
intervals rather than tolerance intervals, so that there is no probability statement about
how often the desired 95% coverage will be achieved once the data are collected (but
see Satten and Kupper 1990 for a notable exception).

Bayesian sample size methods use prior information about the binomial parameter
rather than a point estimate, and fully account for the uncertainty in the predicted data,
thus offering an attractive alternative to the frequentist formulae. Bayesian methods
can avoid relying on normal approximations by using exact highest posterior density
(HPD) intervals rather than less efficient equal-tailed intervals. However, using Bayesian
methods is not without challenges, both numerical and in choosing from among the
many Bayesian criteria that have appeared in the literature.

This paper presents several new results on Bayesian sample size determination for
estimating binomial proportions, and provides a comprehensive comparative overview
of the subject. Joseph et al. (1995) considered three HPD interval based criteria for
Bayesian binomial sample size determination. We extend this early work considerably
by applying a total of six criteria, generalizing two of those considered by Joseph et al.
(1995), and considering three additional criteria. These criteria are reviewed in Section
2. In Section 3 we present four different methods to compute the various criterion func-
tions, while Section 4 applies these methods to computing the sample sizes themselves,
including providing sample sizes for the osteoporosis study introduced above. For each
criterion, we compare sample sizes derived from highest posterior density to those from
equal-tailed credible intervals. For the first time, closed form sample size formulae are
derived for some cases. In other situations, we describe various numerical approaches,
ranging in complexity from Monte Carlo simulations to more sophisticated curve fitting
techniques, third order analytic approximations, and exact, but more computationally-
intensive, methods. Within each criterion, we compare the accuracy and efficiency of
the different computational techniques, and, case by case, make recommendations about
which methods are preferred. In Section 5, again for the first time, we discuss robustness
of the choice of sample size, both by considering additional criteria, and by defining new
classes of prior distributions. We provide some concluding remarks in the final section.

2 Bayesian sample size criteria for binomial parameters

Let p be the binomial parameter to be estimated based on a sample size of n. For
the rest of this paper, following Joseph et al. (1995), we assume the following prior-
likelihood model: p ∼ Be(a, b), a, b > 0, and xn| p ∼ Bin(n, p), n ≥ 2, where Be(a, b)
indicates a beta distribution with parameters a and b, and Bin(n, p) represents the
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binomial distribution, with parameters n and p. As a result, the marginal predictive
distribution of xn is Beta-Binomial with

pXn
(xn|n, a, b) =

(
n

xn

)
B(a+ xn, n+ b− xn)

B(a, b)
, xn = 0, 1, · · · , n, (1)

where B(a, b) indicates the beta function with parameters a and b. For a given sample
data point xn, the posterior distribution of p, π(p|xn, n, a, b), is Be(a+xn, n+ b−xn).
Let HPDL(xn, n, a, b, l) = (u, v), u < v, be the corresponding highest posterior density
(HPD) interval for p of given length l and let HPDC(xn, n, a, b, 1− α) be an HPD interval

for θ of given posterior coverage 1 − α. Define l?1−α(xn|n, a, b) =

∫

HPDC (xn,n,a,b,1−α)

dp

and α?
l (xn|n, a, b) =

∫

HPDL(xn,n,a,b,l)

π(p|xn, n, a, b) dp to be the actual length and the

actual posterior coverage of an HPD interval of nominal coverage 1 − α and of nominal
length l, respectively.

In this paper we consider the following six Bayesian sample size criteria: the average
length criterion of order k, ALCk, the average coverage criterion of order k, ACCk,
where k is an integer, the worst outcome criterion, WOC, the modified worst outcome
criterion, MWOC, the median length criterion, MLC, and the median coverage crite-
rion MCC. The ALCk, ACCk, MCC, and MLC were recently proposed by M’lan,
Joseph and Wolfson (2006). The ALCk and ACCk are natural extensions of earlier cri-
teria, ALC and ACC discussed by Joseph et al. (1995), while the WOC and MWOC
were discussed by Joseph and Bélisle (1997). These criteria are now briefly reviewed in
our context of binomial sample size calculations.

2.1 The k-th average length criterion, ALCk

The ALCk seeks the minimum n such that
(

n∑

xn=0

{
l?1−α(xn|n, a, b)

}k
pXn

(xn|n, a, b)
)1/k

≤ l, (2)

where pXn
is given by (1). Thus, the ALCk, fixes the posterior coverage of HPD intervals

to be 1−α, and finds the smallest n that provides a k-th mean length of at most l. When
k = 1, the ALCk reduces to the ALC, and the ALC2 is asymptotically equivalent to
the PGT− (ii) criterion of Pham-Gia and Turkkan (1992), based on the marginal mean
posterior variance. We show in Appendix A that ALCk=∞ corresponds to the WOC.

2.2 The k-th average coverage criterion, ACCk

The ACCk finds the minimum sample size n such that

(
n∑

xn=0

{
α?

l (xn|n, a, b)
}k
pXn

(xn|n, a, b)
)1/k

≥ 1 − α . (3)
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In contrast to the ALCk, the ACCk fixes the length of the HPD interval to be l and
determines the smallest n that provides a k-th average posterior coverage of at least
1 − α. When k = 1, the ACCk reduces to the ACC.

2.3 The worst outcome criteria, WOC and MWOC

Stricter than either the ALCk or the ACCk, the WOC and its modified version,
the MWOC (Joseph et al. 1997) guarantee the desired posterior coverage and HPD

length either over all anticipated data sets or over a subset, Sn of possible data sets,
respectively. For the MWOC, Sn could be a 100(1−γ)% credible region of the marginal
predictive distribution, pXn

. Fixing the length at l, the MWOC seeks the minimum n
such that

inf
xn∈Sn

α?
l (xn|n, a, b) ≥ 1 − α , (4)

while the WOC simply sets Sn =
{
0, 1, 2, · · · , n

}
.

It is easy to see that the MWOC is also equivalent to minimizing

sup
xn∈Sn

l?1−α(xn|n, a, b) ≤ l (5)

since both equations (4) and (5) lead to choosing the minimum value of the set N of
sample sizes,

N =

{
n : sup

xn∈Sn

l?1−α(xn|n, a, b) ≤ l, inf
xn∈Sn

α?
l (xn|n, a, b) ≥ 1 − α

}
. (6)

Hence the WOC and MWOC are simultaneously “fixed length” and “fixed cover-
age” criteria. When Sn =

{
0, 1, 2, · · · , n

}
, we can refer to (4) as the WCOC (worst

outcome criterion defined in terms of coverage) and (5) as the WLOC (worst outcome
criterion defined in terms of length). For computational reasons (see section 3), we
prefer formulation (5).

2.4 The median coverage criterion, MCC, and median length crite-

rion, MLC

The median coverage criterion, MCC, seeks the smallest n such that

med0≤xn≤n α
?
l (xn|n, a, b) ≥ 1 − α, (7)

while the median length criterion, MLC, seeks the smallest n such that

med0≤xn≤n l
?
1−α(xn|n, a, b) ≤ l. (8)

Although the above six criteria are defined in terms of HPD intervals which minimize
the sample sizes given 1 − α and l, we also consider easier-to-compute equal-tailed
intervals.
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In the determination of sample sizes based on the credible interval criteria introduced
here, there are two major practical issues: (i) Computation of the criterion function,
and (ii) Determination of the optimal sample size using the criterion function. In the
next two sections, we discuss various approaches to each of these two steps. We begin
the two-stage procedure for sample size computations with a presentation of several
approaches to the computation of the various criterion functions.

3 Computation of Bayesian criterion functions and HPD

intervals for p

3.1 Exact HPD interval computation

Our discussion in this section focusses on computation of exact HPD intervals for p.
Although numerical, the method is “exact” in the sense that one can specify any decimal
accuracy that is desired. Without loss of generality, we discuss cases where a+ xn > 1
and b+ n− xn > 1. All other cases lead to posterior densities which are monotonic or
flat, for which computation of HPD intervals is straightforward.

When the length, l, of the HPD interval is fixed in advance, Corollary B.2 of Appendix
B shows that any HPD interval (p1(xn), p2(xn)) for estimating p satisfies

logit
(
p1(xn)

)
= log

(
exp

{
(a− 1 + xn)

n+ a+ b− 2
$

}
− 1

)
−

log

(
exp ($) − exp

{
(a− 1 + xn)

n+ a+ b− 2
$

})
, (9)

and logit
(
p2(xn)

)
= logit

(
p1(xn)

)
+$ for some $ > 0, where logit(p) = log

(
p

1 − p

)
.

To emphasize the dependence of the interval (p1(xn), p2(xn)) on $, we write
(p1(xn, $), p2(xn, $)). To determine the optimal $?, one can find the zero of the

function Gp($) =
[
p2(xn, $) − p1(xn, $) − l

]2
via the Newton-Raphson method. Ex-

ploitation of the form in (9) leads to a considerable gain in efficiency over the generic
HPD interval calculations previously used (Joseph et al, 1995; Hashemi et al., 1997). Let
α?

l (xn|n, a, b) be the coverage of the HPD interval of length l corresponding to xn. We
may repeat these HPD coverage calculations for each xn = 0, 1, · · · , n, anticipating their
use in calculating the various criterion functions.

When the coverage, 1 − α, of the HPD interval is fixed in advanced, one only needs

to find the zero of the function Gp($) =
[
Fp

(
p2(xn, $)

)
−Fp

(
p1(xn, $)

)
− (1−α)

]2
to

determine the value of $? which guarantees a coverage of 1−α. Let l?1−α(xn|n, a, b) be
the length of the HPD interval of fixed coverage 1 − α, (p1(xn, $

?), p2(xn, $
?)). Again,

we will typically need to repeat these calculations of HPD lengths for xn = 0, 1, · · · , n.
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Once the HPD intervals have been determined for each xn = 0, 1, · · · , n, the crite-
rion function is obtained as some functional of these HPD intervals with respect to the
marginal distribution, pXn

(xn|n, a, b) in (1). For example, we will need to find the av-
erage, or the median, or the worst possible outcome, depending on the criterion used.
More precisely, for the ALCk and the ACCk, one must calculate, respectively,

alck(n, a, b) =
( n∑

xn=0

{
l?1−α(xn|n, a, b)

}k
pXn

(xn|n, a, b)
)1/k

, and

acck(n, a, b) =
( n∑

xn=0

{
α?

l (xn|n, a, b)
}k
pXn

(xn|n, a, b)
)1/k

.

While one has to compute the HPD intervals for each xn = 0, · · · , n, symmetry in the
HPD intervals reduces the set to xn = 0, · · · , (n+ b− a)/2 or xn = (n+ b− a)/2, · · · , n,
the choice depending on which set has more points. A similar symmetrical property
holds for the marginal distribution pXn

(xn|n, a, b). For n large, this amounts to saving
approximately half of the computational load.

3.2 Third order approximations to the length and coverage of HPD

intervals

Rather than computing exact HPD intervals, one can consider first and third order ap-
proximations to credible intervals. First order approximations do not distinguish be-
tween HPD and equal-tailed intervals, leading to larger sample sizes. It is therefore
worthwhile to investigate higher order approximations, as discussed by Welch and Peers
(1963), Peers (1968), and Severini (1991), and Mukerjee and Dey (1993).

Define lHPD1−α(xn|n, a, b) and lEQ1−α(xn|n, a, b) to be the third order approximations of
the length of HPD and equal tailed intervals, respectively. Let z = zα/2 be the upper
α/2 point of the standard normal distribution and let N = n+ a+ b be the “extended”
sample size, that is, the sum of the sample size and prior parameters. A modification
of the third order approximation in Peers (1968) leads to the following result:

lHPD1−α(xn|n, a, b) =
2

N
√
v1(xn)

{
z − (z3 + 3z)

v2(xn) − 1

4N
+ z

v2(xn)

2N
+

5(z3 + 3z)
v2(xn) − 2

18N
− z

v2(xn) − 2

N

}
, (10)

where v1(xn) =
1

xn + a
+

1

n+ b− xn
, and v2(xn) =

n+ b− xn

xn + a
+

xn + a

n+ b− xn
, for

xn = 0, 1, · · · , n. The details are laid out in appendix C.

A third order estimate of the coverage of an HPD interval of length l, αHPD
l (xn|n, a, b),

can then be obtained by first solving the third degree polynomial equation,
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lHPD1−α(xn|n, a, b) = l, in z and recovering the coverage by setting αHPD
l (xn|n, a, b) =

2Φ−1(z) − 1. The third order approximate lengths lHPD1−α(xn|n, a, b) and the coverages
αHPD

l (xn|n, a, b) are used in place of l?1−α(xn|n, a, b) and α?
l (xn|n, a, b), respectively, in

the expressions for the criterion functions.

A third order approximation for equal-tailed intervals is given by

lEQ1−α(xn|n, a, b) = lHPD1−α(xn|n, a, b) + 4z
v2(xn) − 2

9N2

√
v1(xn)

, (11)

and hence similar methods apply to this case.

3.3 HPD interval computation via Monte Carlo methods

General Monte Carlo techniques for approximating HPD intervals for a given coverage
are presented by Tanner (1993), Hyndman (1996), and Chen and Shao (1999). The
technique by Chen and Shao (1999) is the most efficient, carrying a computational load
similar to equal-tailed intervals. The method applies when the posterior distribution is
unimodal, the case here. For our beta prior-binomial likelihood model, the algorithm
can be summarized as follows: Simulate M independent random values, p1, · · · , pM ,
from Be(a + xn, n + b − xn). Consider the set of all Monte Carlo credible intervals
of coverage 1 − α,

(
p(j), p(j+[(1−α)M ])

)
for j = 1, · · · ,M − [(1 − α)M ], and choose the

interval with the minimum length as an estimate of the HPD interval of fixed coverage
1 − α. As a result, l?1−α(xn|n, a, b) is estimated by

l̂?1−α(xn|n, a, b) = min
1≤j≤M−[(1−α)M ]

(
p(j+[(1−α)M ]) − p(j)

)
.

In the same spirit, when the length of an HPD interval is fixed in advance, M’lan et al.
(2006) proposed estimating the HPD coverage, α?

l (xn|n, a, b), by

α̂?
l (xn|n, a, b) = max

1≤j≤M

#
{
1 ≤ k ≤M : pj ≤ pk ≤ pj + l

}

M
.

Here, one considers all Monte Carlo credible intervals
(
p(j), p(j) + l

)
, j = 1, · · · , n, of

length l and chooses the interval with the largest coverage.

To estimate the criterion functions, alck(n, a, b) and acck(n, a, b) for a given n, first
generate m observations (pi,x

i
n): generate pi ∼ Be(a, b), and then simulate xi

n ∼
Bin(n, pi) for i = 1, · · · ,m. For each xi

n compute l̂?1−α(xi
n|n, a, b) and α̂?

l (x
i
n|n, a, b)

as described above. The following approximations to the criterion functions are then
available:

âlck(n, a, b) =

(
1

m

m∑

i=1

[
l̂?1−α(xi

n|n, a, b)
]k
)1/k

and (12)

âcck(n, a, b) =

(
1

m

m∑

i=1

[
α̂?

l (x
i
n|n, a, b)

]k
)1/k

. (13)
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Applications of these Monte Carlo methods in different settings can be found in
Joseph et al. (1997), Wang and Gelfand (2002), and M’lan et al. (2006). Similar
algorithms can be constructed for the WOC, MWOC, MLC and MCC.

4 Determination of the optimal sample size

In sections 4.1, 4.2, and 4.4, we show how each of the approaches in sections 3.1, 3.2,
and 3.3, respectively, provide different methods of sample size determination. In section
4.3 we provide computationally fast and flexible sample size formulae for ALCk,WOC,
and MLC. We then follow with general guidelines about when to use each method.
Mathematical details are given in Appendix D.

4.1 Use of the exact expressions to the criterion functions

Except for very small n, all criterion functions discussed in Section 2 are strictly mono-
tonic in n, ensuring a unique solution to our sample size problem. This, together with
the asymptotic results in appendix D suggests that a variety of approaches can be used
to compute the sample size. A bisectional search seems sufficient for the ACCk. For
the length criteria, ALC, WLOC, MWOC, and MLC, we recommend using plots
that are ostensibly linearly related to their sample sizes to determine the sample size.
This suggestion relies mainly on the following observations:

• Graph (a) of Figure 1 indicates that there is a linear relationship between
1

alc2(n, a, b)
and n.

• Similar linear relationships seems to hold for
1

wloc2(n, a, b)
and

1

mlc2(n, a, b)
, as

illustrated in graph (b).

These observations suggest determining sample sizes as follows:

1. Estimate the linear function that passes through the points,(
n, 1/(length criterion function)2

)
, by the method of least squares.

2. Equate this regression function to
1

l2
and solve for n.

Similar algorithms can be constructed for the MLC, WLOC, and MWOC.

One clear advantage of this technique over a bisectional search is that the estimated
linear regression function is reusable to determine sample sizes for different values of l.
In addition, the linear regression line displayed in graph (a) of Figure 1 suggests that the
ALC sample size based on the prior parameter (3, 1) is always smaller than that of the
pair (3, 2) for any length l. Graph (b) of Figure 1 suggests that nalc < nmloc < nwoc
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for (a, b) = (1, 1) irrespective of l. We have also observed that the slope of the line
for the criteria WLOC and MLC is independent of (a, b), so again any estimated line
for a given (a, b) can be used for other pairs of prior parameters and for any length.
These observations are supported by Propositions D.3 and D.4 of Appendix D. Another
disadvantage of a bisectional search is that if Monte Carlo estimates are used, the
monotonicity in n of the criterion functions is not preserved.

4.2 Use of the third order approximations to the criterion functions

Instead of using “exact” expressions, one could use the third order approximations given
by (10) to approximate the criterion function. While there can be some loss of accuracy,
there can be considerable gains in running times. For example, for large ALC or ACC
sample sizes, say n = 10, 000, third order approximations can take as little as one
second, compared to 30 minutes for an exact calculation. While 30 minutes may not
be prohibitive, the run times considerably lengthen if prior robustness is a concern (see
Section 5), and there are times when a quick approximation if preferable, for example
during “live” consultations about study design.

Tables 1, 2, and 3 provide comparisons between the sample sizes obtained using
the third order approximations and exact calculations for (a, b) = (1, 1), (2, 2), (3, 3),
(4, 4), (4, 1), (4, 2), and (4, 3). Because the sample size problem is symmetric in a and
b, the sample sizes for (a, b) = (1, 4), (2, 4), and (3, 4) are equal to the sample sizes for
(a, b) = (4, 1), (4, 2), and (4, 3), respectively. Tables 1 and 2 show that all methods per-
form well when the prior distribution for p is concentrated away from the endpoints 0
and 1. Table 3, however, indicates that the accuracy of the third order approximations
is higher than that of the first order approximations, especially for values of p near 0 or
1, where posterior densities for p are highly asymmetric. Unlike the third order approxi-
mations, the first order approximations do not distinguish between HPD and equal-tailed
intervals. Table 3 also indicates that the accuracy of the third order approximation is
particular remarkable when min(a, b) ≥ 2 and when n > a+ b; that is when the sample
size dominates the prior information, a+ b. A limited simulation study has confirmed
this behavior. We have also carried out some preliminary testing of our third order
approximations for non-integer values of a and b, finding that the sample sizes they pro-
vide remain accurate. For example, for a Jeffreys’ prior with (a, b) = (1/2, 1/2), exact
computation and our third order approximation all lead to nalc = 151, 617, 265, 1071
and nacc = 226, 910, 452, 1817 for (1 − α, l) = (.95, .1), (.95, .05), (.99, .1), (.99, .05), re-
spectively.

4.3 Sample size formulae

Propositions D.3 and D.4 suggest the following approximate ALCk, WOC, and MLC
sample size formulae for p:
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Theorem 4.1. For the ALCk, an approximate sample size formula is:

np = 4
z2

α/2

l2

(
B(a+ k/2, b+ k/2)

B(a, b)

)2/k

− a− b, a > 1, b > 1. (14)

Proof. The goal is to approximately solve the equation alck(n, a, b) = l. Equation (23)

in Proposition D.3 in appendix D suggests that alck(n, a, b) ≈
2 zα/2 c

k
p(a, b)√

n+ a+ b
, where

ckp(a, b) = {B(a+ k/2, b+ k/2)/B(a, b)}1/k. Equate
2 zα/2 c

k
p(a, b)√

n+ a+ b
to l and solve for n.

This completes the proof.

Theorem 4.2. For the WOC, an approximate sample size formula is:

np =
z2

α/2

l2
− a− b , a, b > 1. (15)

Proof. Equation (24) in Proposition D.3 in the appendix D suggests that wloc(n, a, b) ≈
zα/2√

n+ a+ b
. Equate zα/2/

√
n+ a+ b to l and solve for n. This completes the proof.

Theorem 4.3. For the MLC, an approximate sample size formula is:

np =
3

4

z2
α/2

l2
− 1

3
(a+ b+ 3) a, b > 1. (16)

Proof. Proposition D.4 in the appendix D suggests that

mlc(n, a, b) ≈ 2zα/2

√
(N + a+ b)(3N − a− b)

16N2(N + 1)
. Solve the approximate equation

(N + a+ b)(3N − a− b)

16N2(N + 1)
=

l2

4 z2
α/2

for n. An expansion of the solution as a Taylor series

yields np =
3

4

z2
α/2

l2
− 1 − 1

3
(a+ b) + o

(
l2

z2
α/2

)
, which completes the proof.

These closed form sample size formulae allow direct comparisons between the dif-
ferent criteria and display how the choice of prior parameters a and b affect the sample
sizes. In addition, these sample size formula can be compared to those arising from

a frequentist approach. For example, we have np + a + b = 4
z2

α/2

l2
a b

(a+ b)(a+ b+ 1)

for the ALC2 and np + a + b =
z2

α/2

l2
for the WOC, while frequentist sample sizes

corresponding to setting p =
a

a+ b
and p =

1

2
are np = 4

z2
α/2

l2
a b

(a+ b)2
and np =

z2
α/2

l2
,

respectively.
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We next discuss how fitting a line through Monte Carlo estimates of the criterion
function values against n can be used to determine sample sizes.

4.4 Sample size determination via curve-fitting of Monte Carlo esti-

mates

The approach described in this section depends on the Monte Carlo estimates of the cri-
terion functions derived in section 3.3. To reduce Monte Carlo errors, Müller and Parmi-
giani (1995) and Müller (1999) advocate fitting local regression curves to Monte Carlo
estimates of functions of interest in Bayesian optimal design. Applying this method
to sample size calculations based on the ACC for example, we first plot the pairs(
ni, α̂

?
l (xni

|ni, a, b)
)

for various ni, randomly generated from an appropriate interval
which includes the optimal sample size. We then fit a smooth curve to these points.
The equation of the local smoothing curve, f(n), describes the relation between the
âcck(ni, a, b) and ni, and solving the equation f(n) = l deterministically in n pro-
vides an estimate of the sample size. We directly fit a local curve through the pairs
(ni, âcck(ni, a, b)) for a grid of appropriately chosen points ni, and use the information
contained in predicted values from the curve to determine the sample size n, as illus-
trated in graph (b) of Figure 2. The Monte Carlo estimates âcck(ni, a, b) are defined in
equation (13). A similar algorithm yields sample sizes for the median coverage criterion
MCC.

For the ALCk we make use of the linear relationship between
1

alc2
k(n, a, b)

and n that

was described in Section 4.1. We then fit a linear regression of the form
1

âlc
2

k(ni, a, b)
=

e1+e2ni, estimate ê1 and ê2 through the method of least squares, and solve the equation

ê1+ê2n =
1

l2
in n to determine the sample size. The Monte Carlo estimates âlck(ni, a, b)

defined in equation (12) are plotted in graph (a) of Figure 2. Similar algorithms can be
constructed for the other length-based criteria, WOC, MWOC, and MLC.

The construction of an efficient grid for the ALCk,MLOC and WOC relies mainly
on an initial guess of the sample size, ñ, for example using a third order approximation
and/or our sample size formula. To proceed, construct, an interval centered at ñ, say,
of length max(200, ñ/10), and generate random uniform integer points, ni, within this
interval. Similar methods can be constructed for the ACCk and MCOC.

4.5 General guidelines for sample size determination

Having defined a variety of computational methods for our many sample size criteria,
in practice one needs to decide which methods are preferable. Our experience suggests
the following:

1. For the ALCk, WOC and the MLC, use the approximate sample size formulae
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in equations (14), (15), (16) when a, b ≥ 1 are not too far apart. If a, b are
far apart (for example when a/b > 50) and min(a, b) ≥ 2, use the third order
approximation. This sample size should be recalculated, however, if it is smaller
than a+b, via the exact computations as described in Section 4.1, or the regression-
based Monte Carlo approach of Section 4.4. When min(a, b) < 1, again use the
exact computations or the regression-based Monte Carlo approach. For smaller
sample sizes the exact method works well, but for running time issues, for sizes
larger than 2000, the Monte Carlo approach is preferable, typically running in a
few seconds, regardless of the sample size. We do not recommend the use of exact
calculations for WOC and MWOC, as these criteria often lead to large sample
sizes. The sample sizes provided by Monte Carlo approaches are random, so a
repetition of the calculation can lead to different sample sizes. The computing
time depends on the choice of m and M (see section 3.3), not so much on n. We
suggest that at least five Monte Carlo sample sizes be calculated to provide an
idea of the variability associated with the Monte Carlo algorithm. The values
m = M = 2000 are often satisfactory, but these can be increased to, say, 5000, if
the variance is too large.

2. For the ACCk and MCC, use the third order approximation when a, b ≥ 1 are not
too far apart. If a, b are far apart, or if the sample size is smaller than a+b, use an
exact computation or a Monte Carlo curve fitting approach. When min(a, b) < 1,
again use exact computations or the regression-based Monte Carlo approach.

The sample size formula and the third order approach are also easier to program
compared to the exact and Monte Carlo approaches. The more accurate exact method is
much harder to program, depending on many tuning parameters that need to be chosen
appropriately to obtain convergence of the Newton-Raphson algorithm. If there is a
hyperdistribution on a set of prior inputs (see section 5), we again recommend Monte
Carlo techniques.

Table 1 provides several examples of Bayesian sample sizes for the ALC, WOC
and MLC, allowing comparisons between the sizes given by the different criteria, and
comparisons across computational methods. Table 2 provides similar results for the
ACC and MCC. As expected, the WOC provides the largest sample sizes, with no
consistent ordering seen for the other criteria. For symmetric prior distributions, all
methods seem to lead to very similar sample sizes. As shown in Table 3, however, when
skewed prior distributions are used, there can be substantial differences in sample size
estimates from exact and approximate methods, and within the approximate methods,
between the first and third order approximations.

4.6 Example

We now return to the example introduced in Section 1, and apply our methods to
calculating sample sizes for accurate estimation of the prevalence of osteoporosis in
elderly women.
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Table 4 contains the sample sizes using a beta(20.5, 28.25) prior density, 1−α = 0.95,
and l = 0.05. The results suggest sample sizes of either 1133, 1420, or 1487, depending
on the criterion chosen. Of course, if one can afford the costs involved in recruiting 1487
subjects, the WOC sample size guarantees the desired width and coverage regardless of
the data set that eventually arises, and so is the gold standard. In this case, there is
only a small reduction in sample size to 1420 if one decides that attaining the desired
width and coverage on average is sufficient, so one may prefer the WOC sample size.
This occurs because the prior density concentrates not far from p = 0.5, the probability
associated with the highest variance for a binomial distribution. In other examples
with p concentrated away from 0.5, a larger drop may suggest the reverse decision.
The MCC and MLC are substantially smaller, suggesting that 1133 will result in the
desired width and coverage half the time, but that half the data sets will result in
lengths and/or coverages that do not meet the target. The final sample size can be
chosen based on the above considerations.

5 Robust Bayesian Sample Size Determination

Bayesian sample size calculations take the uncertainty inherent in the estimation of
p into account. Yet these calculations still depend on the prior inputs, (a, b), both
to generate the predictive distribution and to form the posterior distribution for p.
While there is no universal notion of robustness, various ideas have been presented in
the Bayesian literature. We present two such ideas and apply them to the sample size
calculation problem. These methods are not “fully Bayesian”, since more than one prior
distribution is considered, but they are still useful in practice, in assessing the effect of
prior choice on the sample size.

The first idea is to expand the range of prior distributions being considered. This
can be done in different ways:

(i) Replace the single conjugate prior distribution, Be(a, b), by a class of conjugate
prior distributions, Γ =

{
Be(a, b), a, b ∈ T

}
, where T is a subset of R

+, and study
how the sample sizes vary across Γ. In a spirit similar to the WOC, one can then
use the largest sample size since it guarantees that the sample size criterion holds
for all the prior distributions in Γ.

(ii) Enlarge the class of prior distributions by imposing a hyper-distribution, π(a, b),
(a, b) ∈ T on the prior parameters. Here the single sample size that is reported is
robust in the sense that it considers more heterogeneous p’s.

(iii) Select a new family of prior distribution that includes the Beta distributions as
a special or limiting case. One example of such family is the three-parameter
generalized Beta distribution, denoted p ∼ GB3(a, b, λ). See Chen and Novick
(1984) for more details.

The second idea is to replace the sample size criterion with a more robust criterion, in
the spirit of Adcock (1997, eq. 4.9). Suppose π(a, b), (a, b) ∈ T, is a hyper-distribution
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on the prior parameters (a, b). Replace, for example, the ACC by a criterion that finds
the minimum sample size n such that

∫

T

{ n∑

xn=0

α?
l (xn|n, a, b) pXn

(xn|n, a, b)
}
π(a, b) da db ≥ 1 − α , (17)

where α?
l (xn|n, a, b) is the posterior coverage of an HPD interval of length l for p given

the data xn and a, b. Here we average both with respect to the predictive marginal
distribution of xn and π. Similar criteria could be defined for the ALC,WOC, and
MLC.

In practice, sample size calculations via curve-fitting to Monte Carlo estimates is
the best choice for case (iii) and for the revised criteria employing hyperpriors. The
third order approximations are a good choice for cases (i) and (ii). Exact computations
are case-specific, and, perhaps, too slow to be of practical use for assessing robustness,
because the criteria functions need to be calculated many times for a single sample
size. Below we discuss how some of the above robustness ideas can be implemented in
practice.

Example 1: Suppose one is willing to assume a symmetric Beta distribution, which
might be the case when one expects p to be near 0.5, but one is a priori uncertain
as to how near to 0.5. Under this scenario, one could select the prior family Γ ={
Be(a, a), a > 0

}
. Graph a) of Figure 3 displays the ACC,ALC, and ALC2 third

order approximations to the sample sizes for 1 ≤ a ≤ 50 when 1 − α = .95 and l = 0.1.
The maximum sample sizes over Γ for the ACC,ALC, and ALC2 are n = 346, 345,
and 346, respectively. With p = 0.5, the corresponding frequentist sample size is 385,
larger than all the reported Bayesian sample sizes. More generally, one could believe

that p is near some π0, and use the class Γ =
{
Be(a + 1, a

π0

− a + 1), a > 0
}
; these

priors all having a mode at π0.

Example 2: Another way to create a class of prior distributions is to set the amount
of prior information, a+ b, to a constant n0, the number of prior observations to which
the prior information is equivalent. Suppose, for example, one decides to set n0 = 6
and to consider only the integer pairs (a, b) such that a ≤ b in order to reinforce the
idea that p ≤ .5 is more likely than p > .5. In this case, one would restrict attention to
(a, b) = (1, 5), (2, 4), and (3, 3). ALC third order approximations to the sample sizes
corresponding to (a, b) = (1, 5), (2, 4), and (3, 3) for 1 − α = .95 and l = .1, are 151,
277, and 319, while those corresponding to the ACC are 199, 297, and 327 respectively.
In general, any pair (a, b) with b = n0 − a and 0 < a ≤ n0/2 would be appropriate,

leading to Γ =
{
Be
(
n0π, n0(1 − π)

)
, 0 < π ≤ 0.5

}
. Graph b) of Figure 3 displays

the ACC,ALC, and ALC2 sample sizes for 1 ≤ a ≤ 3 when n0 = 6, l = 0.1 and
1 − α = .95. The maximum sample sizes for the ACC,ALC, and ALC2 are 327, 319,
and 323, respectively.
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Example 3: Suppose one fixes the amount of prior information to some n0 > 2 as in
example 2. It is well known in the Bayesian literature that one can gain robustness by
adding a hierarchical level to the prior distribution. For example, one could consider
p|π ∼ Be(n0π, n0(1−π)) and π ∼ Be(δ, γ;πl, πu) with δ, γ, πl and πu known quantities
and where 0 ≤ πl < πu ≤ 1. The notation π ∼ Be(δ, γ;πl, πu) represents a Beta distri-
bution with support on [πl, πu], πl < πu. This prior model is known as an “Imprecise
Beta Model”. In this context, one could use the robust average coverage criterion in
(17) or its average length counterpart of order k, for example,

(∫

Xn

{
l?1−α(xn|n, n0π, n0(1 − π))

}k

pXn,π(xn, π|n) dxn

)1/k

≤ l, (18)

where l?1−α(xn|n, n0π, n0(1 − π)) is the length of an HPD interval of coverage 1 − α for
p given π and xn. An approximate sample size formula for (18) is

np = 4
z2

α/2

l2

(∫ πu

πl

B(n0π + k/2, n0(1 − π) + k/2)

B(n0π, n0(1 − π))
×

(π − πl)
δ−1(πu − π)γ−1

B(δ, γ)(πu − πl)δ+γ−1
dπ

)2/k

− n0, (19)

when n0πl ≥ 1 and n0(1 − πu) ≥ 1. For example, let δ = 3, γ = 5, πl = 0.0, πu =
1.0, n0 = 6, 1 − α = 0.95, and l = 0.1. The curve-fitting approach based on m =
M = 2000 leads to sample sizes of 246, 262 and 277 for the ALC,ALC2 and ACC,
respectively. Equation (19) suggests sample sizes of 252 and 269, respectively, for the
ALC and ALC2. These two values were used to generate the grid of appropriately
chosen n’s for our curve-fitting approach.

6 Conclusion

While the binomial sample size problem has been investigated in the past, we provide
a unified treatment, which has previously not been available. We examine several new
analytic and computational methods specifically tailored to this problem, compare them
for efficiency and accuracy, and make recommendations as to which method is best for
each situation. We discuss a third order approximation that is simple to implement and
highly accurate when n > a + b. For the first time, we present accurate closed form
formulae for several criteria. We point out that there is a linear relationship between
sample sizes and the square-inverse-of-length based criterion functions. We use this
linear relationship in the context of curve-fitting to Monte Carlo sample size estimates.
Although these linear relations have not been previously discussed in the context of
Bayesian sample sizes, they are typical of frequentist sample size calculations. Software
implementing all of the methods discussed in this paper is available from the first author.

Clearly, deciding which criterion function to use for sample size determination will
be a question of personal taste or, perhaps, depend on the particular situation. For
example, if it is important to accommodate a possible, although unlikely, catastrophic
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data set, then one might use one of the “worst outcome” criteria. In practice, the
user can compute sample sizes across a range of different criteria, and based on the
information provided by all calculations, reach a compromise as to the size of the sample
needed and the acceptability of the criterion.

Appendix

A Proof that ALC∞ = WOC

Proposition A.1. Let n(k, 1 − α, l) denote the sample sizes under the ALCk. Then

n(k + 1, 1 − α, l) ≥ n(k, 1 − α, l) .

Proof. The proof of this proposition is entirely based on the natural ordering of the
Lk-norm. Without loss of generality, assume that n = n(k + 1, 1− α, l) <∞. Then

n∑

xn=0

l?1−α(xn|n, a, b)
}k+1

pXn
(xn|n, a, b) ≤ lk+1.

This implies also that n satisfies

n∑

xn=0

{
l?1−α(xn|n, a, b)

}k
pXn

(xn|n, a, b) ≤ lk, (20)

because the Lk-norm increases monotonically as k increases. Therefore n(k+1, l, 1−α) is
larger than the smallest bound of all n satisfying equation (20); that is, n(k, l, 1−α).

Hence the sequence of sample sizes n(k, 1 − α, l) is increasing as k increases.

Proposition A.2. Assume Xn is a discrete set and that the sequence of sample sizes
n(k, 1 − α, l) is bounded. Then WOC = ALC∞.

Proof. Let w1, w2, · · · , wm and a1, a2, · · · , am be sequences of m non-negative real num-
bers with

∑m
i=1 wi = 1 and sup ai <∞. Then,

lim
k−→∞

(
m∑

i=1

wia
k
i

)1/k

= sup ai . (21)

For let j be the index such that aj = sup ai. Then, we havew
1/k
j aj ≤

(
m∑

i=1

wia
k
i

)1/k

≤ aj

and (21) follows as k tends to ∞.
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Since the sequence of sample sizes n(k, 1− α, l) is bounded it must converge, which
in turn implies that the criterion ALC∞ is well-defined. A straightforward application
of equation (21) leads to

sup
0≤xn≤n

l?1−α(xn|n, a, b) = lim
k−→∞

(
n∑

xn=0

{
l?1−α(xn|n, a, b)

}k
pXn

(xn|n, a, b)
)1/k

,

for any given n, and the proof is complete.

B Method for the exact computation of HPD intervals for

p

Proposition B.1. Let φ be a random variable with density fφ(ω) ∝ exp (αω)

(1 + exp(ω))α+β
,

−∞ < ω <∞. The HPD interval of given length l is the interval (φs, φs + l) where

φs = log
(
exp ( α

α+β l) − 1
)
− log

(
exp (l) − exp ( α

α+β l)
)
.

Proof. It is not difficult to prove that the posterior density of φ is continuous and
strongly unimodal (thus unimodal) on R, and lim|ω|→∞ fφ(ω) = 0. Under such condi-
tions, the HPD region of size l is an interval of length l which must satisfy fφ(φs) =

fφ(φs + l). As a result, φs satisfies
exp (φs + l) + 1

1 + exp (φs)
= exp ( α

α+β l). Hence, φs =

log
(
exp ( α

α+β l) − 1
)
− log

(
exp (l) − exp ( α

α+β l)
)
.

Corollary B.2. Let p ∼ Be(α, β) with α, β > 1. Let (p1, p2) be an HPD interval.

There exists $ > 0 such that logit(p1) = log
(
exp ( α−1

α+β−2 $) − 1
)

− log
(
exp ($) −

exp ( α−1
α+β−2 $)

)
and logit(p2) = logit(p1) +$, where logit(p) = log

(
p

1 − p

)
.

Proof. When α, β > 1, fp is continuous and unimodal on the interval (0, 1), and
limp→0 fp(ω) = 0 = limp→1 fp(ω). Under these conditions, every HPD region is an
interval that satisfies fp(p1) = fp(p2) or equivalently gp

(
logit(p1)

)
= gp

(
logit(p2)

)
with

gp(ω) = fp

(
exp(ω)

1 + exp(ω)

)
=

exp {(α− 1)ω}
(1 + exp (ω))α+β−2

. Now apply Proposition B.1.

C Third order approximations to the length of HPD inter-

vals when a and b are integers

Although one might contemplate using third order approximations to HPD and equal-
tailed intervals as in Peers (1968), these results alone are not sufficient because they are
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undefined for xn = 0 and xn = n. This phenomenon is well-known in the frequentist
literature where a popular practice is to replace xn and n by xn + κ/2 and n + κ,
respectively, to avoid problems at these endpoints. The values κ = 1, 2, 4 are used most
often in practice (Brown, Cai and DasGupta, 2001). We instead employ a modification
of the results in Peers (1968). We first observe that the family of posterior distributions
for p given xn ∈ {0, 1, · · · , n} under our model, Model 1, xn| p ∼ Bin(n, p) and p ∼
Be(a, b) for a, b positive integers, is a subset of the family of posterior distribution for p
given yn ∈ {0, 1, · · · , n+ a+ b}, obtained under Model 2, yn| p ∼ Bin(n+ a+ b, p) and
p ∼ Be(0, 0). We therefore use the third order approximations in Peers (1968) under
Model 2 for yn = a + 0, a + 1, · · · , a + n, to approximate intervals under Model 1 for
xn = 0, 1, · · · , n, respectively.

Define lHPD1−α(xn|n, a, b) and lEQ1−α(xn|n, a, b) to be the third order approximations of
the lengths of HPD and equal tailed intervals, respectively. Let z = zα/2 be the upper
α/2 point of the standard normal distribution and let N = n+ a+ b be the “extended”
sample size. We have:

lHPD1−α(xn|n, a, b) =
2

N
√
v1(xn)

{
z − (z3 + 3z)

v2(xn) − 1

4N
+ z

v2(xn)

2N
+

5(z3 + 3z)
v2(xn) − 2

18N
− z

v2(xn) − 2

N

}
,

lEQ1−α(xn|n, a, b) = lHPD1−α(xn|n, a, b) + 4z
v2(xn) − 2

9N2
√
v1(xn)

.

where v1(xn) =
1

xn + a
+

1

n+ b− xn
, and v2(xn) =

n+ b− xn

xn + a
+

xn + a

n+ b− xn
, for

xn = 0, 1, · · · , n.

D Limiting results for the ACC, ALCk, MLC and

WOC

D.1 Preliminary results

The lemma below proved in Billingsley (1995, p.338 and 340), is reproduced here for
convenience.

Lemma D.1. Let X be a random variable and {Xn}n≥1 be a sequence of random

variables such that Xn =⇒d X (convergence in distribution).

a) Assume furthermore that the Xn are uniformly integrable. Then X is integrable
and E(Xn) −→ E(X).

b) If |Xn| is uniformly bounded, then the Xn are uniformly integrable.

c) Let h be a Borel function and
(
hn

)
n≥1

a sequence of Borel functions. Denote D



C. E. M’lan, L. Joseph and D. B. Wolfson 287

the set of x for which hn(xn) −→ h(x) fails for some sequence xn −→ x. Suppose
that D ⊂ R and Pr(X ∈ D) = 0. Then hn(Xn) =⇒d h(X).

In section D.2, we provide four asymptotic results and we use these results to derive
asymptotic expressions for the criterion functions.

D.2 Asymptotic limits for the criterion functions

The asymptotic expressions of Propositions D.2, D.3 and D.4 below also provide reas-
surance that our sample size criteria are well-defined. We start with the ACC, followed
by the ALCk, WOC, and MLC.

Proposition D.2. When a, b > 1,

lim
n−→∞

acc(n, a, b) = 1 . (22)

Proof. Let I(u,v)(ω) be the indicator function for the set (u, v). Let f(xn|p) be the
binomial probability mass function xn|p ∼ Bin(n, p), and let f(p) be the density of a
Beta random variable with parameters a and b. We have

acc(n, a, b) =

n∑

xn=0

(∫ p(xn,l)+l

p(xn,l)

π(p|xn, n, a, b) dp

)
pXn

(xn|n, a, b) ,

=

∫ 1

0

n∑

xn=0

I(
p(xn,l), p(xn,l)+l

)(p) f(xn|p) f(p)dp ,

where
(
p(xn, l), p(xn, l)+ l

)
is the HPD interval of length l. Given p, the binomial series,∑n

xn=0 I(
p(xn,l), p(xn,l)+l

)(p) f(xn|p), is uniformly bounded by 1, so that the Lebesgue

dominated convergence theorem implies

lim
n−→∞

acc(n, a, b) =

∫ 1

0

lim
n−→∞

n∑

xn=0

I(
p(xn,l), p(xn,l)+l

)(p) f(xn|p) f(p)dp ,

if limn−→∞

∑n
xn=0 I(

p(xn,l), p(xn,l)+l
)(p) f(xn|p) exists almost everywhere. Since the

posterior distribution is unimodal and takes the same value at the endpoints when a, b >
1, p(xn, l) is the unique solution of the equation log fp(ψ+ l|xn, n) = log fp(ψ|xn, n), or

equivalently,
log(1 − ψ) − log(1 − ψ − l)

log(ψ + l) − log
(
ψ)

=
a− 1 + xn

b− 1 + n− xn
= ζ(ψ), say. The function ζ

has a continuous inverse function, ζ−1 and we have p(xn, l) = ζ−1

(
a− 1 + xn

b− 1 + n− xn

)
.

Thus limn−→∞ p(xn, l) = ζ−1( p
1−p ) with probability 1. Hence, a straightforward appli-

cation of Lemma D.1 implies

lim
n−→∞

acc(n, a, b) =

∫ 1

0

I(
ζ−1(p/(1−p)), ζ−1(p/(1−p))+l

)(p) f(p)dp .
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Now note that (ζ−1(p), ζ−1(p)+ l) is the unique HPD interval of length l of the posterior
distribution g(ψ) ∝ ψp(1 − ψ)1−p which has mode at p. Hence

I(
ζ−1(p/(1−p)), ζ−1(p/(1−p))+l

)(p) = 1 .

This completes the proof.

Since the lengths of HPD intervals for p have no closed form expression, we use the
usual first order approximations to HPD intervals to obtain limiting expressions for the
ALCk, WOC, and MLC. Let lp(xn|n, a, b) = 2zα/2

√
Var(p|xn, n, a, b) be the length

of this approximate interval, where Var(p|xn, n, a, b) =
(a+ xn)(n+ b− xn)

(n+ a+ b)2(n+ a+ b+ 1)
and

zα/2 is the upper α/2 point of the standard normal distribution.

Proposition D.3. For a, b > 1, we have

lim
n−→∞

√
N

{
E
[
lkp(Xn, n, a, b)

]

2kzk
α/2

}1/k

=

{
B(a+ k/2, b+ k/2)

B(a, b)

}1/k

. (23)

In particular,

lim
n−→∞

√
N


 lim

k−→∞

{
E
[
lkp(Xn, n, a, b)

]

2kzk
α/2

}1/k

 =

1

2
. (24)

Proof. Set Yn =
Xn

n
, and let F\ =

{
′, ∞\ , ∈\ , · · · ,

\−∞
\ ,∞

}
be the set of points where

the probability mass function of Yn is positive. Application of Theorem B.1 in M’lan,
Joseph, and Wolfson (2006) leads to Yn =⇒d p, where p ∼ Be(a, b). Setting hn(y) =
(a+ ny)k/2(n+ b− ny)k/2

Nk/2(N + 1)k/2
and h(y) = yk/2(1 − y)k/2 = limn hn(y), y ∈ [0, 1], Lemma

D.1 implies that hn(Yn) =⇒d h(p). In addition, the sequence of functions hn(x) is
uniformly bounded by 1. These results together lead to

Nk/2
E
[
lkp(Xn, n, a, b)

]

2kzk
α/2

=
∑

xn∈Xn

(a + xn)k/2(n + b − xn)k/2

Nk/2(N + 1)k/2
pXn(xn|n, a, b) ,

=
∑

yn∈F\

hn(yn) pYn(yn|n, a, b) = E
(
hn(Yn)

)
,

−→

∫
1

0

h(y)
ya−1(1 − y)b−1

B(a, b)
dy =

B(a + k/2, b + k/2)

B(a, b)
,

which completes the proof of the first result.

The second result, lim
k−→∞

{
B(a+ k/2, b+ k/2)

B(a, b)

}1/k

=
1

2
follows from Stirling’s for-

mula.
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Proposition D.4. Assume that a, b > 1. We have

√
N

medxn∈Xn

[
lp(xn, n, a, b)

]

2 zα/2
≈

√
(N + a+ b)(3N − a− b)

16N(N + 1)
(25)

and converges to

√
3

4
as n −→ ∞, where the median is over the set {0, 1, · · · , n}.

Proof. The median of the posterior variances for p for xn = 0, 1, · · · , n, are attained

approximately at x? =
n+ 2(b− a)

4
. Here we have

Var(p|x?, n, a, b) =
(N + a+ b)(3N − a− b)

16N2(N + 1)
,

which completes the proof.

Equations (23), (24) and (25) demonstrate that the convergence rates to zero of the

criterion functions alck(n, a, b), wloc(n, a, b) and mlc(n, a, b) are of the order
1√
n

when

a, b > 1. These results also imply that, asymptotically, alck(n, a, b) ≈
2 zα/2 c

k
p(a, b)√

n+ a+ b
,

wloc(n, a, b) ≈ zα/2√
n+ a+ b

and mlc(n, a, b) ≈ 2 zα/2

√
(N + a+ b)(3N − a− b)

16N2(N + 1)
, where

ckp(a, b) =
{
B(a + k/2, b + k/2) /B(a, b)

}1/k

. The above asymptotic expressions for

alck(n, a, b), wloc(n, a, b) and mlc(n, a, b) are exploited in Section 4.3 to derive approx-
imate sample size formulae.
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Table 1: Table of ALC, WOC, and MLC sample sizes using the indicated methods with

(a, b) = (1, 1), (2, 2), (3, 3), (4, 4), (4, 1), (4, 2), and (4, 3).

coverage length

ALC WOC MLC

First Third First Third First Third

(a, b) Exact order order Exact order order Exact order order

1 − α l HPD formula HPD HPD formula HPD HPD formula HPD

(1, 1) .95
.10 234 235 234 381 383 381 285 287 285
.05 945 946 945 1534 1535 1534 1149 1151 1149

(2, 2) .95
.10 295 296 295 379 381 379 285 286 285
.05 1195 1196 1195 1532 1533 1532 1149 1150 1149

(3, 3) .95
.10 319 320 319 377 379 377 284 286 284
.05 1295 1296 1295 1530 1531 1530 1149 1150 1149

(4, 4) .95
.10 331 332 331 375 377 375 282 285 282
.05 1348 1349 1348 1528 1529 1528 1147 1149 1147

(4, 1) .95
.10 174 177 174 378 380 378 284 286 284
.05 718 721 718 1531 1532 1531 1148 1150 1148

(4, 2) .95
.10 277 278 277 377 379 377 284 286 284
.05 1127 1128 1127 1530 1531 1530 1149 1150 1149

(4, 3) .95
.10 318 321 318 376 378 376 283 285 283
.05 1294 1295 1294 1529 1530 1529 1148 1149 1148

Table 2: Table of ACC and MCC sample sizes using the indicated methods with (a, b) =
(1, 1), (2, 2), (3, 3), (4, 4), (4, 1), (4, 2), and (4, 3).

coverage length
ACC MCC

(a, b) Exact Third order Exact Third order

1 − α l HPD HPD HPD HPD

(1, 1) .95
.10 274 274 285 285
.05 1105 1105 1149 1149

(2, 2) .95
.10 311 311 285 285
.05 1259 1259 1149 1149

(3, 3) .95
.10 327 327 284 284
.05 1329 1329 1149 1149

(4, 4) .95
.10 336 336 282 282
.05 1368 1368 1147 1147

(4, 1) .95
.10 223 223 284 284
.05 913 913 1148 1148

(4, 2) .95
.10 297 297 284 284
.05 1207 1207 1149 1149

(4, 3) .95
.10 326 326 283 283
.05 1328 1328 1148 1148
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Table 3: Table of sample sizes for estimating p for various choices (a, b), leading
to skewed prior distributions.

1 − α = .99 and l = .01
ALC ACC

(a,b) Exact First order Third order Exact Third order

HPD equal formula HPD equal HPD equal HPD equal
(1, 49) 3997 4035 4015 3995 4034 7881 7889 7881 7889
(1, 99) 1930 1998 1959 1926 1996 3957 3976 3957 3976
(1, 149) 1196 1285 1229 1188 1281 2540 2570 2540 2570
(1, 199) 804 908 836 792 903 1781 1822 1780 1821
(1, 249) 551 665 580 538 660 1287 1341 1285 1340
(1, 299) 370 489 392 357 483 924 995 920 993
(1, 349) 230 350 244 219 345 633 725 624 721
(1, 399) 115 235 120 108 231 375 501 357 493
(1, 449) 17 136 16 16 133 100 303 80 286

1 − α = .95 and l = .01
ALC ACC

(a,b) Exact First order Third order Exact Third order

HPD equal formula HPD equal HPD equal HPD equal
(2, 48) 5125 5139 5137 5125 5139 6270 6278 6270 6278
(2, 98) 2531 2559 2555 2531 2559 3142 3159 3142 3158
(2, 148) 1598 1640 1634 1598 1640 2006 2032 2006 2032
(2, 198) 1096 1152 1143 1096 1151 1394 1430 1394 1430
(2, 248) 769 838 827 768 837 995 1043 995 1042
(2, 298) 530 612 599 529 611 702 763 701 762
(2, 348) 342 437 421 340 434 468 545 465 543
(2, 398) 187 293 276 182 290 268 366 261 363
(2, 448) 53 171 151 45 166 82 213 69 208

Table 4: Sample sizes for an osteoporosis prevalence study. The parameter
inputs were a beta(20.5, 28.25) prior density, 1 − α = 0.95, and l = 0.05.

Criterion Sample Size
ACC1 1420
ACC2 1420
ALC1 1418
ALC2 1419
MLC 1133
MCC 1133
WOC 1487
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Figure 1: a) Graph of
1

alc2(n, a, b)
as a function of n, with (a, b) = (3, 3), (3, 2), (3, 1)

and 1 − α = 0.95. b) Graph of
1

alc2(n, 1, 1)
,

1

mlc2(n, 1, 1)
, and

1

wloc2(n, 1, 1)
as a

function of n, when 1 − α = 0.95.
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âlc
2

k(ni, 2, 2)

)
using m = M = 1000.

b) Graph of 500 Monte Carlo pairs (ni, âcck(ni, 2, 2)) using m = M = 1000.
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Figure 3: a) Graph of the ACC,ALC, and ALC2 sample sizes as a function of a when
considering a symmetric prior, Be(a, a) for a = 1, · · · , 50. 1 − α = .95 and l = 0.1. b)
Graph of the ACC,ALC, and ALC2 sample sizes as a function of a when considering
a Be(a, n0 − a) prior distribution, with a = 1, · · · , 5, n0 = 6, 1 − α = .95, and l = 0.1.


