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SIMULTANEOUS INFERENCE: WHEN SHOULD HYPOTHESIS
TESTING PROBLEMS BE COMBINED?

BY BRADLEY EFRON

Stanford University

Modern statisticians are often presented with hundreds or thousands of
hypothesis testing problems to evaluate at the same time, generated from new
scientific technologies such as microarrays, medical and satellite imaging de-
vices, or flow cytometry counters. The relevant statistical literature tends to
begin with the tacit assumption that a single combined analysis, for instance,
a False Discovery Rate assessment, should be applied to the entire set of prob-
lems at hand. This can be a dangerous assumption, as the examples in the pa-
per show, leading to overly conservative or overly liberal conclusions within
any particular subclass of the cases. A simple Bayesian theory yields a suc-
cinct description of the effects of separation or combination on false discov-
ery rate analyses. The theory allows efficient testing within small subclasses,
and has applications to “enrichment,” the detection of multi-case effects.

1. Introduction. Modern scientific devices such as microarrays routinely pro-
vide the statistician with thousands of hypothesis testing problems to consider at
the same time. A variety of statistical techniques, false discovery rates, family-wise
error rates, permutation methods etc., have been proposed to handle large-scale
testing situations, usually under the tacit assumption that all available tests should
be analyzed together—for instance, employing a single false discovery analysis
for all the genes in a given microarray experiment.

This can be a dangerous assumption. As my examples will show, omnibus com-
bination may distort individual inferences in both directions: highly significant
cases may be hidden while insignificant ones are enhanced. This paper concerns
the choice between combination and separation of hypothesis testing problems.
A helpful methodology will be described for diagnosing when separation may be
necessary for a subset of the testing problems, as well as for carrying out separation
in an efficient fashion.

Figure 1 illustrates our motivating example, taken from Schwartzman,
Dougherty and Taylor (2005). Twelve children, six dyslexic and six normal, re-
ceived Diffusion Tensor Imaging (DTI) brain scans, an advanced form of MRI
technology that measures fluid diffusion in the brain, in this case at N = 15443
locations, each represented by its own voxel’s response. A z-value “zi” compar-
ing the dyslexics with the normals has been calculated for each voxel i, such
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FIG. 1. Brain Data: z-values comparing 6 dyslexic children with 6 normals; horizontal section
showing 848 of 15443 voxels. Code: Red z ≥ 0, Green z < 0; solid circles z ≥ 2.0, solid squares
z ≤ −2.0; “x” indicates distance from back of brain; y-axis is right-left distance. The front half of the
brain appears to have more positive z-values. Data from Schwartzman, Dougherty and Taylor (2005).

that zi should have a standard normal distribution under the null hypothesis of no
dyslexic-normal difference at that brain location,

theoretical null hypothesis : zi ∼ N(0,1).(1.1)

The z-values for a horizontal section of the brain containing 848 of the 15443
voxels are indicated in Figure 1. Distance “x” from the back toward the front of
the brain is indicated along the x axis. In appearance at least, the zi’s seem to be
more positive toward the front.

The investigators were, of course, interested in spotting locations of genuine
brain differences between the dyslexic and normal children. A standard False
Discovery Rate (FDR) analysis described in Section 2, Benjamini and Hochberg
(1995), returned 198 “significant” voxels at threshold level q = 0.1, those having
zi ≥ 3.02. The histogram of all 15443 zi’s appears in the left panel of Figure 2.

Separate z-value histograms for the back and front halves of the brain are dis-
played in the right panel of Figure 2, with the dividing line at x = 49.5 as shown
in Figure 1. Two discrepancies strike the eye: the heavy right tail seen in the com-
bined histogram on the right comes almost exclusively from front-half voxels; and
the center of the back-half histogram is shifted leftward about 0.35 units compared
to the front.

Separate FDR analyses, each at threshold level q = 0.1, were run on the back
and front half data. 281 front half voxels were found significant, those having
zi ≥ 2.69; the back half analysis gave no significant voxels at all, in contrast to
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FIG. 2. Left panel: histogram of all 15433 z-values for Brain Data; the 198 voxels with zi ≥ 3.02
were judged significant by an FDR analysis with threshold level q = 0.1. Right panel: histograms for
back and front voxels; separate FDR analyses at level q = 0.1 gave no significant voxels for back half,
and 281 significant voxels, those with zi ≥ 2.69, for front half. MLE values are means and standard
deviations for normal densities fit to the centers of the two histograms, as explained in Section 3.

9 significant back-half cases found in the combined analysis. This example il-
lustrates both of the dangers of combination—over and under sensitivity within
different subclasses of the experiment.

Section 2 begins with a simple Bayesian theorem that quantifies the choice
between separate and combined analysis. It is applied to the brain data in Sec-
tion 3, elucidating the differences between front and back false discovery rate
analyses. The theorem is most useful for separately investigating small sub-
classes, where there is too little data for the direct empirical Bayes techniques
of Section 3. Sections 4 and 7 demonstrate how all the data, all N = 15833
z values in the Brain study, can be brought to bear on efficient FDR estima-
tion for a small subclass, for example, just the 82 voxels at distance x = 18.

Section 6 applies small subclass theory to “enrichment,” the assessment of a
possible overall discrepancy between the z-values within and outside a chosen
class.

A reasonable objection to performing separate analyses on portions of the N

cases is the possibility of weakening control of Type 1 error, the overall size of
the procedure. This question is taken up in Section 5, where false discovery rate
methods are shown to be nearly immune to the danger. Some technical remarks
and discussion end the paper in Sections 8 and 9.

The question of separating large-scale testing problems has not received much
recent attention. Two relevant references are Genovese, Roeder and Wasserman
(2006), and Ferkinstad, Frigessi, Thorleifsson and Kong (2007). Enrichment tech-
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niques have been more actively developed, as in Subramanian et al. (2005), New-
ton et al. (2007) and Efron and Tibshirani (2007).

2. A separate-class model. The “Two-Groups model,” reviewed below, pro-
vides a simple Bayesian framework for the analysis of simultaneous hypothesis
testing problems. The framework will be extended here to include the possibility
of separate situations in different sub-classes of problems—for example, for the
back and front halves of the brain in Figure 1—the extended framework being the
“Separate-Class model.”

First, we begin with a brief review of the Two-Groups model, taken from
Efron (2005, 2007a). It starts with the Bayesian assumption that each of the N

cases (all N = 15443 voxels for the Brain Data) is either null or nonnull, with
prior probability p0 or p1 = 1 − p0, and with its test statistic “z” having density
either f0(z) or f1(z),

p0 = Prob{null}, f0(z) density if null,
(2.1)

p1 = Prob{nonnull}, f1(z) density if nonnull.

The theoretical null model (1.1) makes f0(z) a standard normal density

f0(z) = ϕ(z) = 1√
2π

e−1/2z2
,(2.2)

an assumption we will question more critically later. We add the qualitative re-
quirement that p0 is large, say,

p0 ≥ 0.90,(2.3)

reflecting the usual purpose of large-scale testing, which is to reduce a vast set of
possibilities to a much smaller set of interesting prospects.

Model (2.1) is particularly helpful for motivating False Discovery Rate methods.
Let F0(z) and F1(z) be the cumulative distribution functions (c.d.f.) corresponding
to f0(z) and f1(z), and define the mixture c.d.f.

F(z) = p0F0(z) + p1F1(z).(2.4)

Then the a posteriori probability of a case being in the null group of (2.1), given
that its z-value zi is less than some threshold z, is the “Bayesian false discovery
rate”

Fdr(z) ≡ Prob{null |zi < z} = p0F0(z)/F (z).(2.5)

[It is notationally convenient here to consider the negative end of the z-scale, e.g.,
z = −3, but we could just as well take zi > z or |zi | > z in (2.5).]

Benjamini and Hochberg’s (1995) false discovery control rule estimates Fdr(z)
by

Fdr(z) = p0F0(z)/F̄ (z),(2.6)
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where F̄ (z) is the empirical c.d.f.

F̄ (z) = #{zi ≤ z}/N.(2.7)

Having selected some control level “q ,” often q = 0.1, the rule declares all cases
as nonnull having zi ≤ zmax, where zmax is the maximum value of z satisfying

Fdr(zmax) ≤ q.(2.8)

[Usually taking p0 = 1 and F0(z) the theoretical null c.d.f. �(z) in (2.5).]
Rule (2.8), which looks Bayesian here, can be shown to have an important fre-

quentist “control” property: if the zi ’s are independent, the expected proportion
of false discoveries, that is, the proportion of cases identified by (2.8) that are
actually from the null group in (2.1), will be no greater than q . Benjamini and
Yekutieli (2001) relax the independence requirement somewhat. Most large-scale
testing situations exhibit substantial correlations among the z values—obvious in
Figure 1—but dependence is less of a problem for the empirical Bayes approach
to false discovery rates we will follow here [see Efron (2007a, (2007b))].

Defining the mixture density f (z) from (2.1),

f (z) = p0f0(z) + p1f1(z)(2.9)

leads to the “local false discovery rate” fdr(z),

fdr(z) ≡ Prob{null |zi = z} = p0f0(z)/f (z)(2.10)

for the probability of a case being in the null group given z-score z. Densities are
more natural than the tail areas of (2.5) for Bayesian analysis. Both will be used in
what follows.

The Separate-Class model extends (2.1) to cover the situation where the N cases
can be divided into distinct classes, possibly having different choices of p0, f0 and
f1. Figure 3 illustrates the scheme: the two classes “A” and “B” (front and back
in Figure 2) have a priori probabilities πA and πB = 1 − πA. The Two-Groups
model (2.1) holds separately within each class, for example, with p0 = pA0,
f0(z) = fA0(z), and f1(z) = fA1(z) in class A. It is important to notice that the
class label, A or B, is observed by the statistician, in contrast to the null/nonnull
dichotomy, which must be inferred.

Our previous definitions apply separately to classes A and B, for instance, fol-
lowing (2.9)–(2.10),

fA(z) = pA0fA0(z) + pA1fA1(z) and
(2.11)

fdrA(z) = pA0fA0(z)/fA(z).

Combining the two classes in Figure 3 gives marginal densities

f0(z) = πAfA0(z) + πBfB0(z),
(2.12)

f1(z) = πAfA1(z) + πBfB1(z),
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FIG. 3. A Separate-Class model with two classes: The N cases separate into classes A or B with
a priori probability πA or πB ; the Two-Groups model (2.1) holds separately, with possibly different
parameters, within each class.

and p0 = πApA0 + πBpB0 , so

f (z) = πAfA(z) + πBfB(z),(2.13)

leading to the combined local false discovery rate fdr(z) = p0f0(z)/f (z) as in
(2.10). The same relationships with c.d.f.’s replacing densities apply to tail area
Fdr’s, (2.5).

Bayes theorem yields a simple but useful relationship between the separate and
combined false discovery rates:

THEOREM. Define πA(z) as the conditional probability of class A given z,

πA(z) = Prob{A|z},(2.14)

and also

πA0(z) = Prob0{A|z},(2.15)

the conditional probability of class A given z for a null case. Then

fdrA(z) = fdr(z) · πA0(z)

πA(z)
.(2.16)

PROOF. Let I be the event that a case is null, so I occurs in the two null paths
of Figure 3 but not otherwise. Then, from definition (2.10),

fdrA(z)

fdr(z)
= Prob{I |A,z}

Prob{I |z} = Prob{I,A|z}
Prob{A|z}Prob{I |z}

(2.17)

= Prob{A|I, z}
Prob{A|z} = πA0(z)

πA(z)
. �

The Theorem has useful practical applications. Section 4 shows that the ratio

RA(z) = πA0(z)/πA(z)(2.18)
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in (2.16) can often be easily estimated, yielding helpful diagnostics for possible
discrepancies between fdrA(z) and fdr(z), the separate and combined false discov-
ery rates.

Tail-area false discovery rates (2.5) also follow (2.16), after the obvious defini-
tional changes,

FdrA(z) = Fdr(z) · RA(z),(2.19)

where now RA(z) involves probabilities for cases having zi ≤ z,

RA(z) = Prob0{A|zi ≤ z}
Prob{A|zi ≤ z} .(2.20)

There is no real reason, except expositional clarity, for restricting attention to
just two classes. Section 4 briefly discusses versions of the Theorem applicable
to more nuanced situations—in terms of Figure 1, for example, where the rele-
vance of other cases to the fdr at a given “x” falls off smoothly as we move away
from x. First though, Section 3 applies the Theorem to the dichotomous front-back
Brain Data analysis.

3. Class-wise Fdr estimation. The Theorem of Section 2 says that separate
and combined local false discovery rates are related by

fdrA(z) = fdr(z) · RA(z), RA(z) = πA0(z)/πA(z),(3.1)

where πA0(z) and πA(z) are the conditional probabilities Prob0{A|z} and
Prob{A|z}. This section applies (3.1) to the Brain Data of Figures 1 and 2, tak-
ing the front-half voxels as class A. The front-back dichotomy is extended to a
more realistic multi-class model in Section 4.

In order to estimate πA(z), it is convenient, though not necessary, to bin the
z-values. Define rAk as the proportion of class A z-values in bin k,

rAk = NAk/Nk,(3.2)

with Nk the number of zi ’s observed in bin k, and NAk the number of those orig-
inating from voxels in class A. The points in Figure 4 show rAk for K = 42 bins,
each of length 0.2, running from z = −4.2 to 4.2. As suggested by the right panel
of Figure 2, the proportions rAk steadily increase as we move from left to right.

A standard weighted logistic regression, fitting logit(πAk) as a cubic function
of midpoint z(k) of bin k, with weights Nk , yielded estimate π̂A(z) shown by the
solid curve in Figure 4. Binning isn’t necessary here, but it is comforting to see
π̂A(z) nicely following the rAk points. (The three bins with rAk = 0 at the extreme
left contain only Nk = 2 zi ’s each.)

In order to estimate πA0(z), we need to make some assumptions about the null
distributions in the Two-Class model of Figure 3. Following Efron (2004a, 2004b),
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FIG. 4. Points are proportion of front-half voxels rAk , (3.2), for Brain Data of Figure 2. Solid curve
is π̂A(z), cubic logistic regression estimate of πA(z) = Prob{A|z}; Dashed curve π̂A0(z) estimates
Prob0{A|z} as explained in text.

we assume that fA0(z) and fB0(z) are normal densities, but not necessarily N(0,1)

as in (1.1), say,

fA0(z) ∼ N(δA0, σ
2
A0) and fB0(z) ∼ N(δB0, σ

2
B0).(3.3)

Bayes theorem then gives

πA0(z)

πB0(z)
= πA0(z)

1 − πA0(z)
(3.4)

= πApA0σB0

πBpB0σA0
exp

{
−0.5

[(
z − δA0

σA0

)2

−
(

z − δB0

σB0

)2]}
,

which is easily solved for πA0(z).
The R algorithm locfdr used “MLE fitting” described in Section 4 of

Efron (2007b) to provide the parameter estimates in Table 1. (The front-back di-
viding line in Figure 1 was chosen to put about half the voxels into each class, so
πA/πB

.= 1.) Solving for π̂A0 in (3.4) gave the dashed curve of Figure 4.
Looking at Figure 2, we might expect fdrA(z), the local fdr for the front, to be

much lower than the combined fdr(z) for large values of z, that is, to provide many
more “significant” z-values, but this is not the case: in fact,

R̂A(z) = π̂A0(z)/π̂A(z)
.= 0.94(3.5)

for z ≥ 3.0, so formula (3.1) implies only small differences. Two contradictory ef-
fects are at work: the longer right tail of the front-half distribution by itself would
produce small values of RA(z) and fdrA(z); however, this effect is mostly canceled
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TABLE 1
Parameter estimates for the null arms of the Two-Class

model in Figure 3, brain data. Obtained using R program
locfdr, Efron (2007b), MLE fitting method

p̂0
̂δ0 σ̂0 π

A (front): 0.97 0.06 1.09 0.50
B (back): 1.00 −0.29 1.01 0.50

by the rightward shift of the whole front-half distribution, which substantially in-
creases the numerator of fdrA(z) = pA0fA0(z)/fA(z), (2.11). [Note: the “signif-
icant” voxels in Figure 2 were obtained using the theoretical null (1.1) for both
the separate and combined analyses, making them somewhat different than those
based on the empirical null estimates here.]

The close match between π̂A0(z) and π̂A(z) near z = 0 is no accident. Following
through the definitions in Figure 3 and (2.11) gives, after a little rearrangement,

πA(z)

1 − πA(z)
= πA0(z)

1 − πA0(z)

1 + QA(z)

1 + QB(z)
,(3.6)

where

QA(z) = 1 − fdrA(z)

fdrA(z)
and QB(z) = 1 − fdrB(z)

fdrB(z)
.(3.7)

Usually fdrA(z) and fdrB(z) will approximately equal 1.0 near z = 0, reflecting
the large preponderance of null cases, (2.3), and the fact that nonnull cases tend to
produce z-values further away from 0. Then (3.6) gives

πA(z)
.= πA0(z) for z near 0,(3.8)

as seen in Figure 4.
Suppose we believe that fA0(z) = fB0(z) in Figure 3, in other words, that the

null cases are distributed identically in the two classes. [This being true, e.g., if
we accept the theoretical null distribution (1.1), as is usual in the microarray liter-
ature.] Then πA0(z) will be constant as a function of z,

πA0(z) = πApA0

πApA0 + πBpB0
= πApA0

p0
.(3.9)

Since π̂A(z) in Figure 4 is not constant near z = 0, and should closely approximate
πA0(z) there, we have evidence against fA0(z) = fB0(z) in this case, obtained
without recourse to models such as (3.3).
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FIG. 5. Brain Data: z-values plotted vertically versus distance x from back of brain. Small his-
togram shows x values for the 198 voxels with zi ≥ 3.02, left panel of Figure 2. Running percentile
curves reveal general upward shift of z-values near histogram mode at x = 65.

4. Fdr estimation for small subclasses. Our division of the Brain Data into
front and back halves was somewhat arbitrary. Figure 5 shows the N = 15443
z-values plotted versus x, the distance from the back of the brain. A clear wave
is visible, cresting near x = 65. Most of the 198 BH(0.1) significant voxels of
Figure 2 occurred at the top of the crest.

There is something worrisome here: the z-values near x = 65 are shifted up-
ward across their entire range, not just in the upper percentiles. This might be
due to a reading bias in the DTI imaging device, or a genuine difference between
dyslexic and normal children for all brain locations around x = 65. In neither case
is it correct to assign some special significance to those voxels near x = 65 hav-
ing large zi scores. In fact, a separate Fdr analysis of the 1956 voxels having x

in the range [60,69] [using locfdr to estimate their empirical null distribution as
N(0.65,1.442)] yielded no significant cases.

Figure 5 suggests that we might wish to perform separate analyses on many
small subclasses of the data. Large classes can be investigated directly, as above,
but a fully separate analysis may be too much to ask for a subclass of less than
a few hundred cases, as shown by the accuracy calculations of Efron (2007b).
Relationship (3.1) can be useful in such situations.

As an example, let class A be the 82 voxels located at x = 18. These display
some large z-values in Figure 5, attained without the benefit of riding a wave crest.
Figure 6 shows their z-value histogram and a cubic logistic regression estimate of
πA(z)/πA, where

πA = 82/15543 = 0.0053.(4.1)

This amounts to an estimate of 1/RA(z) in (3.1). Here we are assuming that A
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FIG. 6. Left panel: Solid histogram shows 82 z-values for class A, the voxels at x = 18; Line
histogram for all other z-values in Brain Data; “cub” is cubic logistic regression estimate of
1/RA(z). Right panel: combined local false discovery rate f̂dr(z), obtain from locfdr algorithm,
and f̂drA(z) = f̂dr(z) · R̂A(z). Dashes indicate the 82 zi ’s.

shares a common null distribution with all the other cases, fA0(z) = fB0(z) as
in (3.9), a necessary assumption since there isn’t enough data in A to separately
estimate πA0(z). In its favor is the flatness of π̂A(z)/πA near z = 0, a necessary
diagnostic signal as discussed at the end of Section 3. [Remark G of Section 8
discusses replacing πA with πA0, (3.9), in the estimation of RA(z).]

The right panel of Figure 6 compares the combined local false discovery rate
f̂dr(z), estimated using locfdr as in Efron (2007a), with

f̂drA(z) = f̂dr(z) · R̂A(z),(4.2)

for z ≥ 0. The adjustment is substantial. Whether or not it is genuine depends
on the accuracy of R̂A(z), as considered further in the “efficiency” discussion of
Section 7.

So far we have only discussed the dichotomization of cases into two classes A
and B of possibly separate relevance. Figure 5 might suggest a more continuous
approach in which the relevance of case j to case i falls off smoothly as |xj −
xi | increases, for example, as 1/(1 + |xj − xi |/10). We suppose that each case
comprises three components,

casei = (xi, Ii, zi),(4.3)

where xi is an observable vector of covariates, Ii is the unobservable null indicator
having Ii = 1 or 0 as casei is from the null or nonnull group in (2.1), and zi is the
observable z-value. We also define a “relevance function” ρi(x) taking values in
the interval [0,1], which says how relevant a case with covariate x is to casei , the
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case of interest. [Previously, ρi(xj ) = 1 or 0 as xj was or was not in the same class
as xi .]

The Two-Class model of Figure 3 can be extended to a multi-class model, where
each covariate value x has its own distribution parameters px0, fx0(z), and fx1(z),
giving

fx(z) = px0fx0(z) + (1 − px0)fx1(z) and
(4.4)

fdrx(z) = px0fx0(z)/fx(z)

as in (2.11). Let fdr(z) be the combined local false discovery rate as in the Theorem
of Section 2, and fdri (z) the separate rate fdrxi

(z). Then (3.1) generalizes to

fdri (z) = fdr(z) · Ri(z), Ri(z) = E0{ρi(x)|z}
E{ρi(x)|z} ,(4.5)

“E0” indicating null case conditional expectation.
Tail area false discovery rates (2.5) also satisfy (4.5) after the requisite defini-

tional changes,

Fdri (z) = Fdr(z) · Ri(z), Ri(z) = E0{ρi(X)|Z ≤ z}
E{ρi(X)|Z ≤ z} .(4.6)

The empirical version of (4.6) clarifies its meaning. Let pj0 and Fj0(z) indicate
px0 and the c.d.f. of fx0(z) for x = xj , (4.4), and let N(z) = #{zj ≤ z}. Taking ac-
count of all the different situations (4.3), the combined Fdr estimate (2.5) becomes

Fdr(z) =
N∑

j=1

pj0Fj0(z)/N(z),(4.7)

this being the ratio of expected null cases to observed total cases for zj ≤ zi . Sim-
ilarly,

Fdri(z) =
N∑

j=1

ρi(xj )pj0Fj0(z)
/ ∑

zj≤z

ρi(xj ),(4.8)

the ratio of expected null cases to total cases taking account of the relevance of xj

to xi . Therefore,

Fdri (z) = Fdr(z) · R̄i(z),
(4.9)

R̄i(z) = [∑N
j=1 ρi(xj )pj0Fj0(z)/

∑N
j=1 pj0Fj0(z)]

[∑zj≤z ρi(xj )/N(z)] ;

the denominator of R̄i(z) is an obvious estimate of E{ρi(X)|Z ≤ z} in (4.6), while
the numerator is the Bayes estimate of E0{ρi(X)|Z ≤ z}.
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5. Are separate analyses legitimate? The principal, and sometimes only,
concern of classical multiple inference theory was the control of Type I error in
simultaneous hypothesis testing situations. This raises an important question: is it
legitimate from an error control viewpoint to split such a situation into separate
analysis classes? The answer, discussed briefly here, depends upon the method of
inference.

The Bonferroni method applied to N independent hypothesis tests rejects the
null for those cases having p-value pi sufficiently small to account for multiplicity,

pi ≤ α/N,(5.1)

α = 0.05 being the familiar choice. If we now separate the cases into two classes of
size N/2, rejecting for pi ≤ α/(N/2), we effectively double α. Some adjustment
of Bonferroni’s method is necessary if we are contemplating separate analyses.
Changing α to α/2 works here, but things get more complicated for situations
such as those suggested by Figure 5.

False discovery rate methods are more forgiving—usually they can be applied to
separate analyses in unchanged form without undermining their inferential value.
Basically, this is because they are rates, and, as such, correctly scale with “N .” We
will discuss both Bayesian and frequentist justifications for this statement.

Starting in a Bayesian framework, as in (4.3), let

(X, I,Z)(5.2)

represent a random case, where X is an observed covariate vector, I is an unob-
served indicator equaling 1 or 0 as the case is null or nonnull, and Z is the observed
z-value. We assume X has prior distribution π(x). X might indicate class A or B
in Figure 3, or the distance from the back of the brain in Figure 5.

Let Fdrx(z) be the Bayesian tail area false discovery rate (2.5) conditional on
observing X = x,

Fdrx(z) = Prob{I = 1|X = x, Z ≤ z}.(5.3)

(Remembering that we could just as well change the Z condition to Z ≥ z or
|Z| ≤ z.) For each x, define a threshold value z(x) by

Fdrx(z(x)) = q(5.4)

for some preselected control level q , perhaps q = 0.10. This implies a rule R that
makes decisions “Î” according to (5.4),

Î =
{

1 (null), if Z > z(X),
0 (nonnull), if Z ≤ z.

(5.5)

Rule R has a conditional Bayesian false discovery rate q for every choice of x,

Fdrx(R) ≡ Prob{I = 1|Î = 0, X = x} = q.(5.6)
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Unconditionally, the rate is also q:

Fdr(R) = Prob{I = 1|Î = 0}
=

∫
X

Prob{I = 1|Z ≤ z(X),X = x}π(x|Z ≤ z) dx(5.7)

=
∫
X

q · π(x|Z ≤ z) dx = q.

This verifies the Bayesian separation property for false discovery rates: Fdrx(R) =
q separately for all x implies Fdr(R) = q . Separating the Fdr analyses has not
weakened the Fdr interpretation for the entire ensemble.

For any fixed value of z, the combined Bayesian false discovery rate Fdr(z)
(2.5) is an a posteriori mixture of the separate Fdrx(z) values,

Fdr(z) =
∫
X

Fdrx(z)π(x|Z ≤ z) dx,(5.8)

by the same argument as in the top line of (5.7). There will be some threshold
value “z(comb)” that makes

Fdr(z(comb)) = q,(5.9)

defining a combined decision rule Rcomb that, like R, controls the Bayes false
discovery rate at q . Because of (5.8), z(comb) will lie within the range of z(X);
Rcomb will be more or less conservative than the separated rule R as z(comb) <

z(X) or z(comb) > z(X).1 Not using the information in X reduces the theoretical
accuracy of rule Rcomb; see Remark A of Section 8.

Result (5.7) justifies Fdr separation from a Bayesian point of view. The cor-
responding frequentist/empirical Bayes calculations lead to essentially the same
conclusion, though not as cleanly as in (5.7).

In order to justify the empirical Bayes interpretation of Fdr(z) (2.6), we would
like it to accurately estimate Fdr(z) (2.5). Following model (2.1), define

N(z) = #{zi ≤ z} and e(z) = E{N(z)} = N · F(z);(5.10)

also let

D = Fdr(z)

Fdr(z)
and d = 1 − F(z)

e(z)
= 1

N

1 − F(z)

F (z)
.(5.11)

Assuming independence of the zi (just for this calculation) standard binomial
results show that

E{D} .= 1 + d and var{D} .= d,(5.12)

1Genovese, Roeder and Wasserman (2006) consider more qualitative situations where what we
have called “A” or “B” might be classes of greater or less a priori null probability. Their “weighted
BH” rule transforms z into values zA or zB depending upon the class, and then carries out rule (2.5)
on the transformed z’s. Here, instead, the z’s are kept the same, but compared to different thresholds
z(x). Ferkinstad et al. (2007) explore the dependence of Fdr(z) on x via explicit parametric models.
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where the approximations are accurate to order O(1/N), ignoring terms O(1/N2).
Remark B improves (5.12) to accuracy O(1/N2).

We see that Fdr(z) is nearly unbiased for Fdr(z) with coefficient of variation

CV(Fdr(z)) = d1/2 ≤ e(z)−1/2.(5.13)

We need e(z) to be reasonably large to make CV small enough for accurate esti-
mation, perhaps

e(z) = N · F(z) ≥ 10 for CV ≤ 0.3.(5.14)

If we are working near the 1% tail of F(z), common enough in Fdr applications,
we need N ≥ 1000.

Making “N” as large as possible in the best reason for combined rather than
separate analysis, at least in an empirical Bayes framework. The separate analyses
still have large N ’s in the front-back example of Figure 2, but not in Figure 6.
Section 7 shows how the small subclass approach used in Section 4 can improve
estimation efficiency.

The danger of combination is that we may be getting a good estimate of the
wrong quantity: if FdrA(z) is much different than FdrB(z), Fdr(z) may be a poor
estimate of both.

Returning to a combined analysis, let N0(z) and N1(z) be the number of null
and nonnull zi’s equal or less than z, for some fixed value of z,

No(z) = #{zi ≤ z, Ii = 1} and N1(z) = #{zi ≤ z, Ii = 0}(5.15)

in notation (4.3), so N0(z)+N1(z) = N(z), (5.10); also let e0(z) and e1(z) be their
expectations,

e0(z) = E{N0(z)} = Np0 · F0(z) and
(5.16)

e1(z) = E{N1(z)} = Np1 · F1(z).

The rule that declares Îi = 0 if zi ≤ z (i.e., “rejects the null” for zi ≤ z) has
actual false discovery proportion

Fdp(z) = N0(z)

N0(z) + N1(z)
.(5.17)

Fdp (z) is unobservable, but we can estimate it by Fdr(z) (2.2), equaling
e0(z) / (N0(z) + N1(z)) in notation (5.15). This is conservative in the frequentest
sense of being an upwardly biased estimate. In fact, it is upwardly biased given
any fixed value of N1(z):

E{Fdr(z) | N1(z)} = E

{
e0(z)

N0(z) + N1(z)

∣∣∣N1(z)

}

≥ e0(z)

e0(z) + N1(z)
(5.18)
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≥ E

{
N0(z)

N0(z) + N1(z)

∣∣∣N1(z)

}
= E{Fdp(z) | N1(z)},

where Jensen’s inequality has been used twice. Only the definition E{N0(z) =
e0(z) is required here, not independent zi ’s.

Now suppose we have separated the cases into classes A and B, employing
separate rejection rules zi ≤ zA and zi ≤ zB satisfying (in the obvious notation)

E{FdrA(zA)} = E{FdrB(zB)} ≡ q.(5.19)

Applying (5.18) shows that the separate false discovery proportions will be con-
trolled in expectation at rate q . However, for the equivalent of the Bayesian result
(5.7) to hold frequentistically, we want the combined False Discovery Proportion,

Fdpcomb = NA(zA) + NB0(zB)

NA0(zA) + NB0(zB) + NA1(zA) + NB1(zB)
,(5.20)

to satisfy E{Fdpcomb} ≤ q. Remarks C and D show that asymptotically

E{Fdpcomb} = q − c

N
+ O(1/N2)(5.21)

for some c ≥ 0, but an exact finite-sample result has not been verified. (It fails if
the denominator expectations are very small.)

Simulations show the original Benjamini–Hochberg rule behaving in the same
way; applying rule (2.8) separately to classes A and B also controls the overall
expected value of Fdpcomb at rate q , in the sense of (5.20). But again this has not
been verified analytically.

The conclusion of this section is that separate false discovery rates analyses are
legimate, in the sense that they do not inflate the combined Fdr control rate, at least
not if the denominator expectations are reasonably large.

6. Enrichment calculations. Microarray studies frequently yield disappoint-
ing results because of low power for detecting individually significant genes, Efron
(2007a). “Enrichment” techniques strive for increased power by pooling the z-
values from some pre-identified collection of genes, for instance, those from a
specified pathway, as in Subramanian et al. (2005), Newton et al. (2007) and Efron
and Tibshirani (2007). By thinking of the pooled collection as “class A” in (2.16),
the Theorem of Section 2 can be brought to bear on enrichment analysis.

Figure 7 involves a microarray study of 10,100 genes, featured in Subramanian
et al. (2005), concerning transcription factor, p53. The study compared 17 normal
cell lines with 33 lines exhibiting p53 mutations. Two-sample t-tests yielded z-
values zi for each gene, but the results were disappointing: a standard Fdr test
(2.8), with q = 0.1, yielded only one nonnull gene, “BAX.”

The solid histogram in the left panel of Figure 7 shows zi values for the 40
genes in set “P53_UP,” a collection of genes known to be up-regulated by gene
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p53. Compared with the line histogram of the 10,060 other zi ’s, the P53_UP set
definitely looks “enriched,” even though it contains only one individually signifi-
cant z-value.

The same analysis as in Figure 6 was applied in Figure 7, with class A now
the 40 P53_UP genes. The right panel shows F̂dr(z) for the combined analysis of
all 10,100 genes [obtained from locfdr, using the theoretical null (1.1)], and

f̂drA(z) = f̂dr(z) · πA

π̂A(z)
,(6.1)

with πA = 40/10,100 as in (4.1) and π̂A(z) obtained from a cubic logistic regres-
sion. We see that f̂drA(z) is much smaller than f̂dr(z) for z ≥ 2. Six of the P53_UP
genes have f̂drA(zi) < 0.10, now indicating strong evidence of being nonnull.

The null hypothesis of no enrichment can be started as fdrA(z) = fdr(z). Assum-
ing πA0(z) constant, as in (3.9), Theorem (2.16) provides the equivalent statement

enrichment null hypothesis :πA(z) = constant,(6.2)

so we can use πA(z) to test for enrichment. For instance, we might estimate πA(z)

with a linear logistic regression, and use the test statistic

S = β̂/ŝe,(6.3)

where β̂ is the estimated regression slope and ŝe its estimated standard error.
For the P53_UP gene set, (6.3) gave S = 4.54, two-sided p-value 6.10−6. This

agrees with the analyses in Subramanian et al. and Efron and Tibshirani, both of

FIG. 7. p53 microarray study, 10,000 genes, comparing normal versus mutated cell lines. Solid
histogram in left panel shows z-values for 40 genes in class P53_UP, compared with all others (line
histogram). Right panel compares f̂dr(z) for all 10,000 genes with f̂drA(z) obtained as in (4.12). Six
of the P53_UP genes have f̂drA(z) < 0.1.
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which judged P53_UP “enriched,” even taking account of simultaneous testing for
several hundred other gene sets. (In situations like that of Figure 6, where the class
A zi ’s extend across a wide range of negative and positive values, S should be
calculated separately for z < 0 and z > 0; in Figure 6 the positive zi’s yielded
S = 3.23,p-value 0.001.)

Remark E connects (6.3) to more familiar enrichment test statistics, and sug-
gests that it is likely to be reasonably efficient. The approach here has one notable
advantage: we obtain an assessment of individual significance for the genes within
the set, via f̂drA(zi), rather than just an overall decision of enrichment.

7. Efficiency. We used the Theorem of Section 2 to estimate fdrA(z) for sub-
class A:

f̂drA(z) = f̂dr(z)
πA

π̂A(z)
,(7.1)

[setting πA0(z) in (2.6) equal to πA in Figures 6 and 7]. Of course, we could also
estimate, fdrA(z) or the tail area analogue FdrA(z), (2.19), directly from the class
A data alone, but (7.1) is substantially more efficient. This section gives a very
brief overview of the efficiency calculation, with Remark E of Section 8 providing
a little more detail, concluding with a simulation example supporting the accuracy
of our methodology.

Taking logarithms in (7.1) gives

logf̂drA(z) = logf̂dr(z) + logR̂A(z), [R̂A(z) = πA/π̂A(z)].(7.2)

It turns out that log f̂dr(z) and log R̂A(z) are nearly uncorrelated with each other,
leading to a convenient approximation for the standard deviation of log f̂drA(z):

sd{logf̂drA(z)} = [(sd{logf̂dr(z)})2 + (sd{logR̂A(z)})2]1/2.(7.3)

Section 5 of Efron (2007b) provides an accurate delta method formula for
sd{logf̂dr(z)}; sd{log R̂A(z)} is also easy to approximate, using familiar logistic
regression calculations.

We expect f̂drA(z) to be more variable than f̂dr(z) since class A involves only
proportion πA of all N cases; standard sample-size considerations imply

sd{logf̂drA(z)} ∼ 1√
πA

sd{logf̂dr(z)}(7.4)

if f̂drA(z) and f̂dr(z) were estimated directly. Estimation method (7.1) does
better—the extra variability added to f̂dr(z) by R̂A(z) = πA/π̂A(z), represented
by the last term in (7.3), tends to be much smaller than (7.4) suggests.

Figure 8 illustrates a simulation example. In terms of the Two-Class model of
Figure 3, the parameters are

N = 5000, πA = 0.01, pA0 = 0.5, pB0 = 1.0
(7.5)

fA0 = fB0 ∼ N(0,1) and fA1 = ∼ N(2.5,1);
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FIG. 8. The three standard deviation terms of (7.3) for simulation model (7.5).

so we expect 50 of the 5000 zi ’s to be from class A, and 25 of these to be nonnulls
distributed as N(2.5,1), the remaining 4975 cases being N(0,1) nulls.

At z = 2.5, the center of the nonnull distribution, the ratio

sd{logf̂drA(z)}/sd{logf̂dr(z)}
is 1.61, compared to the ratio 10 suggested by (7.4). Similar results were obtained
for other choices of the simulation parameters, (7.5). See Remark H.

8. Remarks. The remarks of this section expand on some of the technical
points raised earlier.

REMARK A (Information loss if X is ignored). The observed covariate X in
(5.2), or xi in (4.3), is an ancillary statistic that affects the posterior probability
of a null case, fdrx(z) = Prob{I = 1|X = x,Z = z}. General principles say that
ignoring X will increase prediction error for I , and this can be made precise by
considering specific loss functions.

Suppose we wish to predict a binary variate I that equals 1 or 0 with probability
p or 1 − p; for a prediction “P ” in (0,1), let the loss function be

Q(I,P ) = q(P ) + q̇(P )(I − P),(8.1)

where q(·) is a positive concave function on (0,1) satisfying q(0) = q(1) = 0
[e.g., q(p) = p · (1−p) or q(p) = −{p log(p)+ (1−p) log(1−p)}], and q̇(p) =
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dq/dp. This is the “Q class” of loss functions discussed in Efron (2004a). It then
turns out that choosing P equal to the true probability p minimizes expected loss,
with risk E{Q(I,p)} = q(p).

Given Z = z, the marginal false discovery rate is

fdr(z) = Prob{I = 1 | Z = z} =
∫
X

fdrx(z)π(x|z) dx,(8.2)

similar to (5.8). Then, with fdr(z) or fdrx(z) playing the role of the true probability
P , we have

q(fdr(z)) = q

(∫
X

fdrx(z)π(x|z) dx

)
≥

∫
X

q(fdrx(z))π(x|z) dx(8.3)

by Jensen’s inequality—in other words, the unconditional marginal risk q(fdr(z))
exceeds the expected risk conditioning on x.

REMARK B [Coefficient of variation of Fdr(z)]. Standard calculations involv-
ing the first three moments of a binomial variate yield the mean and variance of
D = Fdr(z)/Fdr(z),

D ∼̇ (
1 + d − d2c, d − d2(6c − 1)

)
(8.4)

for d = (1 − F(z))/(N · F(z)) as in (5.11), and c = (1 − 2F(z))/(1 − F(z)), with
errors O(1/N3). This gives approximate coefficient of variation

CV(Fdr) .= d1/2[1 − d(3c − 1/2)],(8.5)

improving on (5.13).

REMARK C (Poisson model for Fdr relationship). Let Z indicate some region
of interest in the space of z-values for Figure 3, for instance z ≤ zA in the A

branch and z ≤ zB in the B branch. Denote the number of null, nonnull, and total
zi values in Z as N0(Z), N1(Z) and N(Z) = N0(Z)+N1(Z), with corresponding
expectations e0(Z), e1(Z) and e(Z) = e0(Z) + e1(Z). Section 5 considers the
relationship of three quantities,

Fdr(Z) = e0(Z)

N(Z)
, Fdr(Z) = e0(Z)

e(Z)
and Fdp(Z) = N0(Z)

N(Z)
,(8.6)

the estimated Benjamini–Hochberg FDR, the Bayesian Fdr and the False Discov-
ery Proportion.

Now assume that N in Figure 3 is Poisson with expectation μ, and that the zi ’s
are independent,

N ∼ Poi(μ), z1, z2, . . . , zN independent,(8.7)

implying that N0(Z) and N1(Z) are independent Poisson variates,

N0(Z) ∼ Poi(e0(Z)) independent of N1(Z) ∼ Poi(e1(Z)).(8.8)
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We can write

N0(Z) = e0(Z) + δ0,(8.9)

where δ0 has first three moments

δ0 ∼ (0, e0(Z), e0(Z)),(8.10)

and similarly for N1(Z) ≡ e1(Z) + δ1 and N(Z) ≡ e(Z) + δ.

NOTE. The independence in (8.7) is not a necessary assumption, but it leads
to the neatly specific forms of the relationship below.

The Poisson assumptions make it easy to relate the two random quantities
Fdr(Z) and Fdp(Z) in (8.6) to the parameter Fdr(Z):

LEMMA. Under assumption (8.7),

E{Fdr(Z)} .= Fdr(Z) · (
1 + 1/e(Z)

) + O
(
1/e(Z)2)

(8.11)

and

E{Fdp(Z)} .= Fdr(Z) + O
(
1/e(Z)2)

.(8.12)

Typically, e(Z) = e0(Z) + e1(Z) will be O(μ), so that the error terms in (8.11)–
(8.12) are O(1/μ2), effectively O(1/N2). The Lemma shows that Fdr(Z), the
Bayesian false discovery rate, is an excellent approximation to E{Fdp(Z)}, while
E{Fdr(Z)} is only slightly upwardly biased.

PROOF. Following through definitions (8.6) and (8.9),

Fdr(Z) − Fdr(Z) = e0(Z)

e(Z) + δ
− e0(Z)

e(Z)

= Fdr(Z)

[
1

1 + δ/e(Z)
− 1

]
(8.13)

.= Fdr(Z)

[
− δ

e(Z)
+ δ2

e(Z)2

]
,

so taking expectations yields (8.11). Similarly,

Fdr(Z) − Fdp(Z) = Fdr(Z) ·
[
1 − 1 + δ0/e0(Z)

1 + δ/e(Z)

]
(8.14)

.= Fdr(Z) ·
[
1 −

(
1 + δ0

e0(Z)

)(
1 − δ/e(Z) + δ2

e(Z)2

)]
.
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Therefore,

E{Fdr(Z) − Fdp(Z)} .= Fdr(Z)

[
E

{
δ0δ

e0(Z)e(Z)

}
− E

{
δ2

e(Z)2

}]
(8.15)

= Fdr(Z)

[
e0(Z)

e0(Z)e(Z)
− e(Z)

e(Z)2

]
= 0. �

REMARK D (Frequentist Fdr combination result). The Lemma above leads to
a heuristic verification of (5.21): that under (5.19), E{Fdrcomb} ≤ q in (5.20). To
begin with, notice that (8.7) gives expected values of NA0(zA) and NA(zA),

eA0(zA) = μπApA0FA0(zA) and eA(zA) = μπAFA(zA),(8.16)

so
eA0(zA)

eA(zA)
= pA0FA0(zA)

FA(zA)
= FdrA(zA),(8.17)

the Bayesian Fdr for class A, and similarly, eB0(zB)/eB(zB) = FdrB(zB). From
(8.11) and (5.19), applied individually within the two classes,

FdrA(zA)
.= q

[
1 − 1

eA(zA)

]
≤ q and

(8.18)

FdrB(zB)
.= q

[
1 − 1

eB(zB)

]
≤ q.

Therefore, the combined Bayesian Fdr is also bounded by q ,

Fdrcomb = eA0(zA) + eB0(zB)

eA(zA) + eB(zB)

= eA(zA)FdrA(zA) + eB(zB)FdrB(zB)

eA(zA) + eB(zB)
(8.19)

≤ eA(zA)q + eB(zB)q

eA(zA) + eB(zB)
= q.

But E{Fdpcomb} .= Fdrcomb according to (8.12), verifying (5.21).

REMARK E (The slope statistic for testing enrichment). Slope statistic (6.3),
S = β̂/ŝe, is asymptotically fully efficient for enrichment testing under a two-
sample exponential families model. Suppose that all the z-values come, indepen-
dently, from a one-parameter exponential family having density functions

gη(z) = eηz−ψ(η)g0(z),(8.20)

as in Lehmann and Romano (2005), with

η =
{

ηA, in class A,
ηB, in class B.

(8.21)
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Define β = ηA − ηB . As N → ∞, the MLE β̂ has asymptotic null hypothesis
distribution

β̂ ∼̇ N

(
β,

1

NπAπBV (η0)

)
,(8.22)

where πA and πB are the proportions of zi ’s from the two classes, and V (η0) is
the variance of z if ηA = ηB equals, say, η0.

Bayes rule applied to (8.20)–(8.21) gives

logit(πA(z)) = βz + c

[
c = log

(
πA

πB

)
+ ψ(ηB) − ψ(ηA)

]
,(8.23)

with β = ηA − ηB as above. Standard calculations show that β̂ obtained from the
logistic regression model (8.23) also satisfies (8.22). This implies full asymptotic
efficiency of the slope statistic (6.3) for testing ηA = ηB , the “no enrichment” null
hypothesis. Under normal assumptions, gη(x) ∼ N(η,1) in (8.20), (6.3) is asymp-
totically equivalent to zA − zB , the difference of class means; “limma” [Smyth
(2004)], an enrichment test implemented in Bioconductor, is also based on zA, as
discussed in Efron and Tibshirani (2007b).

REMARK F [The additive variance approximation (7.3)]. Being a little more
careful, we can use (3.9) to write (7.1) as

f̂drA(z) = f̂dr(z)
πA0

π̂A(z)

(
πA0 = πApA0

πApA0 + πBpB0

)
,(8.24)

under the assumption that fA0(z) = fB0(z) in Figure 3. Binning the data as in (3.2)
gives

�f̂drAk = �f̂drk − �π̂Ak + log(πA0),(8.25)

where �f̂drAk is log(f̂drA(z)) evaluated at the midpoint z(k) of bin k, and similarly,
�f̂drk = log(f̂dr(z(k))) and �π̂Ak = log(π̂A(z(k))). Locfdr computes the estimates
�f̂drk from the vector of counts N = (. . . ,Nk, . . .), while a standard logistic re-
gression program computes �π̂Ak from the vector of proportions rA = (. . . , rAk =
NAk/Nk, . . .), (3.2); N and rA are, to a first order of calculation, uncorrelated,
leading to approximation (7.3).

In broad outline, the argument depends on the general equality

var{X + Y } = var{X} + var{Y } + 2 cov{X,E(Y |X)},(8.26)

applied to X = �f̂drk and Y = −�π̂Ak . Both var{X} and var{Y } are O(1/N), but,
because the expectation of rA does not depend on N, the covariance term in (8.26)
is of order only O(1/N2), and can be ignored in (7.3).
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REMARK G (The assumption of identical null distributions). If we are willing
to assume that fA0(z) = fB0(z) in Figure 3 [or equivalently, that fA0(z) = f0(z),
the combined null density], then relationship (3.1) becomes

fdrA(z) = fdr(z)
πA0

πA(z)
[πA0 = πApA0/p0],(8.27)

as in (3.9), which can be written as

fdrA(z) = fdr(z)
πA

πA(z)

pA0

p0
.(8.28)

The examples in Figures 6 and 7 estimated Ra(z) = πA0/πA(z) by πA/π̂A(z),
ignoring the final factor pA0/p0 in (8.28). This is probably conservative: one
would expect a small subclass A of interest to have proportionately more nonnull
cases than the whole ensemble, in other words, to have pA0/p0 < 1.

It isn’t difficult to estimate the full relationship (8.27). Since πA0
.= πA(z) for z

near 0, (3.8)–(3.9), we can set

f̂drA(z) = f̂dr(z)
π̂A(0)

π̂A(z)
;(8.29)

(8.29) gives better results if the logistic regression model for estimating πA(z)

incorporates a flat interval around z(0)—for instance, if only positive values of z

are of interest,

logit(πA(z)) = β1 + β2 max(z − 1,0)2 + β3 max(z − 1,0)3.(8.30)

REMARK H (Simulation example). Figure 9 graphs 100 simulations of
f̂drA(z), (7.1), drawn from model (7.5). The comparison with the actual curve
fdrA(z) shows excellent accuracy. Here neither the simulations nor the actual curve
incorporate the factor pA0/p0 in (8.28), which could be included as in (8.29)–
(8.30).

A simpler correction starts with f̂drA(z), (7.1), estimates pA0 by

p̂A0 = ∑
A

f̂drA(zi)/NA,(8.31)

and finally multiplies f̂drA(zi) by p̂A0/p0. In the simulations for Figure 9, p̂A0
had mean 0.575 and standard deviation 0.035, reasonably close to the true value
pA0 = 0.50.

9. Discussion and summary. A more accurate title for this paper might have
been “When shouldn’t hypothesis testing problems be combined?” A general al-
gorithm for combining or separating problems is beyond my scope here, but the
analysis makes it clear that combination can be dangerous in situations like that of
Figure 5. On the positive side, the simple Bayesian theorem of Section 2, extended
at (4.5), helps signal if separation is called for, and even how it can be efficiently
carried out. Some specific points:
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FIG. 9. Light lines show 100 simulations of f̂drA(z), (7.1), from model (7.5); heavy line is ac-
tual fdrA(z) curve. [Factor pA0/p0 in (8.28) not included in actual or simulations.] Also shown is
combined rate fdr(z). Formula (7.1) provides good accuracy in this case.

• Combining problems increases the empirical Bayes inferential accuracy, with
N > 1000 necessary for reasonably accurate direct estimation of false discov-
ery rates (5.13)–(5.14), at least in the partially nonparametric framework of Ben-
jamini and Hochberg (1995).

• However, the Separate-Class model of Figure 2, and its ensuing theorem (2.16),
imply that separate inferences can be necessary for problems of differing struc-
ture. The question of whether to combine problems amounts, here, to a question
of trading off variance with bias in the estimation of false discovery rates.

• Situations like that of Figure 5 argue strongly against a single combined analy-
sis. The theorem can be implemented as in Figure 6 to estimate fdr or Fdr for
small subclasses, N = 82 in Figure 6, and with surprising accuracy as shown in
Section 7.

• A formal test for separation can be based on the slope statistic (6.3). This pro-
vided strong evidence for the necessity of separation in the p53 enrichment ex-
ample of Figure 7, and moderately strong evidence in Figure 6.

• Section 5 shows that controlling the false discovery rate in separate classes also
controls it in combination, at least if the expected number of tail events isn’t
too small. In this sense, Fdr analysis has an advantage over other simultaneous
testing techniques.

Whether or not the specific methodology presented here appeals to the reader,
the general question of which problems to combine in a simultaneous testing situ-
ation remains important. As a matter of due diligence, plotting test statistics versus
possible covariates, as in Figure 5, can raise a warning flag against casual combina-
tion. Such covariates exist even in loosely structured microarray studies—where,
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FIG. 10. Paired t-statistics comparing affected versus nonaffected tissue in 13 cancer patients;
microarray study of 12625 genes. The t-values are plotted vertically, against the order in which they
were read from the array. Smoothing spline (solid curve) reveals periodic disturbances.

for example, the order in which the expression levels are read off the plate can
reveal noticeable effects.

This last point is illustrated in Figure 10, where a periodic disturbance in the mi-
croarray reading mechanism has evidently affected the gene-wise summary statis-
tics. Subtracting the estimated disturbance function from the observed t-statistics
is an obviously wise first step. Adjustments that make cases more comparable are a
complementary tactic to separate analyses. Both can be useful in large-scale testing
situations. In Figure 5, for example, we might adjust the z-values by subtracting the
local median and dividing by the local spread (84%–16%). The resulting version
of Figure 5, however, still displays obvious inhomogeneity, and requires separate
analyses like that in Figure 7 to ferret out the interesting cases.

REFERENCES

BENJAMINI, Y. and HOCHBERG (1995). Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate under depen-
dency. Ann. Statist. 29 1165–1188. MR1869245

EFRON, B. (2004a). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. J.
Amer. Statist. Assoc. 99 96–104. MR2054289

EFRON, B. (2004b). The estimation of prediction error: Covariance penalties and cross-validation
(with discussion). J. Amer. Statist. Assoc. 99 619–642. MR2090899

EFRON, B. (2005). Local false discovery rates. Available at http://www-stat.stanford.edu/~brad/
papers/False.pdf.

EFRON, B. (2007a). Correlation and large-scale significance testing. J. Amer. Statist. Assoc. 102
93–103. MR2293302

EFRON, B. (2007b). Size, power and false discovery rates. Ann. Statist. 35 1351–1377.

http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=1869245
http://www.ams.org/mathscinet-getitem?mr=2054289
http://www.ams.org/mathscinet-getitem?mr=2090899
http://www-stat.stanford.edu/~brad/papers/False.pdf
http://www.ams.org/mathscinet-getitem?mr=2293302
http://www-stat.stanford.edu/~brad/papers/False.pdf


SEPARATING AND COMBINING HYPOTHESIS TESTS 223

EFRON, B. and TIBSHIRANI, R. (2007). On testing the significance of sets of genes. Ann. Appl.
Statist. 1 107–129.

FERKINSTAD, E., FRIGESSI, A., THORLEIFSSON, G. and KONG, A. (2007). Covariate-modulated
false discovery rates. Available at http://folk.uio.no/egilfe/cmfdr-ims.pdf.

GENOVESE, C., ROEDER, K. and WASSERMAN, L. (2006). False discovery control with p-value
weighting. Biometrika 93 509–524. MR2261439

LEHMANN, E. and ROMANO, J. (2005). Testing Statistical Hypotheses, 3rd ed. Springer, New York.
MR2135927

NEWTON, M., QUINTANA, F., DEN BOON, J., SENGUPTA, S. and AHLQUIST, P. (2007). Random-
set methods identify distinct aspects of the enrichment signal in gene-set analysis. Ann. Appl.
Statist. 1 85–106.

SCHWARTZMAN, A., DOUGHERTY, R. F. and TAYLOR, J. E. (2005). Cross-subject comparison of
principal diffusion direction maps. Magn. Reson. Med. 53 1423–1431.

SMYTH, G. (2004). Linear models and empirical Bayes methods for assessing differential expression
in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3 (1). Available at http://www.bepress.
com/sagmb/vol3/iss1/art3. MR2101454

SUBRAMANIAN, A., TAMAYO, P., MOOTHA, V. K., MUKHERJEE, S., EBERT, B. L.,
GILLETTE, M. A., PAULOVICH, A., POMEROY, S. L., GOLUB, T. R., LANDER, E. S. and
MESIROV, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for inter-
preting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102 15545–15550.

DEPARTMENTS OF STATISTICS

AND HEALTH, RESEARCH AND POLICY

SEQUOIA HALL

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4065
USA
E-MAIL: brad@stat.stanford.edu

http://folk.uio.no/egilfe/cmfdr-ims.pdf
http://www.ams.org/mathscinet-getitem?mr=2261439
http://www.ams.org/mathscinet-getitem?mr=2135927
http://www.bepress.com/sagmb/vol3/iss1/art3
http://www.ams.org/mathscinet-getitem?mr=2101454
mailto:brad@stat.stanford.edu
http://www.bepress.com/sagmb/vol3/iss1/art3

	Introduction
	A separate-class model
	Class-wise Fdr estimation
	Fdr estimation for small subclasses
	Are separate analyses legitimate?
	Enrichment calculations
	Efficiency
	Remarks
	Discussion and summary
	References
	Author's Addresses

