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SUFFICIENT BURN-IN FOR GIBBS SAMPLERS FOR
A HIERARCHICAL RANDOM EFFECTS MODEL

BY GALIN L. JONES AND JAMES P. HOBERT*
University of Minnesota and University of Florida

We consider Gibbs and block Gibbs samplers for a Bayesian hierarchical
version of the one-way random effects model. Drift and minorization
conditions are established for the underlying Markov chains. The drift and
minorization are used in conjunction with results from J. S. Rosenthal
[J. Amer. Statist. Assoc. 90 (1995) 558-566] and G. O. Roberts and
R. L. Tweedie Bochastic Process. Appl. 80 (1999) 211-229] to construct
analytical upper bounds on the distance to stationarity. These lead to upper
bounds on the amount of burn-in that is required to get the chain within
a prespecified (total variation) distance of the stationary distribution. The
results are illustrated with a numerical example.

1. Introduction. We consider a Bayesian hierarchical version of the standard
normal theory one-way random effects model. The posterior density for this model
is intractable in the sense that the integrals required for making inferences cannot
be computed in closed form. Hobert and Geyer (1998) analyzed a Gibbs sampler
and a block Gibbs sampler for this problem and showed that the Markov chains
underlying these algorithms converge to the stationary (i.e., posterior) distribution
at a geometric rate. However, Hobert and Geyer stopped short of constructing
analytical upper bounds on the total variation distance to stationarity. In this
article, we construct such upper bounds and this leads to a method for determining
a sufficientourn-in.

Our results are useful from a practical standpoint because they obviate
troublesome, ad hoc convergence diagnostics [Cowles and Carlin (1996) and
Cowles, Roberts and Rosenthal (1999)]. More important, however, we believe
that this is the first analysis of aractically relevant Gibbs sampler on a
continuous state space that provides viable burn-ins. By practically relevant, we
mean that the stationary distribution is complex enough that independent and
identically distributed (i.i.d.) sampling is not straightforward. We note that the
Gibbs samplers analyzed by Hobert (2001) and Rosenthal (1995a, 1996) are not
practically relevant since i.i.d. samples can be drawn from the corresponding
stationary distributions using simple, sequential sampling schemes [Jones (2001)
and Marchev and Hobert (2004)]. Some notation is now introduced that will allow
for a more detailed overview.
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Let X ={X;,i=0,1,...} be a discrete time, time homogeneous Markov
chain that is irreducible, aperiodic and positive Harris recurrent. €k, -) be
the probability measure corresponding to the random variZbleonditional on
starting the chain aXo = x; that is, P" is then-step Markov transition kernel. Let
() be the invariant probability measure of the chain andl lgf denote the total
variation norm. Formally, the issue of burn-in can be described as follows. Given
a starting valuerg and an arbitrary > 0, can we find am* = n*(xg, ¢) such that

1) | P (x0,) — ()| < €?

If the answer is “yes,” then, since the left-hand side of (1) is nonincreasing in
the number of iterations, the distribution &f, is within ¢ of = for all k > n*.
Because we are not demanding thabe the smallest value for which (1) holds, it

is possible that the chain actually gets withiof stationarity in much fewer than

n* iterations. For this reason, we call a sufficient burn-in.

Several authors [see, e.g., Meyn and Tweedie (1994), Rosenthal (1995a),
Cowles and Rosenthal (1998), Roberts and Tweedie (1999) and Douc, Moulines
and Rosenthal (2002)] have recently provided results that allow one to caletilate
whenX is geometrically ergodic. However, to use these results one must establish
both adrift condition and an associateainorization condition for X. [For an
accessible treatment of these concepts, see Jones and Hobert (2001).] In this article
we establish drift and minorization for the Gibbs samplers analyzed by Hobert
and Geyer (1998). These conditions are used in conjunction with the theorems of
Rosenthal (1995a) and Roberts and Tweedie (1999) to construct formulas that can
be used to calculate*.

The rest of the article is organized as follows. The model and algorithms are
described in Section 2. Section 3 contains important background material on
general state space Markov chain theory as well as statements of the theorems of
Rosenthal (1995a) and Roberts and Tweedie (1999). This section also contains a
new conversion lemma that provides a connection between the two different types
of drift used in these theorems. We establish drift and minorization for the block
Gibbs sampler in Section 4 and the same is done for the Gibbs sampler in Section 5.
In Section 6 the results are illustrated and Rosenthal’s theorem is compared with
the theorem of Roberts and Tweedie. Section 7 contains some concluding remarks.

2. The model and the Gibbs samplers. Consider the following Bayesian
version of the standard normal theory one-way random effects model. First,
conditional o9 = (61, ..., 0x)T andx, the datal;; are independent with

Y16, e ~ N@;, 27D,

wherei=1,...,K andj=1,...,m;. At the second stage, conditional prand
Ao, 61, ...,0k andi, are independent with

Oili, o ~N(u, 25 h) and 1, ~ Gammaag, by),
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wherea, andbo are known positive constants. [We s@/~ Gammada, ) if its
density is proportional ta*~te=*# I (w > 0).] Finally, at the third stage anda,
are assumed independent with

it ~N(mo,sgt) and iy ~ Gammaay, by),

wheremy, s, a1 andb1 are known constants; all buip are assumed to be positive
so that all of the priors are proper. The posterior density of this hierarchical model
is characterized by

2 TR (0, Ay) o< f (016, Xe) f O, o) f (he) f () f (Ro),

where » = (A, A.)T, y is a vector containing all of the data, antldenotes

a generic density. [We will often abuse notation and wgeto denote the
probability distribution associated with the density in (2).] Expectations with
respect tar;, are typically ratios of intractable integrals, the numerators of which
can have dimension as high &s+ 3 [Jones and Hobert (2001)]. Thus, to make
inferences usingr,, we must resort to (possibly) high dimensional numerical
integration, analytical approximations or Monte Carlo and Markov chain Monte
Carlo techniques.

In their seminal article on the Gibbs sampler, Gelfand and Smith (1990) used
the balanced version of this model (in whigh = m) as an example. [See also
Gelfand, Hills, Racine-Poon and Smith (1990) and Rosenthal (1995b).] Each
iteration of the standard, fixed-scan Gibbs sampler consists of updating all of the
K + 3 variables in the same predetermined order. flileconditionals required
for this Gibbs sampler are now reported. Define

K
vi(0, ) =Y (6 — >,
i=1

K
v2(0) =Y m;i(6; —5)? and SSE=Y (yij — )%
i=1 i,j

wherej; = m; >4 yij- The full conditionals for the variance components are

K v1(0,
€) rol0, 1, dey y ~ Gamme(i +aq, 1(2 ) + bl)
and
M v2(0) + SSE
(4) l6 st 0,y ~ Gammy 5+ az, HO T2 ),

whereM = Y, m;. Letting6_; = (01, ...,6;_1,0;41,....0x)T andd = K1 x
>"i 6, the remaining full conditionals are
Ao +mikeyi 1 )

Ao +mike Ao +mik,

eile—iv M’)‘O’)‘e’y ~ N(
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fori=1,...,K and

ul@,kg,ke,y~N<som0+KA99, 1 )

sot+Kig so+ K
We consider the fixed-scan Gibbs sampler that updatethen thed;’s, then
Ag and .. Since thed;’s are conditionally independent givem, o), the order
in which they are updated is irrelevant. The same is trugyaind A, since these
two random variables are conditionally independent gi¢@ne). If we write a
one-step transition ag/, 6’, ') — (u, 0, 1), then the Markov transition density
(MTD) of our Gibbs sampler is given by

K
ke, 0, 11,6, 1)) = f(l6', Ay, A, y)[]_[ FOil0—i, 1, hg, Ay, y)}
i=1

X f(Aol0, i, dgy ) f (elO, 1, 2g, ).

Hobert and Geyer (1998) considered this same update order. We note here that,
in general, Gibbs samplers with different update orders correspond to different
Markov chains. However, two chains whose update orders are cyclic permutations
of one another converge at the same rate.

As an alternative to the standard Gibbs sampler, Hobert and Geyer (1998)
introduced the more efficietstock Gibbs sampler in which all of the components
of £ = (01,...,0k, )T are updated simultaneously. These authors showed that
&lr, y ~N(&*, V) and gave formulas fagr* = £*(), y) andV = V (1, y). Because
we will make extensive use of these formulas, they are restated in Appendix A. One
iteration of the block Gibbs sampler consists of updadpgi,. andé in some
order. Due to the conditional independence.gfind’., the block Gibbs sampler
is effectively a two-variable Gibbs sampler data augmentation algorithm
[Tanner and Wong (1987)], the two components beingnd A. We choose
to updatea first because, as we will see later, updating the most complicated
distribution last typically simplifies the calculations required to establish drift and
minorization conditions. If we write a one-step transitio(&s¢’) — (1, &), then
the corresponding MTD is given by

k(A EIVED = FOUE, y) fEIX Y

= fol§", y) f(Rel&', ¥) f(ElNo, e, y).

Hobert and Geyer (1998) considered the opposite update order because they were
not attempting to simultaneously establish daifid minorization. Note, however,

that our update order is just a cyclic permutation of the order used by Hobert and
Geyer.

A proper formulation of the burn-in problem requires some concepts and
notation from Markov chain theory. These are provided in the following section.
More general accounts of this material can be found in Nummelin (1984), Meyn
and Tweedie (1993) and Tierney (1994).

(5)
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3. Markov chain background. Let X c R? for p > 1 and let8 denote
the associated Borel-algebra. Suppose that={X;, i =0, 1,...} is a discrete
time, time homogeneous Markov chain with state sgdcand Markov transition
kernel P; that is, forx € X and A € B8, P(x,A) = Pr(X;;1 € A|X; = x).
Also, forn =1,2,3,..., let P" denote then-step transition kernel, that is,
P"(x, A) = Pr(X;4, € A|X; = x) s0, in particular,P = PL. Note thatP"(x, -)
is the probability measure of the random varialflg conditional on starting the
chain atXg = x.

Let v be a measure oB. We will say that the Markov chairX satisfies
assumption ) if it is v-irreducible, aperiodic and positive Harris recurrent with
invariant probability measure (-). It is straightforward to show that the Gibbs
samplers described in the previous section satisfy assumptipwith v equal to
Lebesgue measure. Under assumptigh, for everyx € X we have

IP"(x,) =740  asn— oo,

where ||P"(x, ) — w(-)|| := SUPycg |P"(x, A) — m(A)| is the total variation
distance betwee®” and . The chainX is calledgeometrically ergodic if it
satisfies assumption4() and, in addition, there exist a constankG < 1 and a
functiong : X6 — [0, co) such that, for any € X,

(6) I1P*(x,) = () = g0)t"

forn =1,2,.... It has recently been demonstrated that establishing drift and
minorization conditions forX verifies geometric ergodicity (the existence of

g andt) and yields an upper bound on the right-hand side of (6). See Jones and
Hobert (2001) for an expository look at this theory. In this paper, we will focus
on the results due to Rosenthal (1995a) and Roberts and Tweedie (1999). Slightly
simplified versions of these results follow.

THEOREM 3.1 [Rosenthal (1995a)].Let X be a Markov chain satisfying
assumption (). Suppose X satisfies the following drift condition. For some
function V : X6 — [0, 00), some 0 < y < 1 and someb < oo,

(7 E[VXitDIXi=x]1<yV(&x)+b VxeX.

Let C ={x € X:V(x) <dr},wheredr > 2b/(1— y) and supposethat X satisfies
the following minorization condition. For some probability measure Q on 8 and
somee > 0,

(8) P(x,)>eQ() VxeC.
Let Xo = xg and define two constants as follows:

1+dRr

— TR and U=1+42ydr+b).
=152+ ydr +2lydr+b)
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Then, for any0 <r < 1,

r

U™ \" b
12760 = w0l = @=er" + (L ) (142 + Vo).
o 1-y

THEOREM 3.2 [Roberts and Tweedie (1999, 2001)].et X be a Markov chain
satisfying assumption (). Suppose X satisfies the following drift condition. For
some function W: X +— [1, 00), some 0 < p < 1 and some L < oo,

(9) EW( X1 Xi=x]<pW(x)+ LIs(x) Vx e X,
where S = {x € X: W(x) < drt} and

drT > L 1
RTZ 7T .
Suppose further that X satisfies the following minorization condition. For some
probability measure Q on 8 and somee > 0,

(20) P(x,)>e0() Vxes.
Let X = xo and define some constants as follows:
c=o4 L J— (kdrT — €)(1+dRrT) + LdrT
= 1+drt’ B (14 drr)k ’
‘= log[(1/2)(L/(1 - p) + w(x0))] _logl(1—¢&)71J]
- log(xk—1) ’  log(k—1)
. logk log(1l — ¢)
Prr = eXp[log J —log(1— e)]'

Thenif J >1landn’ =k — ¢ > n(1—¢)/e, wehave, for any 1 < B8 < Brr,

K CBA=e) Y (4 1 g
(11) |P*(xg,:) — ()] < |:1— 1+ n/n/)l/ni|<1+ ; )(1+ n/) .

REMARK 3.1. The version of Theorem 3.2 in Roberts and Tweedie (1999)
relies on their Theorem 5.2, whose proof contains an error. Using Roberts
and Tweedie’s (1999) notation, suppogeX — [1,00),d >0, C ={x € X:

V(x) <d} andh(x,y) = (V(x) + V(y))/2. Roberts and Tweedie (1999) claim
that

h(x,y) > A 4+d)jcxcp(x,y),

which is false and, in fact, all that we can claim is that

1+d
h(x,y)> Iicxcy(x,y).
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We have accounted for this error in our statement of Theorem 3.2 and we are
grateful to an anonymous referee for bringing the error to our attention.

REMARK 3.2. Roberts and Tweedie (1999) provide a different bound for the
caseJ < 1 but, since we do not use it in our application (see Section 6), it is not
stated here.

REMARK 3.3. Roberts and Tweedie (1999) show that the right-hand side
of (11) is approximately minimized wheh= Brt/(1+ n/n")/".

REMARK 3.4. It is well known [see, e.g., Meyn and Tweedie (1993),
Chapter 15] that (7) and (8) together [or (9) and (10) together] imply Xha
geometrically ergodic. See Jones and Hobert (2001) for an heuristic explanation.

In our experience it is often easier to establish a Rosenthal-type drift condition
than a Roberts-and-Tweedie-type drift condition. The following new result
provides a useful connection between these two versions of drift.

LEmMmA 3.1. Let X be a Markov chain satisfying assumption (). Suppose
thereexist V: X — [0, 00), ¥ € (0, 1) and b < oo such that

(12) ElVXptD| Xy =x]1<yV&x)+5b VxeX.
St W(x) =1+ V(x). Then, for any a > 0,
(13) E[W(Xu+D| Xy =x] < pW(x) + Lic(x) VxeX,
wherep=(@+y)/(a+1),L=b+ (1—y) and
_ . (a+ 1L
C= {xeX.W(x)Sia(l_p) }

ProoOF Clearly, (12) implies that
EIWX; )| Xi=x]<yWx)+b+A—-y)=yWx)+L VxeX.
SetAW (x) = E[W (Xp+1)|X, = x]— W(x) andB = (1— y)/(a + 1). Then
E[WXn+D|Xn =x]<[1-(@a+DBIW(x)+ L
or, equivalently,
AW (x) < —BW(x) —aBW(x)+ L
forallx € X.If x ¢ C, then

(a+HL (@+1HL L
MO ATy Taa ) T
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Now write W (x) = % + s(x), wheres(x) > 0. Then

AW (x) < —BW(x) — aﬂ[% + s(x)i| +L
=—BW(x) —aBs(x)

< —BWX).
If, on the other handx € C, then
AW(x) = =BW(x) —apW(x) + L
<—BW(x)+L.
Now putting these together gives
E[W(Xn4D)|Xn =x] = (1= B)W(x)+ Lic
=pW(x)+ Llc. O

REMARK 3.5. Since
(@a+1L _ L
al—p) " 1-p
(13) constitutes a drift condition of the for(9). Therefore, if we can establish (12)
as well as a minorization condition on the g&tit will be as straightforward to
apply Theorem 3.2 as it is to apply Theorem 3.1. Indeed, this is the approach we
take with our Gibbs samplers. Moreover, we use 1 in our application since

(a+1)L . . . .
ad—p) IS minimized at this value.

’

While the Gibbs sampler is easier to implement than the block Gibbs sampler, it
is actually harder to analyze because it is effectively a three-variable Gibbs sampler
as opposed to the block Gibbs sampler, which is effectively a two-variable Gibbs
sampler. Thus, we begin with block Gibbs.

4. Drift and minorization for the block Gibbs sampler. Drift conditions of
the form (7) are established for the unbalanced and balanced cases in Sections
4.1 and 4.2, respectively. A minorization condition that works for both cases
is established in Section 4.3. Throughout this section we assumenthat
min{my, mo, ..., mg} > 2 and thatk > 3.

4.1. Drift: unbalanced case. Define two constants as follows:

= ! and &= !
T 20+ K-—2 2T o+ M —2

Also defineéds = (K + 1)d2 and 4 = 82 Z,K:lmi_l. Our assumptions about

o1
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K andm’ guarantee that@ §; < 1fori =1, 2, 3, 4. Sets§ = max{s1, 83}. Also, let
A denote the length of the convex hull of the §gt, yo, ..., yx, mg} and define
2b1 2by + SSE
=——— and =\
AT 2+ k-2 2 M —2

PrRoPOSITION4.1. Fixy € (8, 1) andlet ¢1 and ¢ be positive numbers such
that "’;—24 + 8 < y. Define the drift function as V1(6, i) = ¢1v1(0, ) + ¢2v2(0),
wherev1(0, 1) and v2(9) areasdefined in Section 2. Then the block Gibbs sampler
satisfies (7) with

K
b=¢1 [q +e2y mit+ KAZ} + ¢alca(K + 1) + MA?Z.
i=1

ProoF It suffices to show that

(14)  EWVA©, i, 0, '] < drd100(6', 1) + ("’;—‘? +33)ava(®) +b
because
1511 (0, 1) + ("’;—j“ +83)gaua(®) +b
< p16u(0' 1) + (% +8)gaua(6) + b
< yd101(0', 1) + v o020 + b

=y Vi@, 1) +b.
In bounding the left-hand side of (14), we will use the following rule:
(15) E[V1(0, w1, 6", 11 = E[V1(0, )16, '] = E{E[V1(6, w)|A1l0", 1},

which follows from the form of the MTD for the block Gibbs sampler given in (5).
We begin with some preliminary calculations. First, note that

2b o', u
EGGH0 1) = 5 nv. 1)
(16) 201+ K —2 201+ K -2
=c1+81v1(8", 1)
and
2bs + SSE 0
EGZN0 ) = 2T 558 vl
(17) 20+ M -2 20+ M -2

= cp+ 82v2(0").
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We now begin the main calculation. Using our rule, we have

K
E[v1(0, w0, w'1=>_ E[& —w)?0'. 1]
i=1

=FE

K
> EL6: — w?IA] eu}
i=1

Using results from Appendix A, we have
E[(6; — w2l
= Var(g;|1) + Var(u|r) — 2 CoM(6;, w) Al + [E(6;|») — E(u|n)]?
1 M4 Gotmid)? =290 +mike)

T g+ mik, (504 1) (hg + miA,)2
+[E6:1%) — E(u|n))?
-1 ik FLE@GI) — EuMP
Ao tmire  (s0+1)(hg +mike)? ' #
< 4 Mite 2
m;Ae t(hg +mjr,)
Hence,
K K
(18) STE[G - WA =2ty mit 4t + KA

i=1 i=1
Thus, by combining (16)—(18) we obtain
E[p1v1(0, w)0', 1]

(19) K
< 819101(0, 1) + 8a1v2(0) + 1| c1H 2y m; T+ KAZ .

i=1
Now
9/ M/}

E[v20)10', 1W'1=>_ miE[(¢ — 310", '] = E{ > mi E[(6; — 5:)21A]

We can bound the innermost expectation as follows:
E[(6; — 5?11 = Var@;11) + [E6i|1) — 51
ot
Ao tmike  (so+1)(ho +mike)
< o 2
MmiAe t(hog +mike)

5+ E@©:13) — 3]
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Hence

K

(20) > miE[6; — 5% < (K + Dagt+ MAZ,
i=1

and so by combining (17) and (20) we obtain

(21) El¢2v2(0)10", 11'] < 83p2v2(8) + ¢2l(K + Dea + MAZ].
Combining (19) and (21) yields (14).0

REMARK 4.1. The upper bound on the total variation distance that is the
conclusion of Theorem 3.1 involves the starting value of the Markov chain,
only throughV (xg). Moreover, given the way in whicl (xg) enters the formula,
it is clear that the optimal starting value, in terms of minimizing the upper bound,
is the starting value that minimizé&(xp). This starting value is also optimal for
the application of Theorem 3.2. In Appendix B we show that the valu@ gf)
that minimizesVy (@, u) has components

5 _ DA 05/ @1+ $om )/ Yjoa(m /(1 + dom )] + fomii
L ¢1+ gom,

andp=K"1YyK 4.

While the conclusion of Proposition 4.1 certainly holds when the data are bal-
anced, it is possible to do better in this case. Specifically, the proof of Propo-
sition 4.1 uses # general bounds ofE (6;|1) — E(u|1)]% and [E (6;|1) — 7;12
given in Appendix A. Much sharper bounds are possible by explicitly using the
balancedness, and these lead to a better drift condition.

4.2. Drift: balanced case. Now assume that; =m >2foralli=1,..., K
and letés = K2 € (0, 1).

PrRoOPOSITION4.2. Fix y € (8,1) and let ¢ be a positive number such that
$85+ 8 < y. Define the drift function as Va(0, 1) = ¢v1(0, 1) +m1v2(6). Then
the block Gibbs sampler satisfies (7) with

K
b=¢c1+ (@K + K +1)/mlca +maxs, 1} Y max{(F — 32, (mo — 3)?},
i=1
wherej := K1Y K, 5.
PRoOE When the data are balanced,

Mgk,
Ao +mhr’
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so thatE (u|A) = (ty + moso)/(so +1). Hence forali =1, ..., K we have

_ Ao ty + mosg AeMy; _ 2
[E(e,-m—y,-]Z:[ (y )+ i —y,-]
Ag +mi, \  so+t Ao +mAe
_( Ao )2[r<y—yi>+so<mo—y,-)]2
Ag +mh, S0+t
ko \?t(G = 50 + solmo — 3i)?
<< 0 ) y—Vi so(mo — yi
~ \Xg +mh, so+1t '

where the last inequality is Jensen’s. A similar argument shows that, for all
i=1...,K,

(B@ 1) — B < (2 >2t® — 3" solmo - 37

Ao +mA, so+1t
Therefore,
PLE (1)) — E(uIM)]? 4 [E@; 1) — 31
S _ 532 _ 532
< max(e. 1}[@ 3102 + so(mo — i) }
so+1
and hence

K
[PLE®:11) — E(u|M]? + [E©6:12) — 5i1?)
=1

K
<maxe, 1}y _max{(y — 52 (mo — )}
i=1
To prove the result, it suffices to show that
(22)  E[Va0, ), 0", 1] < p8101(0', 1) + (¢85 + 83)m Tv2(6') + b
since
$3101(6', 1) + ($85 + 83)m ™ tv2(6)) + b
< ¢8v1(0', 1) + ($35 + &)m 1va(8') + b
<ydui®', 1) +ym va(6) + b
=y Va0, 1) +b.
The remainder of the proof is nearly ideral to the proof of Proposition 4.1 and
is therefore left to the reader]

REMARK 4.2. This result is stated (without proof) in Jones and Hobert
[(2001), Appendix A] and the statement contains an error. Specifi¢alystated
incorrectly and should appear as above.
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4.3. Minorization. We now use a technique based on Rosenthal's (1995a)
Lemma 6b to establish a minorization condition of the form (8) on the set

Sp={(0,11):V1(0, ) <d} ={(0, 1) :p101(0, ) + P2v2(0) < d},
for anyd > 0. SinceV of Proposition 4.2 is a special caselaf this minorization
will also work for V5. First note thafSp is contained inCp := Cp, N Cp,, Where
Cp,={0,):v10, 1) <d/¢p1} and Cg, = {0, k) :v200) <d/p2}.

Hence, it suffices to establish a minorization condition that hold€ pnWe will
accomplish this by finding an > 0 and a density (1,6, 1) onRZ x RX x R
such that

kv, 0, w0, 0", Wy >eq(n,0,u) V(O u')eCp,

wherek(x, 0, u|A',0’, ') is the MTD for the block Gibbs sampler given in (5).
We will require the following lemma, whose proof is given in Appendix C.

LEMMA 4.1. Let Gammadc, B; x) denote the value of the Gamma, B)
density at the point x > 0. If « > 1, b > 0 and ¢ > 0 are fixed, then, as a function
of x,

inf Gammado, b+ B/2; x) =

O<B<c

{ Gammdca, b; x), if x <x*,
Gammda, b+ ¢/2; x), if x > x*,

where

2a c
g 1+—).
X c Og< +2b>

Here is the minorization condition.

PrOPOSITION4.3. Letg(1, 0, u) beadensity on Ri x RX x R defined as

hi(Ag) ha(Xe)
(x,e,m=[ ][ ] El ),
1 T Gy dia )L T oGy dig €12
where
K
Gamm2<§ + ax, b1; /\9), ho <Ag,
Ao) =
o Gamm<K + d + b1 A ) Ao > AF
2 al’ 2¢l 17 9 9 9 p— b
for
$1(K + 2a1) ( )
=220 T g (1
0 d A 2b1¢1
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and
M SSE
Gamm6<7 + ay, - + b2; /\e), he < A7,
ho(A,) =
2(Xe) Gamm£<M N $>SSE+d bt ) ok
A a -~ 5 b —_— 1
2 25 2¢2 2, Ne e e
for
$2(M + 2a3) ( d )
V=" " og(l+ ——).
e d 9\ 4,2, + 55B

Setep = [fIR<+ h1(hg) d)\.g][fR+ ho(xe) dX.]. Thenthe Markov transition density for
the block Gibbs sampler satisfies the following minorization condition:

k(h, 0, muld', 0", 1) > epqg(r,0,0) V(0. 1) € Cp.

PROOR We uset = (0, n) andé’ = (0’, i) to simplify notation. If§' € Cp,
we have

FQal&", ) fOel& ) fEIL, Y)
= &R, y)giengB[f(Kelé, W f(Rel§, )]

> f(el| nf fGale.n || inf FGuley)]

> A, inf  f(Agl&, inf f(A|E,y)]|.
= FEh| nt FOale || ot sk ]
Thus we can take
a6, o S &) inf Fale] [ int solen |
EGCB]_ SGCBZ
Two applications of Lemma 4.1 yield the result]

The drift and minorization conditions given in Propositions 4.1-4.3 can be used
in conjunction with either Theorem 3.1 or 3.2 to get a formula giving an upper
bound on the total variation distance to stationarity for the block Gibbs sampler.
One such formula is stated explicitly at the start of Section 6.

5. Drift and minorization for the Gibbs sampler. In this section we
develop drift and minorization conditions for the Gibbs sampler. We continue
to assume thain’ = min{mq,my,...,mg} > 2 and thatk > 3. Let m" =
max{my, mo, ..., mg}.
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5.1. Drift. Recall thaty; = 1/(2a1 + K — 2) and define
_ K?+42Ka; 1
_2Sob1+K2+2Ka1 _Z(al—l).

Clearly 8 € (0, 1). It is straightforward to show that if; > 3/2, thend7 € (0, 1)
and there existp; € (0, 1) such that

6

8
(23) (K + —6)51 < p1.
87

Define the functiorn3(9, A) = mf%(é — )2 Also, lets? =YX (5 — 7). We

will require the following lemma, whose proof is given in Appendix D.

LEMMA 5.1. Leta and b be constants such that 56 > a > b > 0. Then if x
and y are positive,

2 2
(24) )+ () <
ax+y bx+y

Here is the drift condition.

PrROPOSITIONS.1. Assumethat a1 > 3/2 andlet p; € (0, 1) satisfy (23). As-
sumealsothat 5m’ > m”. Fix c3 € (0, min{by, b2}) andfixy € (maxp1, 36, 87}, 1).
Define the drift function as

87

Va(, A) = e c3he
3(0,A) =e +e +K51)\9

+v3(0, A).

Then the Gibbs sampler satisfies (7) with

by a1+K/2 b ar»+N/2
=(ms) tes)
b1 —c3 by —c3

1 _2 52 2b187
+ (86 + 67) s—+(m0—y) + =+ .
0

K K

ProoFr It suffices to show that
E[V30, M), 0", 1]

_ 87l(K +36/7)51]
(25) - K81,

m 2 )\/9 2
87| ——5%— ol ——— 0, 1\)+b,
+[7<Ag+m”x;) " 6<Ag+m%;> }’3( o
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because, using Lemma 5.1 and (23), we have

el ] [ v 2 o

K‘Sl)‘/e[( o )T g e) TG v3(®. A0+
- p187
= Ké1
<yVa@®',\)+b.

+ max{de, 7}v3(0’, 1)) + b

Recall that we are considering Hobert and Geyer’s (1998) updating scheme
for the Gibbs sampler(u/,0’,1") — (u, 0, A). Establishing (25) requires the
calculation of several expectations, and these will be calculated using the following
rule:

E[V3(0,M)|u', 0", 21 = E[V3(6, M)]6', 1]
= E{E{E[V3(0,1)|u, 0,6, X 1|, 6", 2'}10", 1/}
= E{E{E[V3(0, M|, 01|, A'}0", M}

We now establish (25). First, it is easy to show that

b1 a1+K/2
E[e10, u] < ( ) and
b1—c3
(26)
. by ax+N/2
Ele |9, n] < < ) .
[e*]0, u] < P
Now we evaluateE[ngM I, 6, 2']. Note that
K
(27) E[ay i, 0] =31|:2b1+2(9i —M)z}
i=1
and
E[(6; — )|, X1 =Var®; |, ) + [E @ |, 1) — )
1 m,-)L/ 2
28 — e ) R YA
(28) o+ mik, +</\g+mix; (= i)
2
< i + (ﬂ) (n _)7.)2
T Ay \Ap+mA v
It follows that
m'",

2
) K(u—5)%+ 52

K
K
29 E[(6; — )2\, V] < — <7
(29) ;:1 [(6: — )% ]_)L,9+ T
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Lettingd’ = K~1Y"; 6/, we have

E[(— 50", A1 =Var(ule', \') + [E(ul6', ') — 377

L . [ 0 mo—§) + —*0__ ‘)]2
_ e _
sot+ Kry  Lsot ka0 T o ka s Y
30
m —_— s — J—
_SO“l_K)\./Q SO“l_K)\./Q 0~ SO“l_K)\./Q Y

IA

i 52 /AR

+ (mo — y)“ +v3(0", 1),

50

where the first inequality is Jensen’s. On combining (27)—(30), we have

%
E
K1) o

A

2
) v3(6’, 1)

87 m

/ / /

w0 ,k] <7 +87(7x’ +mf,/\,
(31) 0 0 e

P [EP S S I
— + (mo — — :
7| ot mo— D+ F 1+ —¢

The last thing we need to evaluateAgvz(6, A)|u’,6’, A']. As in Hobert and
Geyer (1998), Jensen’s inequality yields

KA KEQOg|u, 0 K24+ 2K

= Jg.
sot+ Kio ") = so+ KEGgli, 0) — 2sob1+ K2+ 2Kag  °

These authors also note that the conditional independence @fshmplies that

K

- 1 A ireVi 1 1
Bl g~ NS RN 2 5h 2 )
K -1 g +mih, K -1 Ao +mik,

K

from which it follows that

E[(0 — 52|, 1= Var@|u, ) + [E@|u, ) — 71
2
1 & 1 1&E _
_ﬁ;/\ngm,-/\;+[?;Ag+mix;(“_y’)}
(33)

1% A2 5
S S T
e Ki:l )\.‘/9+mi)\./e

_ 1 +( A )2( _)2+SZ
“Ka  \ K +mn,) T ’

K
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where, again, (part of) the first inequality is Jensen’s. On combining (30),
(32) and (33), we have
E[v3(8, 1)|n', 0", 2]
BH % ( %o )2 @3+ 86| £ + (mo— )2+
—F—— | v3(0, — 4+ (mo — — |

=%xx, N\ ) B Slg 7T Tk

Combining (26), (31) and (34) yields (25)

/

REMARK 5.1. Note that our drift condition for the block Gibbs sampler
(Proposition 4.1) holds for all hyperparater configurations (corresponding to
proper priors) and nearly all values af andm”. In contrast, it is assumed in
Proposition 5.1 that; > 3/2 and that &’ > m”. On the other hand, Hobert and
Geyer’s (1998) drift condition for the Gibbs sampler involves even more restrictive
assumptions about and the relationship betweeri andm”. Specifically, Hobert
and Geyer (1998) assume that> (3K —2)/(2K —2) and thatn’ > (v/5—2)m".

Note that(3K —2)/(2K —2) > 3/2forall K > 2 and that 5> (v/5—2)~1 ~ 4.23.

REMARK 5.2. In this case the optimal starting value minimizes
37 Kig -~ _
+ @ -2
Kd1hg so+ KAg
The last term will vanish as long as ti#gs are such thad = y. The optimal
starting value fory is the minimizer of the functior<*¢ + §7/(K8114). This

cannot be computed in closed form, but is easily found numerically. Finally, since
re = 0 is not appropriate, we simply start at a small positive number.

V3(0, A) = €3 4 o3 |

5.2. Minorization. Fix d > 0 and defineSg = {(9, A): V3(0, 1) < d}. Similar
to our previous work with the block Gibbs sampler, our goal will be to find a
densityg (i1, 0, 1) onR x RK x R2 and ane > 0 such that
k(ue, 0,11, 1", 6") = eq(u,0,2) V(.)€ Sg.

As before, we will actually establish the minorization on a superseisofvith
which it is more convenient to work. Lety = §7/(Kd81d) and putc; and ¢,

equal toy — v (mg— 7)2+d and y + v (mg — )2 +d, respectively. We show

in Appendix E thatSg C Cg = Cg, N Cg, N Cg,, Where

logd logd
Cor={@.m:cazio=22%] co=0.0:0<2, =220
c3 c3
somo—i—K)\.g@_ }
Cg.=10,A)ic) < ——— < .
6= {0,110 = LTI <,

Also, Cg, N Cg, is nonempty as long aslogd > (c387)/(K81). We will require
the following obvious lemma.
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LEMMA 5.2. Let N(t, 0% x) denote the value of the N(z, 02) density at the
point x. If a < b, then, asa function of x,

inf N(r,az; x)=

a<t<b

N(b, o2; x), ifx <(a+b)/2,
N(a, o%; x), if x > (a+b)/2.

Here is the minorization condition.

PROPOSITIONS.2. Let g(u,6, 1) beadensityon R x RX x Ri defined as
follows:

g1(m,0)g2() }
,0,0) = A, 0,y),
A [ T Jer 102, 0)g20 dodp |} M-8
where
ca \ K/2 logd & }
g1(u,0) = (g) exp —Z—CBi:Zl[wi — )%+ m;(0; — 3)?
and
22(ut) = { N(eu. [so+ K log(d)/cs] 1 ). p <3,
N(cr, [so+ K log(d) /c3]™1; ), >y
Sat

. so+ Kca 1/2
¢ [So + K Iog(d)/CB] [/R/RK 81(u, 0)g2(n) do du],

Then the Markov transition density for the Gibbs sampler satisfiesthe minorization
condition

k(w, 0,01, 0", 1)) = ecq(u,0,2) VY (0',1) € Cg.

PrRoOF Recall thatk(u, 0, Au', 0", 1) = f(nl0', X, y) f@|w, A, y) f (A,
0,y). For@’, 1) e Cg, we have

Flo' ), 9) F Ol 2, y)

> inf o', )\, O, A,
_(lek/)eccf(ul WOl 2 y)

z[ inf f(u|9/,k/,y)][ inf f(em,w,y)}

(0".0)eCq (0".1)eCq

z[ inf f(uw/,w,y)]L inf f(QIM,k’,y)].

(",M)eCq 'eCg,NCq,
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Using the fact that the;’s are conditionally independent, we have
inf_ f@lpn, A", y)

NeCg,NCq,
K
_A'eclgrlfmcgz H fGilu M y) = ll_llk,ecglg% f @il 2, y).
Now, using Jensen’s inequality again, we have
fOilm, 2, y)

_ Ay +midl, exp g Hmid, (9_ B Agu+mi,\;yi>2
2 2 o m

)\./9 +m,-k/e
21

My Fmid, [ A mi, 2
X exXpy — — € (O —
4 5 [%+mw( m+M+i%u m]

- )\./9 +m,-k’e
- 21

A +m-,v A mi, )
X ex —(; — ;i
o O e |

//v A,
+m p{ [26 O — 107 +mid, (6 — 1) ]}.

Hence,
inf 0w, A,
vech Cczf( I, A% y)
K72 logd &

Cc4 (o} _

z(—) exp| — 9% S 16— w2 4 mi6; — 5)7]
2 2¢3 =

=g1(u, 0).

Now, if (6’, 1) € Cg, thencg < A, < 'Ogd and hence

so+ KA, so+ KA, somo + KA,6' 2
9/’ k/, — 796)( . 0 ( _ 6 )
Sl )=y e > W o+ KA,

>\/ so+ Kca \/so+(Klogd)/C3

so+ (Klogd)/c3 2

expl S0t (K |Ogd)/C3< somo + Kx/ﬂ)z
2 so + K)\./e )
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Thus,
inf o'\,
ot Sl y)
. so+ Kca - \/so + (K logd)/c3
~Vso+ (Klogd)/c3 0.0)eCq 2
K logd KA\,67\?
X exp _so+(Klog )/C3< _ somo + 9 )
2 so + Kke
- so+ Kca inf \/so—i-(Klogd)/cg
“V so+ (Klogd)/c3 (¢'.2)eCqy 2

so+ (K |Ogd)/C3< somo-i—K)\/ey)Z}

expy —
% p{ 2 so+ K k/e

so+ Kcg
> gz(u)\/SOJr (Klogd) /3

where the last inequality is an application of Lemma 5/2.

REMARK 5.3. In Appendix F we give a closed form expression #gr
involving the standard normal cumulative distribution function.

6. A numerical example. Consider a balanced data situation andrgt)
denote the probability measure corresponding to the posterior density in (2). Let
P"((ro, £0), -) denote then-step Markov transition kernel for the block Gibbs
sampler started atro, £9). [Equation (5) shows that a starting value fof is
actually not required.] We now write down an explicit upper bound for

|| Pn(()\'O’ gO)v ) - ﬂh()

based on Theorem 3.1 and Propositions 4.2 and 4.3. Although it has been sup-
pressed in the notation, bott, and P" depend heavily on the six hyperpara-
metersa1, b1, az, bz, so andmg. Our upper bound holds for all hyperparameter
configurations such that;, b1, as, bo, sg are positive, that is, all hyperparameter
configurations such that the priors ap, A, and . are proper. Due to its gener-
ality, the bound is complicated ttate. Firstyecall that SSE= }~; ;(yij — $)2,

wherey; =m =Y, yi;. Recall further that

’

1 1

= gy=—
Yo v Kk =2 2T o+ M —2
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83 = (K + 1)é2, 65 = K82, § = max{d1, 83}, c1 = 2b181 andcy = (2by + SSBé».
Note that all of these quédties depend only on the dagend the hyperparameters.
Now choosey € (8, 1) and¢ > 0 such thatpés + 6 < y. Also, let

K

b=dc1+[($K + K +1)/mlez+maxs, 1} > max{(5 — )2, (mo — 5)?},
i=1

and choosdr > 2b/(1 — y). Finally, let

- =[ hme)dxeM / hz(xaczxe],
R, R,

where
K
Gamm<§ +an, b1; Ag), Ao < A,
h1(ke) =
Gamme<K+ dR+b-/\) Ao > AF
2 al? 2¢ l’ 9 L) 9 -_ 9!
for
¢ (K + 2ay) ( dr )
=" log(1+—
0 w0\ 2
and
M SSE
Gammz(; +ap, N + by; Ae), e < A%,
halke) = M SSE+ md
Gamme(E taz T by xe), he = M,
for
(M + 2a») ( mdR
A= og(1+ —--—].
¢ = mdn O\t 2,558

Note thateg cannot be calculated in closed form, but can be evaluated numerically
with four calls to a routine that evaluates the incomplete gamma function. Recall
from the statement of Theorem 3.1 that

B 1+dRr
1 +2b + ydRr
Here is the bound. Forany©r <landany: € {1,2,3,...},

| P" ((ro, 0, ) — 70 ()|

o and U =1+ 2(ydr+b).

r

U
S (1_88)rn + ( 1—
o

r

n b
) (]_+ m + ¢v1(60, o) + m_lvz(Qo))-
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TABLE 1
Smulated data
Cell 1 2 3 4 5
yi  —0.80247 -1.0014 -0.69090 -1.1413 -1.0125
M =mK =50

y=M"1yP 370, yij =—0.92973
SSE= Y71 X532, (ij — 3i)? = 32,990

Using the optimal starting values from Remark 4.1, this becomes

| P"((ho. g™, ) — ()|
o UV n b
<(1-—e¢p) +<a1_r> <1+1—+m2(y, )

Explicit upper bounds can also be written for the block Gibbs sampler in the
unbalanced case and for the Gibbs sampler. These are similar and are left to the
reader. It is interestingotnote that becausaur drift and minoization conditions

for the block Gibbs sampler are freegf so too is the bound in (35).

To evaluate (35), the user must provide valuesjforg, dr andr. In our
experience, small changes in these gquantities can lead to dramatically different
results. Unfortunately, the right-hand side of (35) is a very complicated function of
v, ¢, dr andr. Hence, it would be quite difficult to find “optimal” values. In our
applications of (35), we simply define reasonable ranges for these four quantities
and then perform a grid search to find the configuration that leads to the smallest
upper bound. We now provide an example of the use of (35) and of the analogous
bound based on Theorem 3.2.

The data in Table 1 were simulated according to the model defined in Section 2
with K =5 m=10,a1 =25,a0=b1=bp =1, mg=0 andsg = 1. We
now pretend that the origin of the data is unknown and consider using the block
Gibbs sampler to make approximate draws from four different intractable posterior

(39)

TABLE 2
Four different prior specifications

Hyper par ameter
setting ai by ar bo mq
1 25 1 1 1 0
2 25 1 1 1 y
3 01 01 0.1 0.1 y
4 001 001 001 o001 y
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TABLE 3
Total variation bounds for the block Gibbs sampler via Theorem 3.1

Hyper parameter

setting y ¢ dr r €B n* Bound
1 0.2596 09423 15997 Q0188 31x 10’ 7.94x 10° 0.00999
2 0.2596 05385 30079 Q0789 Q0171 3415% 103 0.00999
3 04183 03059 28351 00512 68x10°4 1.315x 10° 0.00999
4 0.4340 02965 28039 00483 81x 106 1.1796x 10’ 0.00999

distributions corresponding to the four hyperparameter settings listed in Table 2.
The first setting in Table 2 is the “correct” prior in that it is exactly the setting
under which the data were simulated. As one moves from setting 2 to setting 4,
the prior variances ony andi, become larger; that is, the priors become more
“diffuse.” For reasons discussed below is set equal tgd in settings 2—4.

For each of the hyperparater settings in Table 2 wesed (35) as well as the
analogous bound based on Theorem 3.2 to find*asuch that

| P™ (G0, £, -) — 7n ()| < 0.01.

The results are given in Tables 3 and 4. For example, consider hyperparameter
setting 2. Theorem 3.1 yields

| P340, £57Y), ) — ()| < 0.00999
while Theorem 3.2 yields
| PO (ro. &), ) = mr ()] < 0.00999

While examining the:*’s in Tables 3 and 4, keep in mind that it takes about 1.5
minutes to run one million iterations of the block Gibbs sampler on a standard PC.
Thus, even the larger*’s arefeasible.

Note that the results based on Theorem 3.1 are better across the board than those
based on Theorem 3.2. We suspect that our use of Lemma 3.1 in the application of
Theorem 3.2 has somewhat (artificially) inflated iiés in Table 4.

TABLE 4
Total variation bounds for the block Gibbs sampler via Theorem 3.2

Hyperparameter
sefting o ¢ drT eB n* Bound

0615 084 15213 41x10°7 1.8835x10° 0.00999
05975 049 26564 00234 6563x 10°  0.00999
07113 03181 28492 72x10°4 3.3915x10° 0.00999
07191 03084 28154 86x10°° 2966x10" 0.00999

A wWwN PR
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A comparison of thet*’s for hyperparameter settings 1 and 2 (in either table)
shows that our bound is extremely sensitive to the distance betwgemnd y.
This is due to the fact thatz decreases rapidly dsincreases anél contains the
term 3K . max{(y — 7,)2, (mo — )%}, which is minimized whem:o = j. While
there may actually be some difference in the convergence rates of the two Markov
chains corresponding to settings 1 and 2, it seems unlikely that the difference is as
large as these numbers suggest. (Remember, these are only sufficient burn-ins.) It
is probably the case that our results simply produce a better bound under setting 2
than they do under setting 1. This issaaliscussed further in Section 7.

Another noteworthy feature of Tables 3 and 4 is tiaincreases as the priors
become more “diffuse.” Figure 1 contains two plots describing the relationship

%%

n*
4200 4400 4600
1 1

4000
1

3800

3.2

log(log(n*))
2.4 26 2.8
1

22

2.0

FiG. 1. These two plots show how the “diffuseness’ of the priorson Ay and 1. affectsn*. The top
plot shows n* against ap = by where the hyperparameters associated with Ay are held constant at
a1 = by = 1. When ap = by, the prior variance of A, is 1/b, and the prior mean is constant at 1.
The bottom plot shows log(log(n*)) against a1 = b1 where the hyperparameters associated with 2,
are held constant at ap = b = 1. When a1 = b1, theprior variance of 19 is1/b1 and the prior mean
isconstant at 1. In all cases mg was set equal to y.
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between the prior variances d and A, andn*. [The n*’s in this plot were
calculated using (35).] Note that increases quite rapidly with the prior variance

on A¢. While it is tempting to conclude that the chains associated with “diffuse”
priors are relatively slow to converge, we cannot be sure that this is the case
because, again, these are only sufficient burn-ins. However, our findings are
entirely consistent with the work of Natarajan and McCulloch (1998), whose
empirical results suggest that the mixing rate of the Gibbs sampler (for a probit—
normal hierarchical model) becomes much slower as the priors become more
diffuse.

7. Discussion. The quality of the upper bounds produced using Theorems
3.1 and 3.2 depends not only on the sharpness of the inequalities used to prove
the theorems themselves, but also on the quality of the drift and minorization
conditions used in the particular application. Consequently, it is possible, and
perhaps even likely, that the chains we have analyzed actually get within O
of stationarity much sooner than thé’s in Tables 3 and 4 would suggest. For
example, weknow from Table 3 that a sufficient burn-in for hyperparameter
setting 2 is 3415. Thus, the value 6563 from Table 4 is too largatbgast a
factor of 1.9. The question then becomes how conservative are the results based
on Rosenthal’'s theorem? As we now explain, this question was addressed by van
Dyk and Meng (2001) in a different context.

Hobert (2001) used Theorem 3.1 to calculate a sufficient burn-in for a Markov
chain Monte Carlo (MCMC) algorithm developed in Meng and van Dyk (1999).

In the Rejoinder of van Dyk and Meng (2001) an empirical estimator of the
total variation distance to stationarity was developed and used to demonstrate
that Hobert’s upper bound is probably extremely conservative. Indeed, Hobert’s
sufficient burn-in was:* = 335 while van Dyk and Meng’s simulation results
suggested that a burn-in of 2 is sufficient. We have experimented with van Dyk
and Meng’s empirical techniques in our situation and have come to similar
conclusions. It would be interesting to use a Markov chain whose convergence
behavior is known exactly to study how the sharpness of the bounds produced by
Theorems 3.1 and 3.2 changes when different drift and minorization conditions are
used.

In situations where it is possible to rigorously analyze two different MCMC
algorithms for the same family of intractable posteriors, it is tempting to compare
the algorithms using sufficient burn-in. However, we do not believe that this is
an entirely fair method of comparison. Consider using our results in this way to
compare Gibbs and block Gibbs. As we mentioned above, our Gibbs sampler is
more difficult to analyze than our block Gibbs sampler. This probably results in
relatively lower quality drift and minorization conditions for the Gibbs sampler.
Indeed, using Propositions 5.1 and Si2conjunction with Theorem 3.1 almost
always vyields extremely large*’s. Specifically, unless the priors are extremely
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TABLE 5
Smulated data
Cell 1 2 3
yi  —054816 092516 —0.19924
Mr=mK =12

y= M;12?=1 Zj!:]_ yij = 0.059253
SSE=YF Z;!:l()’ij — ;)% =20.285

“informative,” it is difficult to find a hyperparameter configuration under which
eg is not effectively 0. Here is a comparison.

The data in Table 5 were simulated according to the model defined in Section 2
with K =3, m=4,a1=a>=b1=by =2, so =1 andmg = 0. We use the
informative hyperparameter settingi = 5, a> = 2, b1 = 20, b = 20,mg =0
andsg = 4. For the block Gibbs sampler (35) yields

HP16631(()\0’ ggpt)’ ) — nh()” < 0.00999

For the Gibbs sampler Propositions 5.1 and 5.2 in conjunction with Theorem 3.1
yield

x 9
| PA825<10% (110 6P 3SPY ) — ()| < 0.00999

As starting values for the Gibbs sampler we ugeff", 2.5?) = (3, 7, 7, 1078,
0.2839 (see Remark 5.2). The constants used to construct these bounds are given
in Table 6.

While it is probably the case that block Gibbs converges faster than Gibbs, it is
unlikely that the true difference is anywhere near as large as these numbers suggest.
Thus, if we use these results to compare Gibbs and block Gibbs, the former will
be penalized by the fact that it is simply more analytically cumbersome.

TABLE 6
Constants used to construct total variation bounds

Sampler y ¢ o1 c3 dr r €

Block Gibbs 03956 0.3589 na na 2828 Q0111 Q0246
Gibbs 041528 na 0.41527 2.6667 240 Q0009 56x10 17
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APPENDIX A

A.l. The elements of &* and V. Hobert and Geyer [(1998), page 418]
show that&|A, y ~ N(£*, V) and give the specific forms &f* = £*(a, y) and
V =V (A, y). We restate their results here. First we let
i i midoke
then i:l )\'9 + mi)\e

)\2
Var(; |n) = [1 + 0 ]
Ao +miA, (Ag +miA.)(so+1)

)\2
Cov(6;,0;12) = - ,
(Mg +mire)(Ag +mjhe)(so+1)
A
Cov(6;, i1 1) = ’ ,
(Ag +mjde)(so+1)
Var(uw|Ad) = .
(e |A) .
Finally,
E(u|r) = L i midohedi +moso_
so+1¢ -1 Ao +mik, ]
and
A 1 [ & mirghy; T Aot} i
E0;1%) = —— S0 ELER | pgsg | |+ R
A+ mire| so+1t j:1A9+mjke | Ao+ mike

Observe thatE(u|)A) is a convex combination of; andmg and, furthermore,
E(6;|)) is a convex combination of (u|A) andy;. If we let A denote the length
of the convex hull of the sefty1, yo, ..., yx,mo}, then foranyi =1,2,..., K,
[E®;10) — E(uIM)]? < A2 and[E (6;]1) — 7;1% < A2

APPENDIX B

B.1. Optimal starting values. We desire the value @b, u) that minimizes

K K
V1O, 1) = ¢101(0, W) + $2v2(0) = P1 > (6 — )2 +d2 Y mi(6; — §)%.
i=1 i=1

Clgarly, no matter what values are chosen forahg the minimizing value ofx
is 8. Thus, we need to find the value ®@that minimizes

K K
$1Y (0 — )7+ 2y mi(0; — 7).

i=1 i=1
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Setting the derivative with respectdépequal to 0 yields
$16 + dom; i
b1+ pam;

Summing both sides overand dividing by K yields an equation i® whose
solution can be plugged back into (36) and this yields the optimal starting value

¢1[Z 1(m/y//(¢1+¢2mj))/2 _1(m /(14 ¢om )] +¢>2mzyz

(36) 0 =

0; =
@1+ ¢pom;
APPENDIX C
C.1. Proof of Lemma4.1l. Let
_+/DY 1 _spres2)
Je(x) = T @) x“ e ,
b+ B/2)% 1,-x(b+/2
(x) = X% x(b+B/ )
Ts (@)
b* 1 —xb
o(x) = x¥ e,
J I )

Note thatx* is the only positive solution tgf.(x) = fo(x). To prove the result
it suffices to show that (iRo(8) = fs(x)/fo(x) > 1 for all x € (0, x*) and all
B € (0,c¢) and that (ii) R.(B) = fp(x)/fe(x) > 1 for all x € (x*, 00) and
all 8 € (0, ¢). Fix k > 0 and define a function

ku
h(u)= —— —log(1+ ku)

1+ ku
for u > 0. Sincer(0) =0 andh’ (1) < 0, we knowh (1) < 0 foru > 0. Hence,
1 % 1
37 ——— — —log(1+k 0
(37) ul+ku u? 0g(d+ku) <

for u > 0. Define another function,
1
gu) = - log(1+ ku)

foru > 0. Since the the left-hand side of (37) is eggag’t(y) we have established
thatg(u) is decreasing for > 0. Thus, ifx < x* = <¥log(1+ ;) andg € (0, ¢),
then

%)%

>alog<1+ %) ——ﬂlog<l+ 2b>

_aﬁ[ﬁlog(l+zﬁb) clog(1+2b)] >0,

logRo(B) = alog (1 +
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and (i) is established. Case (ii) is similar.
APPENDIX D

D.1. Proof of Lemmab.1. First, letg(v) = v+ cv~1, wherec > 0 andv > 0.
It is easy to show thaf is minimized atb = ,/c. Thus,

() )
ax+y bx+y
_ 26x®y?[y/x + ab(x/y)] + x°y*(b* + 4ab — a?)
h (ax + y)2(bx + y)?
. 2bx2y2[2y/ab] + x%y2(b? + 4ab — a?)
- (ax + y)2(bx + y)2
x2y2(5b2 + 4ab — a?)
(ax + y)2(bx + y)2
B x2y2(5b —a)(b+a)
~ (ax +y)2(bx +y)?
> 0.

APPENDIX E

E.1S¢cC=Cg, NCs,NCg,. First,

S ={(0,1):V3(0,2) <d}

87
0.0) <d
Koy ~30M = }

=1(0, 1) e 4 g3he 4

87

Cl@,1):e <d, e <d,
(0, 2):e™ = =% K1

<d,v3(0, 1) §d}

87 < < logd
Ké1d c3

logd

=10, 2): ,v3(0,k)§d}.
c3

,0< A, <

As in the proof of Proposition 5.1, Jensen’s inequality yields

2
_ S0 - KXo -
y) S T e S

<somo+Kk99_
“so+ KXg 0o+ KXg

so+ KXig

< (mo— )%+ v3(0, 1),
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and henceSg is contained in

) logd logd
CG:={ T <<% goh, <299
c3 c3
somo + K g0 _)2 2 }
SOMOT BT _5) < (mo— al.
< so+ Kia y)] <(mo—y)+

Let ¢4 = 87/(K81d) and pute; andc, equal toy — v (mg— y)2+d and y +
V(mo — ¥)? + d, respectively. Note thaf = Cg, N Cg, N Cg,, Where
logd
c3 }
logd
c3 }

Ce,=10,1)ca<rg <

C,=10,1):0<A, <

K0
Coy=10.2) 1) < 20MOF 2100 Scu}.
so+ KXig

APPENDIX F

F.1. Closed form expression for eg. Recall that

o so+ Kca 1/2
B [So+ K Iog(d)/cJ [A;/;RK g1(p, 0)g2(pn) do du]

A straightforward calculation shows that

/ g1(1,0)d6
RK

(38) C4C3 K/2 p{ m;logd ( _.)2}
|Ogd 1+m, ZC3(1+m)'u Yo

Thus,
[ [ a1t 02200 a0
RK JR

krz & 1 K logd
[ cac3 __m;log Ry
= (ioga) ,.:Hl\/um,-/ﬂ;gz(”)ge"p{ ooy 0~ 907 i

logd & m; >
/gz(u)ex - (L—Yy) pdu
R 2c3 i:11+m,-

_ \/S0+K|09(d)/63
N 2

Now
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[ o mtRi0ie,

ox IogdK m; ( 2l
X Eni— 1
p 23 & T4m n—Yi iz
o0
+/ eXp{_SoJrK'Og(d)/Csw_Cl)z}
B 2
logd & m;
— du|.
Xexp[ 23 l.:11+m(“ F)?tdu
Define
-1
log K m;
v=|so+ +
o (e na)
and put
my _v|:clso+—(Kcl+Z ]ﬁ_mn; >i|
l
and
v 5 e 250
my, = v|cyso Cu
¢ iz 1+m
Then
y so+ K log(d)/c3 2} logd & m; >
expl — —c)texpy ——— —y) i d
/_OO p{ > (1 — cu) | exp 263§1+mi(u yi)“tdu

2 K =2 2 =
ciso  logd 2 yim; m, (y — mu)
—exp| —42 — o K2+ Y 2 T 200
Xp[ 2 ZC3[ Wt L | T VT

and

o0 + K log(d logd & ; )
[ exp{—“‘0 29< i C"’w—cnz}exp{—zi m w—yl-)z}du
y c3 = 1+m;

2 K =2 2

cfso  logd 2 yim; mj

=exp| — L= — K2 +y A4 2L
p{ 2 2c3 |: “ +l.:11+m,- + 2v

x 27'[11(1— d)(y:/%nl)).
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Putting all of this together yields

1+ m; \logd B 2c3 = 1+m;
2 2 S
coso  Kcejlogd  m } (y - mu)
exp — 2 — —ulp(l
X[ p{ 2 25 | 2v NG

2 2 2 -
cfso  Kcilogd — mj }( (y —ml))]
expy — — — 11— ,
+ p{ 2 %5 | 2v NG

where®(-) denotes the standard normal cumulative distribution function.

K K/2 K -2
1 logd :
e =VoGo T Ked) | [ (0463) exp{ 9 g~ i }
i=1
2
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