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A UNIVERSAL PROCEDURE FOR AGGREGATING ESTIMATORS

BY ALEXANDER GOLDENSHLUGER1

University of Haifa

In this paper we study the aggregation problem that can be formulated as
follows. Assume that we have a family of estimators F built on the basis of
available observations. The goal is to construct a new estimator whose risk is
as close as possible to that of the best estimator in the family. We propose a
general aggregation scheme that is universal in the following sense: it applies
for families of arbitrary estimators and a wide variety of models and global
risk measures. The procedure is based on comparison of empirical estimates
of certain linear functionals with estimates induced by the family F . We de-
rive oracle inequalities and show that they are unimprovable in some sense.
Numerical results demonstrate good practical behavior of the procedure.

1. Introduction. The subject of this paper is the problem of aggregating esti-
mators from a given collection.

Consider the Gaussian white noise model

Yε( dt) = f (t) dt + εW(dt), t = (t1, . . . , td) ∈ D0 = [0,1]d,(1)

where f : Rd → R is an unknown function, ε ∈ (0,1) and W is the standard Wiener
process in R

d . Let � ⊂ R
N be a compact set, and assume that we are given a

parameterized family of estimators F� = {fθ , θ ∈ �} of f . The objective is, using
the observation Yε = {Yε(t), t ∈ D0}, to select a single estimator from F� with
the risk that is as close as possible to the risk of the best estimator in the family
F�. We refer to the outlined setup as the aggregation problem. Aggregation is a
common approach to construction of nonparametric adaptive estimators; this fact
motivates consideration of aggregation problems.

Typically aggregation procedures involve splitting the sample into two sub-
samples: the candidate estimators are constructed on the basis of the first sub-
sample, while the second subsample is used for the aggregation purposes. In this
work we focus on the aggregation step only, and following Juditsky and Ne-
mirovski (2000), Nemirovski (2000) and Tsybakov (2003) we regard the estima-
tors fθ , θ ∈ �, as known fixed functions on D0.

The following two types of aggregation are frequently discussed in the litera-
ture:
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(i) Model selection (MS) aggregation. Here � = IN := (1, . . . ,N), and the
corresponding set of estimators is F� = FIN

:= {fi, i ∈ IN }, where fi are distinct
fixed functions.

(ii) Convex aggregation. Here

� = � :=
{
λ ∈ R

N |λi ≥ 0,

N∑
i=1

λi ≤ 1

}
,(2)

and for fixed estimators fi , i ∈ IN ,

F� = F� :=
{
Fλ|Fλ(t) :=

N∑
i=1

λifi(t), λ ∈ �

}
.

Let f̃ be an estimator of f based on the observation Yε . We measure accuracy
of f̃ by its Lp-risk

Rp[f̃ ;f ] := Ef ‖f̃ − f ‖p, 1 ≤ p ≤ ∞,

where Ef is the expectation with respect to the probability measure Pf of obser-
vation Yε under model (1), and ‖ · ‖p is the standard Lp-norm on D0. We want
to propose a measurable choice, say f̂ = f

θ̂
, from collection F� such that the

following Lp-risk oracle inequality holds:

Rp[f̂ ;f ] ≤ C inf
θ∈�

Rp[fθ ;f ] + rε(3)

for all f from a “large” functional class. Here C is a constant independent of f

and ε, and rε is a remainder term that does not depend on f .
The outlined aggregation problem has attracted much attention in the litera-

ture for the regression and Gaussian white noise models. Remarkable progress has
been achieved in the framework of L2-theory where exact oracle inequalities [with
C = 1 or C = 1 + o(1), ε → 0] were derived for collections of arbitrary estima-
tors; see Juditsky and Nemirovski (2000), Nemirovski (2000), Tsybakov (2003).
Tsybakov (2003) introduced the notion of optimal rates of aggregation and derived
aggregation procedures possessing (3) with smallest possible, in a minimax sense,
remainder term rε . L2-risk oracle inequalities with C > 1 for arbitrary estimators
were obtained, for example, by Yang (2001, 2004), Wegkamp (2003) and Bunea,
Tsybakov and Wegkamp (2007).

Aggregation of arbitrary nonparametric estimators with respect to other loss
functions is much less studied. Catoni (2004) and Yang (2000) considered the
problem of aggregating density estimators with the Kullback–Leibler divergence
as a loss function. Devroye and Lugosi (1996, 1997, 2001) developed L1-risk
oracle inequalities in the context of density estimation; see also Hengartner and
Wegkamp (2001) who apply the approach of Devroye and Lugosi for the regres-
sion setup. Our results are closely related to those by Devroye and Lugosi, and we
discuss this connection in detail in Section 3.
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For a detailed account of the literature on aggregation of estimators see the
recent papers Audibert (2004), Birgé (2006), Bunea, Tsybakov and Wegkamp
(2007), Juditsky, Rigollet and Tsybakov (2008) and references therein. It is also
worth noting that there is vast literature on aggregation of estimators from re-
stricted families (such as orthogonal series estimators, kernel estimators, etc.), and
aggregation of classifiers in classification problems. A list of representative pub-
lications from this literature includes Kneip (1994), Lepski and Spokoiny (1997),
Cavalier et al. (2002), Koltchinskii (2006) and Lecué (2007), where further refer-
ences can be found.

In this paper we propose a general aggregation scheme that is universal in the
following sense: (i) it applies to families of arbitrary estimators; (ii) it can be eas-
ily extended to different models; (iii) it can be used for a wide variety of global
risk measures. Although the main results of this paper pertain to the MS aggrega-
tion setup, Gaussian white noise model and Lp-risks, similar results can be easily
established for other models and global risk measures. In Section 4 we illustrate
universality of the suggested procedure by applying it to convex aggregation and
to the problem of estimating a normal mean vector.

Our aggregation method is based on comparison of empirical estimates of cer-
tain regular linear functionals with estimates induced by the family F�. A closely
related idea that a nonparametric function estimator is “good” if its integrals over
cubes “agree” with the corresponding empirical means, belongs to Nemirovski
(1985). We establish general oracle inequalities and specialize them for different
sets of linear functionals. It turns out that universal inequalities of Devroye and Lu-
gosi (1996, 1997, 2001) and Hengartner and Wegkamp (2001) can be derived from
our general oracle inequalities using a specific choice of the set of linear function-
als. The results indicate that in the Gaussian white noise model (1) the problem of
aggregation of arbitrary estimators in Lp , p ∈ (2,∞], can be rather difficult. In
this case remainder terms in the oracle inequalities depend on the family F� and,
in general, can be rather large. We prove a lower bound and show that dependence
of the remainder terms on F� is, in a sense, unavoidable. Thus “efficient” aggre-
gation of arbitrary estimators in Lp , p ∈ (2,∞], is impossible. We also show that
in the L2-framework a slight modification of the proposed aggregation procedure
satisfies the exact oracle inequality (3) with C = 1 and the remainder rε that cannot
be improved in the minimax sense.

The rest of the paper is organized as follows. In Section 2 we introduce our ag-
gregation scheme. Section 3 contains the main results of the paper. In Section 4 we
apply the procedure to convex aggregation and estimation of a normal mean vector.
In a simulation experiment of Section 4 we study performance of our procedure
for estimating a normal mean vector. Proofs are given in Section 5.

2. Aggregation scheme. We begin with construction of the aggregation
scheme for the Gaussian white noise model (1).
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2.1. Construction. Let � be a set of probe functions ψ :D0 → R. Consider a
linear functional

	f (ψ) =
∫

ψ(t)f (t) dt, ψ ∈ �.

For given ψ ∈ � , a natural estimator of 	f (ψ) based on observation Yε is

	̂f (ψ) =
∫

ψ(t)Yε(dt).

On the other hand, 	f (ψ) can be estimated using estimates fθ ∈ F�:

	fθ (ψ) =
∫

ψ(t)fθ (t) dt, θ ∈ �.

Define


θ(ψ) := 	̂f (ψ) − 	fθ (ψ)

=
∫

ψ(t)[f (t) − fθ (t)]dt + ε

∫
ψ(t)W(dt)

=:
∫

ψ(t)[f (t) − fθ (t)]dt + εZ(ψ), θ ∈ �.(4)

For any fixed θ ∈ �, 
θ(ψ) is a random variable that measures discrepancy be-
tween empirical estimate 	̂f (ψ) of the linear functional 	f (ψ) and the estimate
	fθ (ψ) induced by fθ ∈ F�. The idea underlying construction of our aggregation
rule is that, for a “good” estimator fθ , the absolute value of 
θ(ψ) “corrected” for
a random error Z(ψ) should be uniformly small for all ψ ∈ � .

Let δ ∈ (0,1), and

κ = κ(δ,�) := min
{
κ > 0|P

[
sup
ψ∈�

|Z(ψ)|
‖ψ‖2

≥ κ

]
≤ δ

}
.(5)

Define

M̂θ := sup
ψ∈�

{
1

‖ψ‖q

[|
θ(ψ)| − εκ‖ψ‖2]
}
,(6)

where p−1 + q−1 = 1, and let θ̂ := arg infθ∈� M̂θ ; then our estimator is given by

f̂ = f
θ̂
.(7)

Recently a procedure based on different ideas but close in spirit to (6)–(7) was
used in Goldenshluger and Lepski (2007) for selection of kernel estimators from
large parameterized collections.

In order to ensure that the estimator f̂ is well defined, certain conditions on the
set of probe functions � , and on the family of estimators F�, have to be imposed.
First, to guarantee that κ is well defined in (5), we need appropriate assumptions on
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the intrinsic semimetric of the zero-mean Gaussian process {Z(ψ),ψ ∈ �}. Sec-
ond, θ̂ should be measurable; this requirement calls for conditions on the sample
paths of the random process {M̂θ , θ ∈ �}. Although general conditions that guar-
antee fulfillment of the above properties can be explicitly stated, for the present
we will take them for granted. In the aggregation setups of Sections 3 and 4 these
conditions are trivially fulfilled.

Note that the aggregation procedure requires specification of the parameter δ

and the set of probe functions � . The choice of � is a crucial step in construction.
We discuss this issue below.

2.2. The set of probe functions. The following norm approximation property
of the set of probe functions � plays an important role in our construction.

DEFINITION 1. Given the collection of estimators F� = {fθ , θ ∈ �} with in-
dex set �, let

G� := {g :D0 → R|g = gτ,ν := fτ − fν, fτ , fν ∈ F�,fτ 	= fν}.(8)

Let � be a set of functions on D0, γ ≥ 0 and p ∈ [1,∞]. We say that � is a
(γ,p)-good set with respect to G� if for any g ∈ G� there exists ψg ∈ � such that∣∣∣∣∫ ψg(t)g(t) dt − ‖g‖p

∣∣∣∣ ≤ γ.(9)

Several remarks on the above definition are in order. The set G� contains pair-
wise differences of estimators from F�. The set of probe functions � is (γ,p)-
good with respect to G� if the Lp-norm of any function from G� can be approxi-
mated by a linear functional from � with prescribed guaranteed accuracy γ . Since
G� is indexed by (τ, ν) ∈ � × �, the corresponding (γ,p)-good set of probe
functions can be always chosen indexed by (τ, ν) ∈ � × �, too. Specifically, the
(γ,p)-good set with respect to G� can be chosen as follows:

� = �� := {ψ :D0 → R|ψ = ψgτ,ν , τ, ν ∈ �, τ 	= ν},(10)

where ψgτ,ν is the representer corresponding to gτ,ν := fτ − fν such that (9) is
fulfilled. In all that follows without further mention we always write �� for a set
of probe functions that is associated with � (and G�) via (10).

The (γ,p)-good sets of probe functions are easily constructed. In the sequel the
following examples of the (γ,p)-good sets will be particularly important.

EXAMPLE 1. Let p ∈ [1,∞) and define

�̃� :=
{
ψ |ψ(·) = ψg(·) := |g(·)|p−1

‖g‖p−1
p

sign{g(·)}, g ∈ G�

}
.(11)

Clearly, �̃� is (0,p)-good with respect to G�. Note also that �̃� ⊆ {ψ :
‖ψ‖q = 1}.
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EXAMPLE 2. The set

�̂� :=
{
ψ |ψ(·) = ψg(·) := ‖g‖p

‖g‖2
2

g(·), g ∈ G�

}
(12)

is (0,p)-good with respect to G� for any p ∈ [1,∞].
EXAMPLE 3. For γ > 0 define

��(γ ) :=
{
ψ |ψ(·) = ψg(·) := [|g(·)| − ‖g‖∞ + γ ]+ sign{g(·)}∫ [|g(t)| − ‖g‖∞ + γ ]+ dt

, g ∈ G�

}
,

where [·]+ = max{·,0}. It is easily verified that ��(γ ) is (γ,∞)-good with re-
spect to G�; moreover, ��(γ ) ⊂ {ψ :‖ψ‖1 = 1}.

3. Main results. In this section we present the main results of this paper. We
focus on the model selection aggregation setup where � = IN = (1, . . . ,N), F� =
FIN

= {fi, i ∈ IN }. Let GIN
and �IN

be defined accordingly via (8) and (10). Note
that GIN

and �IN
are finite sets of functions of cardinality N(N − 1). Following

(4), for ψ ∈ �IN
we write


i(ψ) := 	̂f (ψ) − 	fi
(ψ)

=
∫

ψ(t)[f (t) − fi(t)]dt + εZ(ψ), i ∈ IN .(13)

For a fixed δ ∈ (0,1), κ = κ(δ,�IN
) is given by (5); note that κ is well defined

because �IN
is a finite set. We write also

M̂i := max
ψ∈�IN

{
1

‖ψ‖q

[|
i(ψ)| − εκ‖ψ‖2]
}

(14)

and

î := arg min
i∈IN

M̂i, f̂ = f
î
.(15)

3.1. Oracle inequalities. The next theorem establishes the basic oracle in-
equality on the Lp-risk of the estimator f̂ .

THEOREM 1. Let p ∈ [1,∞], and assume that �IN
is (γ,p)-good with re-

spect to GIN
. Define i∗ := arg mini∈IN

‖f − fi‖p and

�∗
IN

:= {ψ ∈ �IN
|ψ = ψfi∗−fi

= ψi∗i , i ∈ IN, i 	= i∗}.(16)

Let δ ∈ (0,1) be fixed, and let κ = κ(δ,�IN
) be defined in (5); then for f̂ given in

(14)–(15) one has

Rp[f̂ ;f ] ≤
(

2 max
ψ∈�∗

IN

‖ψ‖q + 1
)

min
i∈IN

‖f − fi‖p

(17)

+ 2κε max
ψ∈�∗

IN

‖ψ‖2 + γ +
[
‖f ‖p + max

i∈IN

‖fi‖p

]
δ.
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REMARK 1. The proof of Theorem 1 illuminates the role played by the as-
sumption that �IN

is (γ,p)-good. The key is the bound on the distance between
selected and oracle estimators, ‖fi∗ − f

î
‖p . The fact that �IN

is (γ,p)-good al-
lows to control this distance on an event of large probability in terms of the dis-
tance between corresponding linear functionals. The latter, in turn, is controlled by
definition of the aggregation procedure.

We now apply the oracle inequality of Theorem 1 for the sets of probe functions
discussed in Examples 1–3 of Section 2. Assume that

max{‖f ‖p,‖f1‖p, . . . ,‖fN‖p} := L < ∞.(18)

COROLLARY 1. Let �IN
= �̃IN

where �̃� is defined in (11). Suppose that
(18) holds; then for f̂ given in (14)–(15) and associated with �̃IN

and δ = ε one
has

Rp[f̂ ;f ] ≤ 3 min
i∈IN

‖f − fi‖p + 2Q1(p)ε

√
2 ln

N2

ε
+ 2Lε,(19)

where Q1(p) = 1 for 1 ≤ p ≤ 2, and

Q1(p) = Q1(FIN
,p) := max

i∈IN

i 	=i∗

[‖fi∗ − fi‖2p−2

‖fi∗ − fi‖p

]p−1

, 2 < p < ∞.(20)

REMARK 2. Our selection rule with �IN
= �̃IN

and p = 1 reduces to the
aggregation method by Devroye and Lugosi (1996, 1997, 2001). Indeed, when
p = 1, the probe functions from the set �̃IN

are given by ψij = sign(fi − fj ).
In the density estimation context this corresponds to the Yatracos classes consid-
ered by Devroye and Lugosi. Note also that when p ∈ [1,2] and �IN

= �̃IN
, the

selection rule (14)–(15) could be modified as follows:

î = arg min
i∈IN

max
ψ∈�̃IN

|
i(ψ)|.

In this form our selection rule can be viewed as an implementation of the method
by Devroye and Lugosi for the white noise model [see also Hengartner and
Wegkamp (2001)]. For further discussion see Section 3.3.

COROLLARY 2. Let p ∈ [1,∞], and � = �̂IN
where �̂� is defined in (12).

Suppose that (18) holds; then for the estimate f̂ given in (14)–(15) and associated
with �̂IN

and δ = ε one has

Rp[f̂ ;f ] ≤ (
2Q2(p) + 1

)
min
i∈IN

‖fi − f ‖p + 2Q3(p)ε

√
2 ln

N2

ε
+ 2Lε,(21)
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where

Q2(p) = Q2(FIN
,p) := max

i∈IN

i 	=i∗

‖fi∗ − fi‖p‖fi∗ − fi‖q

‖fi∗ − fi‖2
2

,

(22)

Q3(p) = Q3(FIN
,p) := max

i∈IN

i 	=i∗

‖fi∗ − fi‖p

‖fi∗ − fi‖2
.

In contrast to �̃IN
, the rule associated with �̂IN

allows to treat the case p = ∞.
Note, however, that it leads to the elevated factor preceding the best possible risk
as compared to the selection rule that uses �̃IN

.

COROLLARY 3. Let (18) hold with p = ∞, and �IN
= �IN

(γ0) with γ0 =
ε
√

lnN < L; then

R∞[f̂ ;f ] ≤ 3 min
i∈IN

‖fi − f ‖∞ + 3Q4(γ0)ε

√
2 ln

N2

ε
+ 2Lε,(23)

where

Q4(γ ) = Q4(FIN
, γ ) := max

i∈IN

i 	=i∗

‖Si∗i (·, γ )‖2

‖Si∗i (·, γ )‖1
,

(24)
Si∗i (·, γ ) := [|fi∗(·) − fi(·)| − ‖fi∗ − fi‖∞ + γ ]+.

The above results show that when p ∈ [1,2] arbitrary estimators satisfying (18)
can be efficiently aggregated in the following sense. Corollary 1 demonstrates that
if � = �̃IN

, then the resulting risk of the selected estimator is within factor 3

of the best possible risk whereas the remainder term is of the order ε
√

ln(N2/ε).

Thus one can aggregate polynomial in ε−1 number N of estimators with remainder
term of the order ε

√
ln(1/ε). Such a bound allows to derive minimax and adaptive

results in many nonparametric estimation setups.
The situation is completely different for p ∈ (2,∞]. Here remainder terms

in the oracle inequalities depend on the family of aggregated estimates through
the values of Q1(p), Q3(p) and Q4(γ ) that can be large for particular fami-
lies FIN

.

3.2. Lower bound. The important question is whether the remainder terms in
(19), (21) and (23) can be improved for families of arbitrary estimators FIN

when-
ever p > 2. The next result shows that, in a sense, dependence of the remainder
terms on the family FIN

is unimprovable in the MS aggregation setup.
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THEOREM 2. Assume that N > 3 and p ∈ (2,∞]; then there exists a family
F̄IN

= {f̄i , i ∈ IN } of functions on D0, satisfying maxi∈IN
‖f̄i‖p ≤ L such that for

any selection rule f̃ :Yε → F̄IN
and any ε ≤ L(N lnN)−1/2 one has

max
f ∈FIN

[
Rp[f̃ ;f ] − min

i∈IN

‖f − f̄i‖p

]
≥ cKpε

√
ln(N − 1),(25)

where Kp = Q1(F̄IN
,p) = Q3(F̄IN

,p), ∀p ∈ [2,∞), K∞ = Q3(F̄IN
,∞) =

Q4(F̄IN
, γ ), ∀γ > 0, and c is an absolute constant. The quantities Q1, Q3 and

Q4 are defined in (20), (22) and (24), respectively.

REMARK 3. Because mini∈IN
‖f − fi‖p = 0 for f ∈ F̄IN

, (25) provides a
lower bound on the remainder term in the Lp-risk oracle inequality. The worst-
case family F̄IN

in the proof of Theorem 2 is such that the L2-norm of pairwise
differences of its members is small in comparison with their Lp-norm. We note
also that the worst-case family F̄IN

does not depend on p.

Theorem 2 shows that the problem of aggregation of arbitrary estimators in Lp ,
p ∈ (2,∞] may be rather difficult. In particular, the proof of the theorem suggests
that the Lp-risk of any aggregation procedure can be as large as ε2/p(lnN)1/p ,
p ∈ (2,∞].

The meaning of the lower bound of Theorem 2 is that there is a family of es-
timators that cannot be aggregated with accuracy better than that in (25). This,
however, does not imply that the same lower bound holds for a concrete family
of reasonable estimators. It is known, for example, that kernel estimators can be
efficiently aggregated in Lp , p > 2 [Goldenshluger and Lepski (2007)].

3.3. Modified aggregation procedure. In the definition of the aggregation pro-
cedure [see (14)], the “typical” value of the stochastic error, εκ‖ψ‖2, is subtracted
from |
i(ψ)|. Thus, this construction requires prior knowledge of the noise level
ε. We note, however, that the original procedure can be modified in such a way
that ε need not be known.

Specifically, consider the following procedure: with 
i(ψ) given in (13) define

M̃i := max
ψ∈�IN

{
1

‖ψ‖q

|
i(ψ)|
}

(26)

and let

ĩ := arg min
i∈IN

M̃i, f̃ = f
ĩ
.(27)

This construction does not require prior knowledge of the noise level ε. The next
theorem establishes an oracle inequality for the estimator f̃ .



AGGREGATION OF ESTIMATORS 551

THEOREM 3. Let conditions of Theorem 1 hold; then for the estimator f̃ de-
fined in (26)–(27) one has

Rp[f̃ ;f ] ≤
(

2 max
ψ∈�∗

IN

‖ψ‖q + 1
)

min
i∈IN

‖f − fi‖p

+ 2κε max
ψ∈�∗

IN

‖ψ‖q max
ψ∈�IN

{‖ψ‖2/‖ψ‖q}(28)

+ γ +
[
‖f ‖p + max

i∈IN

‖fi‖p

]
δ.

REMARK 4. The second term on the right-hand side of (28) is greater than
or equal to that on the right-hand side of (17). However, in special cases oracle
inequality (28) is precise enough. For instance, if p = 2, then the remainder terms
in (28) and (17) coincide. Note also that in the setup of Devroye and Lugosi (2001)
(p = 1 and �IN

= �̃IN
; see Remark 2) we obtain

2κε max
ψ∈�̃∗

IN

‖ψ‖∞ max
ψ∈�̃IN

‖ψ‖2

‖ψ‖∞
≤ 2κε

because ‖ψ‖2 ≤ ‖ψ‖∞ = 1 for every ψ ∈ �̃IN
whenever p = 1. In these cases the

use of the modified selection rule is advantageous as it does not require knowledge
of the noise level ε.

3.4. L2-risk oracle inequality. If p = 2, then the general oracle inequality of
Theorem 1 can be improved. In particular, we demonstrate that in this specific case
a mild modification of the original aggregation procedure leads to the exact oracle
inequality with the leading constant equal to 1.

First we note that the sets of probe functions �̃IN
and �̂IN

coincide when p = 2:

ψij (·) = fi(·) − fj (·)
‖fi − fj‖2

, i, j ∈ IN, i 	= j.(29)

Let uij = 1
2(fi + fj ), and for all i ∈ IN define

M̄i := max
j∈IN

{	uij
(ψij ) − 	̂f (ψij )}

(30)

= max
j∈IN

{∫
ψij (t)uij (t) dt −

∫
ψij (t)Yε(dt)

}
.

The selection rule is defined by

ī = arg min
i∈IN

M̄i, f̄ = fī .(31)

We remark that ‖ψij‖2 = 1, ∀i, j ∈ IN , i 	= j . A distinctive feature of the selec-
tion rule (29)–(31) is that for each pair i, j ∈ IN the empirical estimate of the linear
functional 	f (ψij ) is compared with 	uij

(ψij ) and not with 	fi
(ψij ) as in (13).
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THEOREM 4. Let f̄ = fī be the estimator defined by (29)–(31); then

R2[f̄ ;f ] ≤ min
i∈IN

‖fi − f ‖2 + 8ε
√

2 lnN.

Thus the selection rule (29)–(31) achieves the optimal rates of the MS aggrega-
tion when the L2-risk is considered [cf. Tsybakov (2003)].

4. Miscellaneous extensions and numerical results. The objective of this
section is to demonstrate that the proposed procedure can be applied for different
models and global risk measures. First we discuss the problem of convex aggrega-
tion, and then we show how the aggregation scheme can be applied for estimation
in the normal means model. We also provide some numerical results for the prob-
lem of estimating a normal mean vector.

4.1. Convex aggregation. The problem of convex aggregation is formulated as
follows: given a set of estimators fi , i ∈ IN , the objective is to select an estimator,
say F̂ = F

λ̂
, from the collection

F� =
{
Fλ|Fλ(t) =

N∑
i=1

λifi(t), λ ∈ �

}
,

such that F
λ̂

is nearly as good as the best estimator from Fλ. Here � is the N -
dimensional simplex; see (2).

For η > 0 let �η = (λ(k), k = 1, . . . , nη) denote the minimal η-net of � in l1-
norm; that is, for any λ ∈ � there exists λ(k) ∈ �η such that

∣∣λ − λ(k)
∣∣
1 =

N∑
i=1

∣∣λi − λ
(k)
i

∣∣ ≤ η.

Let G� = {g|g = Fλ − Fν,λ, ν ∈ �,ν 	= λ}, and let G�η be defined similarly with
� replaced by �η [cf. (8)]. Note that G�η is a finite set with card(G�η) = nη(nη −
1).

We begin with a lemma showing that if (18) holds, then any (0,p)-good set with
respect to G�η is also (γ,p)-good with respect to G� with some γ = γ (η) > 0.

LEMMA 1. Assume that (18) holds, and let � be the (0,p)-good set with
respect to G�η . Then � is (γ,p)-good with respect to G� with

γ = 2Lη

(
1 + max

ψ∈�
‖ψ‖q

)
.(32)

Lemma 1 allows to reduce the problem of convex aggregation to the MS aggre-
gation over a finite family of estimators. The idea is to apply the selection proce-
dure of Section 2 to the finite set of estimators induced by the minimal η-net �η

in �.
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Similarly to (13), for ψ ∈ � we write


λ(ψ) = 	̂f (ψ) − 	Fλ(ψ)

=
∫

ψ(t)[f (t) − Fλ(t)]dt + ε

∫
ψ(t)W(dt), λ ∈ �.

Let η = ε, and �ε = {λ(k), k = 1, . . . , nε} be a minimal ε-net in l1-norm for �.
Let ��ε be a (0,p)-good set w.r.t. G�ε . For δ ∈ (0,1) let κ = κ(δ,��ε) be given
by (5). Define

λ̂ := arg min
λ∈�

max
ψ∈��ε

{
1

‖ψ‖2
[|
λ(ψ)| − εκ‖ψ‖2]

}
, F̂ := F

λ̂
.(33)

THEOREM 5. Assume that ��ε is (0, γ )-good with respect to G�ε . Then for
κ = κ(δ,��ε) defined in (5) and F̂ given by (33) one has

Rp[F̂ ;f ] ≤
(

2 max
ψ∈��ε

‖ψ‖q + 1
)

min
λ∈�

‖f − Fλ‖p

+ 2κε max
ψ∈��ε

‖ψ‖2 + 2Lε

(
1 + max

ψ∈��ε

‖ψ‖q

)
+ 2Lδ.

The oracle inequality of Theorem 5 can be straightforwardly specialized for
specific sets of probe functions. We provide here only one result corresponding to
Example 1 in Section 2.

COROLLARY 4. Let ��ε = �̃�ε where �̃� is defined in (11). Then for the
estimator F̂ associated with δ = ε one has

Rp[F̂ ;f ] ≤ 3 min
λ∈�

‖f − Fλ‖p + cQ1(p)ε

√
N ln

1

ε
+ 6Lε,

where c is an absolute constant, and

Q1(p) :=

⎧⎪⎪⎨⎪⎪⎩
1, 1 ≤ p ≤ 2,

max
λ,ν∈�ε

λ	=ν

[‖∑N
i=1(λi − νi)fi‖2p−2

‖∑N
i=1(λi − νi)fi‖p

]p−1
, 2 < p < ∞.

The proof is identical to that of Corollary 1; it suffices to note only that nε =
card(�ε) = (c′ε−1)N , where c′ is an absolute constant.

It is well known [Tsybakov (2003)] that in the problem of convex aggregation
with p = 2 and N ≤ ε−1 the optimal (in a minimax sense) order of the remain-
der term is ε

√
N . In this particular case, our aggregation procedure achieves the

indicated bound within a logarithmic in ε−1 factor.
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4.2. Normal means model. Consider the normal means model

Y = μ + εw, μ ∈ R
n, w ∼ Nn(0,�),(34)

where μ is an unknown vector and � is the noise correlation matrix. We want
to estimate μ using the observation Y . The model (34) is a prototype of many
different nonparametric models [see, e.g., Johnstone (1998)].

Suppose that we are given a family � := {μi, i ∈ IN = (1, . . . ,N)} of candidate
estimators of μ. As before, we regard the estimators μi , i ∈ IN as fixed determin-
istic vectors. The risk of an estimator μ̂ is given by Eμ|μ̂ − μ|p , where | · |p ,
p ∈ [1,∞], stands for the standard p-norm in R

n. The objective is to select a sin-
gle estimator from � whose risk is as close as possible to that of the best estimator
in �.

The general aggregation scheme of Section 2 can be easily adapted for the out-
lined setup. Let � denote a set of probe vectors from R

n. For ψ ∈ � define the
linear functional 	μ(ψ) = ψT μ and for every ψ ∈ � consider the following esti-
mators of 	μ(ψ):

	̂μ(ψ) = ψT Y, 	i(ψ) = ψT μi, i ∈ IN .

Define 
i(ψ) = 	̂μ(ψ) − 	i(ψ) and note that 
i(ψ) = ψT (μ − μi) + εZ(ψ)

where Z(ψ) = ψT w is a zero-mean normal random variable with variance
|ψ |2� := ψT �ψ .

The aggregation procedure is defined as follows. Let δ ∈ (0,1), and let

κ = κ(δ,�) := min
{
κ > 0|P

(
max
ψ∈�

|Z(ψ)|
|ψ |� ≥ κ

)
≤ δ

}
.(35)

Let, as before, q and p be the conjugate exponents, and define

M̂i := max
ψ∈�

{
1

|ψ |q (|
i(ψ)| − κε|ψ |�)

}
,(36)

î := arg min
i∈IN

M̂i, μ̂ := μ
î
.(37)

According to Section 2, the set of probe vectors � should have some “good”
norm approximation properties. In the context of the normal means model this
requirement is formulated as follows.

DEFINITION 2. Let

G := {g ∈ R
n :g = μi − μj , i 	= j, i, j ∈ IN },

and let γ ≥ 0. We say that the set of vectors � from R
n is (γ,p)-good if for every

vector g ∈ G there is a vector ψg ∈ � such that∣∣ψT
g g − |g|p

∣∣ ≤ γ.
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As before we will use (γ,p)-good sets � in the form

� = {ψ |ψ = ψij := ψμi−μj
, i 	= j, i, j ∈ IN },

where ψij is a vector such that∣∣ψT
ij (μi − μj) − |μi − μj |p

∣∣ ≤ γ.

Now we are in a position to establish an oracle inequality for the aggregation
rule (36)–(37).

THEOREM 6. Let p ∈ [1,∞], � be a (γ,p)-good set, δ ∈ (0,1), and let κ be
defined in (35). Assume that

max{|μ|p, |μ1|p, . . . , |μN |p} =: L < ∞.

Define i∗ = arg mini |μi − μ|p , and

�∗ := {ψ ∈ �|ψ = ψi∗j = ψμi∗−μj
, j 	= i∗, j ∈ IN }.

Then for μ̂ given by (36)–(37) one has

Eμ|μ̂ − μ|p ≤
(

2 max
ψ∈�∗

|ψ |q + 1
)

min
i

|μi − μ|p
(38)

+ 2κε max
ψ∈�∗

|ψ |� + γ + 2Lδ.

The proof of Theorem 6 is identical to that of Theorem 1, and it is omitted.
The oracle inequality of Theorem 6 is easily specialized for specific sets of

(γ,p)-good probe vectors. For example, let p ∈ [1,∞) and define ψ̃ij ∈ R
n by

ψ̃ij (k) := |μi(k) − μj(k)|p−1

|μi − μj |p−1
p

sign{μi(k) − μj(k)}, i, j ∈ IN,

where a(k), k = 1, . . . , n, denotes the kth component of a generic vector a ∈ R
n.

Then the set of probe vectors �̃ := {ψ̃ij , i 	= j, i, j ∈ IN } is (0,p)-good. Note also
that �̃ ⊂ {ψ : |ψ |q = 1}.

The next result is an immediate consequence of Theorem 6.

COROLLARY 5. Let p ∈ [1,∞), � = �̃ , and assume that � is the identity
matrix. Let δ = ε; then

Eμ|μ̂ − μ|p ≤ 3 min
i∈IN

|μ − μi |p + 2Q(p)ε

√
2 ln

N2

ε
+ 2Lε,
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where

Q(p) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, 2 ≤ p < ∞,

max
i∈IN

i 	=i∗

[ |μi∗ − μi |2p−2

|μi∗ − μi |p
]p−1

, 1 < p ≤ 2,

max
i∈IN

i 	=i∗

[card{k :μi(k) 	= μi∗(k)}]1/2, p = 1.

Corollary 5 shows that if p ∈ [2,∞), then the risk of the selected estimator
is within factor 3 of the best possible risk whereas the remainder term is of the

order ε
√

ln(N2/ε). If p ∈ [1,2), then the remainder terms in the oracle inequalities
depend on the family of aggregated estimators. The situation here is opposite to
that discussed in Section 3 because of reciprocal behavior (with respect to p) of
Lp-norms on [0,1]d and p-norms in R

n.
The aggregation procedure (36)–(37) requires prior knowledge of the noise level

ε and the noise covariance matrix �. However, (36)–(37) can be modified in the
spirit of Section 3.3. Specifically, let

M̃i := max
ψ∈�

{
1

|ψ |q |
i(ψ)|
}
,(39)

ĩ := arg min
i∈IN

M̃i, μ̃ := μ
ĩ
.(40)

The next result establishes an upper bound on the accuracy of μ̃.

THEOREM 7. Let conditions of Theorem 6 hold. Then for the estimator μ̃ one
has

Eμ|μ̃ − μ|p ≤
(

2 max
ψ∈�∗

|ψ |q + 1
)

min
i

|μi − μ|p
(41)

+ 2κε max
ψ∈�∗

|ψ |q max
ψ∈�

|ψ |�
|ψ |q + γ + 2Lδ.

The proof is identical to that of Theorem 3 and it is omitted.
Even though the right-hand side of (41) is greater than or equal to the right-hand

side of (38), μ̃ can be advantageous in comparison with μ̂. For instance, if p = 2,
and if the ratio of the norms | · |� and | · |2 does not depend on N , then the second
terms on the right-hand sides of (41) and (38) are of the same order. In this case it
is advantageous to use the estimator μ̃ because it does not require knowledge of ε

and �.
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4.3. Some numerical results. A small simulation study was carried out in or-
der to illustrate usefulness and practical potential of the proposed scheme. We in-
vestigate performance of our procedure for estimating a normal mean vector under
the following two different scenarios:

(i) the vector has K randomly located nonzero coefficients;
(ii) the vector has K first nonzero components.

Under the first scenario thresholding estimators with properly chosen threshold
will presumably perform well. In this context our selection rule provides an es-
timator that adapts to unknown sparsity. Recently the topic of adaptive estima-
tion of sparse vectors has attracted much attention in the literature; we refer to
Abramovich et al. (2006), Golubev (2002) and Johnstone and Silverman (2004)
where further references can be found. In the second scenario projection estima-
tors are appropriate. As we will see below, our estimator mimics the best estimator
closely in both cases.

Conditions of our numerical experiments are as follows. We consider the nor-
mal means model (34) with n = 1000 and � being the identity matrix. In the
first scenario components of the unknown vector μ are assumed to be zero except
K = 5,50,250,500 randomly chosen locations where they take a specified value
m = 2. In the second scenario the unknown vector μ has first K = 10,50,250,500
nonzero components that are generated as independent standard normal random
variables. In both scenarios the results are averaged over 100 replications for each
value of K .

In our experiments we use two samples (random vectors) Y1 and Y2: the first
one Y1 ∼ N1000(μ, ε2

1I ), ε1 = 0.5, is used for construction of estimators, while
the second one Y2 ∼ N1000(μ, ε2

2I ), ε2 = 1, is for the aggregation purposes. The
collection � contains 20 estimators μ̂1, . . . , μ̂20:

• 10 projection estimators μ̂i , i = 1, . . . ,10,

μ̂i(k) = Y1(k)1(k ≤ ordi ), k = 1, . . . ,1000,

with ord = (5,10,20,50,100,200,300,500,700,800).
• 10 thresholding estimators μ̂i , i = 11, . . . ,20,

μ̂i(k) = Y1(k)1
{|Y1(k)| ≥ ε1

√
2 ln(n/ti−10)

}
, k = 1, . . . ,1000,

where t = (1, n1/4, n1/2, n3/4, n5/6, n7/8, n9/10, n15/16, n31/32, n63/64).

The estimators are aggregated on the basis of the second sample Y2 using the
modified procedure (39)–(40) with p = 2.

Table 1 reports on the average L2-risk of the proposed aggregation procedure
(Aggregation), and the average L2-risks of three oracles that know the vec-
tor to be estimated and select: (a) the best estimator (Oracle) in the collection;
(b) the best projection estimator in the collection; and (c) the best thresholding
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TABLE 1
The L2-risk averaged over 100 replications in estimating (i) a normal mean vector with K

randomly located nonzero coefficients; (ii) a normal mean vector with K first nonzero coefficients

Oracle Aggregation Best projection Best thresholding
K estimator estimator ̂K

(i) 5 2.498 2.726 4.593 2.499 5.26
50 6.446 6.557 13.994 6.446 50.08

250 11.388 11.559 19.949 11.388 292
500 13.649 14.378 24.471 13.649 613.03

(ii) 10 1.551 2.340 1.556 2.582 11.29
50 3.546 3.916 3.546 5.589 44.89

250 8.608 8.955 8.608 11.337 283.69
500 11.200 11.230 11.200 14.566 497.33

estimator in the collection. The last column K̂ displays the average number of
nonzero coefficients in the selected estimate. Part (i) of the table presents results
for the first scenario while part (ii) corresponds to the second scenario.

The results indicate that in estimating sparse vectors [part (i) of the table] in
almost all replications thresholding estimators outperform the projection estima-
tors. The situation is opposite for vectors with nonzero first coefficients [part (ii)
of the table]: here projection estimators perform better. In both cases our aggrega-
tion procedure follows closely the best estimator from the collection for all values
of K . The results in the last column also suggest that the aggregation procedure
recovers a sparsity pattern of the estimated vector.

Additional insight into performance of the aggregation procedure is gained from
Figures 1 and 2. These figures show typical behavior of the procedure under sce-
narios (i) and (ii). The rows (a)–(d) of the diagrams in Figures 1 and 2 correspond
to different values of the parameter K . In each replication the competing estima-
tors μ̂i , i = 1, . . . ,20, were ranked according to their performance measured by
the L2-risk. The barplots in the left column of the figures display the number of
replications out of 100 where the aggregation procedure selects the estimator with
ranks 1,2, . . . ,20. The diagrams in the middle column of Figures 1 and 2 show
how many times the estimators μ̂i were selected. The right column displays the
L2-risk of all estimators averaged over 100 replications.

It is seen from the barplots in the left column of Figure 1 that in the cases
K = 5,50,250 the procedure selects the best estimator in more than 65% of repli-
cations. In particular, for K = 5 the middle panel in the row (a) demonstrates that
most of the time the procedure selects the estimators μ̂11 and μ̂12 (the thresholding
estimators with t = 1 and t = n1/4, resp.). The corresponding barplot in the right
column shows that the average L2-risks of these two estimators are significantly
smaller than those of the other estimators. Similar patterns are observed when K

equals 50 and 250 [the rows (b) and (c) of Figure 1]. On the other hand, in the
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FIG. 1. Scenario (i). Left column: the number of replications out of 100 where the procedure selects
the estimator with rank 1,2, . . . ,20. Middle column: the number of selections versus the estimator in-
dex. Right column: the average L2-risk versus the estimator index. Sparsity parameter K : (a) K = 5;
(b) K = 50; (c) K = 250; (d) K = 500.
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FIG. 2. Scenario (ii). Left column: the number of replications out of 100 where the procedure
selects the estimator with rank 1,2, . . . ,20. Middle column: the number of selections versus the
estimator index. Right column: the average L2-risk versus the estimator index. The parameter K :
(a) K = 5; (b) K = 50; (c) K = 250; (d) K = 500.
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case K = 500 inferior estimators are chosen more frequently. Here the procedure
selects one of the seven thresholding estimators with t ≥ n3/4. As the right panel
in the row (d) indicates, the average L2-risks of these estimators are quite close.
This fact explains the shape of the barplot in the corresponding left panel.

Similar conclusions can be drawn from the barplots of Figure 2. In the case
K = 10, according to the middle panel in the row (a), the procedure selects either
the projection estimators with ord = 5,10,20,50, or the thresholding estimators
with t = 1, n1/4. The right panel in the row (a) shows that the average risks of
these estimators are quite close. On the other hand, when K = 500 [the row (d)
of Figure 2], the projection estimator of the order ord = 500 is selected in all
replications, and its average risk is significantly smaller than the risks of all other
estimators.

Summing up, the shapes of the diagrams in Figures 1 and 2 and our numerical
experience suggest that performance of the procedure is essentially determined
by the risks of the estimators to be aggregated and by the noise level ε2 at the
aggregation stage. The procedure succeeds to detect the best estimator in a majority
of replications when its performance is “significantly” better than the performance
of the other estimators in the collection. Significance here is relative to the noise
level ε2 at the aggregation stage. On the other hand, if there is a large number of
good estimators that perform almost equally well, the procedure makes more errors
in the estimator selection. However, this does not lead to a significant increase
in the risk. Our numerical experience shows also that behavior of the proposed
aggregation procedure is quite reasonable for the L1-losses as well.

5. Proofs.

5.1. Proofs of Theorem 1 and Corollary 1.

PROOF OF THEOREM 1. (1) We begin with the following simple observation.
Let

Aκ :=
{
ω : max

ψ∈�IN

|Z(ψ)|
‖ψ‖2

≤ κ

}
,(42)

where κ = κ(δ,�IN
) is defined in (5). It follows from (13) and definition of Aκ

that for any ψ ∈ �IN
and i ∈ IN

|
i(ψ)|1(Aκ) ≤
∣∣∣∣∫ ψ(t)[f (t) − fi(t)]dt

∣∣∣∣ + εκ‖ψ‖2.(43)

Therefore

M̂i1(Aκ) = max
ψ∈�IN

1

‖ψ‖q

[|
i(ψ)| − εκ‖ψ‖2]1(Aκ)

(44)
≤ ‖f − fi‖p ∀i ∈ IN .
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(2) Write

‖f̂ − f ‖p = ‖f̂ − f ‖p1(Aκ) + ‖f̂ − f ‖p1(Ac
κ
).

By definition P(Aκ) ≥ 1 − δ. Let i∗ = arg mini∈IN
‖f − fi‖p and f∗ = fi∗ ; then

‖f̂ − f ‖p1(Aκ) ≤ ‖f∗ − f ‖p1(Aκ) + ‖fi∗ − f
î
‖p1(Aκ).(45)

Our current goal is to bound the second term on the right-hand side of (45).
First we note that


i(ψ) − 
j(ψ) = 	fj
(ψ) − 	fi

(ψ)
(46)

=
∫

ψ(t)[fj (t) − fi(t)]dt ∀i, j ∈ IN,ψ ∈ �IN
.

By the premise of the theorem �IN
is (γ,p)-good w.r.t. GIN

; hence there exists a
probe function, say, ψ

i∗ î := ψfi∗−f
î
∈ �IN

such that

‖fi∗ − f
î
‖p ≤

∣∣∣∣∫ ψ
i∗ î (t)[fi∗(t) − f

î
(t)]dt

∣∣∣∣ + γ.(47)

Therefore we have on the set Aκ

‖fi∗ − f
î
‖p

(a)≤ |
i∗(ψi∗ î ) − 

î
(ψ

i∗ î )| + γ

≤ [|
i∗(ψi∗ î )| − εκ‖ψ
i∗ î‖2] + [|


î
(ψ

i∗ î )| − εκ‖ψ
i∗ î‖2]

+ 2εκ‖ψ
i∗ î‖2 + γ

(48)
(b)≤ (M̂i∗ + M̂

î
) max

ψ∈�∗
IN

‖ψ‖q + 2εκ max
ψ∈�∗

IN

‖ψ‖2 + γ

(c)≤ 2M̂i∗ max
ψ∈�∗

IN

‖ψ‖q + 2εκ max
ψ∈�∗

IN

‖ψ‖2 + γ

(d)≤ 2
[

max
ψ∈�∗

IN

‖ψ‖q

]
‖f − fi∗‖p + 2εκ max

ψ∈�∗
IN

‖ψ‖2 + γ,

where (a) follows from (46) and (47), (b) is by definition of M̂i and because ψ
i∗ î ∈

�∗
IN

[see (16)], (c) follows from (15) and (d) is by (44).
(3) On the set Ac

κ
we have

‖f̂ − f ‖p1(Ac
κ
) ≤

[
‖f ‖p + max

i∈IN

‖fi‖p

]
1(Ac

κ
).

Combining this inequality with (48) and (45) we complete the proof. �

PROOF OF COROLLARY 1. By Example 1, �̃IN
is (0,p)-good so that γ = 0

in (17). Moreover, ‖ψ‖q = 1 for all ψ ∈ �̃IN
. Since the cardinality of �̃IN

equals
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N(N − 1) we have

P

{
max

ψ∈�̃IN

|Z(ψ)|
‖ψ‖2

≥ κ

}
≤ N2 exp{−κ

2/2}.

It follows from the definition of κ and the preceding inequality that N2e−κ
2/2 ≥ δ

so that κ ≤
√

2 ln(N2/δ) =
√

2 ln(N2/ε).
If p ∈ [1,2], then

max
ψ∈�̃IN

‖ψ‖2 ≤ max
ψ∈�̃IN

‖ψ‖q = 1.

On the other hand, if 2 < p < ∞, then in view of (11)

max
ψ∈�̃∗

IN

‖ψ‖2 = max
i∈IN

i 	=i∗

[‖fi∗ − fi‖2p−2

‖fi∗ − fi‖p

]p−1

.

Combining these inequalities with the statement of Theorem 1 we come to (19).
�

5.2. Proof of Theorem 2. Let Bi , i = 1, . . . ,N be disjoint subsets of D0
such that mes(Bi) = h, ∀i, where 0 < h ≤ 1/N , is a given number. Here mes(·)
stands for the Lebesgue measure in R

d . Define f̄i(x) = L1Bi
(x), i ∈ IN , and

F̄IN
= {f̄i , i ∈ IN }. Note that maxi∈IN

‖f̄i‖p ≤ L for all p ∈ (2,∞]. If f ∈ F̄IN
,

then mini∈IN
‖f − f̄i‖p = ‖f̄i∗ − f ‖p = 0. Moreover

‖f̄i − f̄j‖p = (2h)1/pL =: s ∀i, j ∈ IN, i 	= j,

and

Q1(F̄IN
,p) = max

i∈IN ,

i 	=i∗

‖f̄i∗ − f̄i‖p−1
2p−2

‖f̄i∗ − f̄i‖p−1
p

= (2h)1/p−1/2,

(49)

Q3(F̄IN
,p) = max

i∈IN

i 	=i∗

‖f̄i∗ − f̄i‖p

‖f̄i∗ − f̄i‖2
= (2h)1/p−1/2.

It is immediately seen that for a chosen family of functions one has

Q4(F̄IN
, γ ) = γ (2h)1/2

γ (2h)
= (2h)−1/2 ∀γ > 0,

which coincides with (49) for p = ∞. Denote Kp := (2h)1/p−1/2, p ∈ (2,∞].
Let f̃ :Yε → F̄IN

be an arbitrary selection rule. We have

sup
f ∈F̄IN

Ef ‖f̃ − f ‖p ≥ s

2
max
i∈IN

Pi

{
‖f̃ − f̄i‖p ≥ s

2

}
≥ s

2
max
i∈IN

Pi{ĩ 	= i},(50)
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where Pi = Pf̄i
probability measure of the observation Yε associated with f = f̄i ,

and ĩ :Yε → {1, . . . ,N} is the decision rule that selects function f̄i closest to f̃ in
the Lp-norm.

Let K(Pi ,Pj ) denote the Kullback–Leibler divergence between Pi and Pj :

K(Pi ,Pj ) = 1

2ε2 ‖f̄i − f̄j‖2
2 = hL2

ε2 ∀i, j ∈ IN, i 	= j.

Then by the Fano inequality [see, e.g., Devroye (1987), Section 5.9]

max
i∈IN

Pi{ĩ 	= i} ≥ 1 − hL2ε−2 + ln 2

ln(N − 1)
.

Choosing

h = h∗ = ε2

L2

(
5

6
ln(N − 1) − ln 2

)
≥ ε2

6L2 ln(N − 1)

(the last inequality follows from N > 3), we obtain that maxi Pi{ĩ 	= i} ≥ 1/6.
Note that condition ε ≤ L(N lnN)−1/2 implies h∗ ≤ 1/N so that the sets Bi are
indeed disjoint, as assumed. Hence (50) yields

sup
f ∈F̄IN

Ef ‖f̃ − f ‖p ≥ L

12
(2h∗)1/p

= Kp

12
L(2h∗)1/2 ≥ Kp

12
√

3
ε
√

ln(N − 1).

This completes the proof.

5.3. Proof of Theorem 3. The proof goes along the same lines as the proof of
Theorem 1; below we indicate only the differences. We use the same notation as
in the proof of Theorem 1.

First we note that for all i ∈ IN

M̃i1(Aκ) = max
ψ∈�IN

{
1

‖ψ‖q

|
i(ψ)|
}

1(Aκ) ≤ ‖f − fi‖p + εκ max
ψ∈�IN

‖ψ‖2

‖ψ‖q

.

Because �IN
is (γ,p)-good, there is a probe function, say, ψ

i∗ ĩ ∈ �IN
such that

‖fi∗ − f
ĩ
‖p ≤

∣∣∣∣∫ ψ
i∗ ĩ (t)[fi∗(t) − f

ĩ
(t)]dt

∣∣∣∣ + γ.

Then, similarly to (48), we have on the set Aκ

‖fi∗ − f
ĩ
‖p ≤ |
i∗(ψi∗ ĩ ) − 


ĩ
(ψ

i∗ ĩ )| + γ

≤ ‖ψ
i∗ ĩ‖q(M̃i∗ + M̃

ĩ
) + γ
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≤ 2M̃i∗ max
ψ∈�∗

IN

‖ψ‖q + γ

≤ 2 max
ψ∈�∗

IN

‖ψ‖q

(
‖f − fi∗‖p + εκ max

ψ∈�IN

‖ψ‖2

‖ψ‖q

)
+ γ.

This leads to the inequality (28).

5.4. Proof of Theorem 4. Throughout the proof 〈·, ·〉 denotes the standard in-
ner product in L2(D0).

We start with the following simple observation. Let fi∗ be the best estimator in
the family FIN

, that is, i∗ = arg mini∈IN
‖fi − f ‖2. Since for any j ∈ IN

‖fi∗ − f ‖2
2 = ‖fj − f ‖2

2 + ‖fi∗ − fj‖2
2 + 2〈fi∗ − fj , fj − f 〉

and ‖fi∗ − f ‖2 ≤ ‖fj − f ‖2, then

‖fi∗ − fj‖2
2 + 2〈fi∗ − fj , fj − f 〉 = 2

〈
fi∗ − fj ,

1
2(fi∗ + fj ) − f

〉
= 2〈fi∗ − fj , ui∗j − f 〉 ≤ 0 ∀j ∈ IN,

or, equivalently,

max
j∈IN

〈ψi∗j , ui∗j − f 〉 ≤ 0.(51)

We have

‖f̄ − f ‖2
2 = ‖fi∗ − f ‖2

2 + 2
〈
fī − fi∗,

1
2(fī + fi∗) − f

〉
(a)= ‖fi∗ − f ‖2

2 + 2‖fī − fi∗‖2〈ψīi∗, uīi∗ − f 〉

= ‖fi∗ − f ‖2
2 + 2‖fī − fi∗‖2

{
〈ψīi∗, uīi∗〉 −

∫
ψīi∗(t)Yε(dt)

}
(52)

+ 2‖fī − fi∗‖2εZ(ψīi∗)

(b)≤ ‖fi∗ − f ‖2
2 + 2‖fī − fi∗‖2M̄ī + 2‖fī − fi∗‖2εZ(ψīi∗)

(c)≤ ‖fi∗ − f ‖2
2 + 2‖fī − fi∗‖2M̄i∗ + 2‖fī − fi∗‖2εZ(ψīi∗),

where Z(ψ) = ∫
ψ(t)W(dt), (a) is by definition of uij and ψij , (b) is by definition

of M̄i , and (c) follows from the definition of ī.
Now we note that

M̄i∗ ≤ max
j∈IN

〈ψi∗j , ui∗j − f 〉 + ε max
j∈IN

Z(ψi∗j ) ≤ ε max
j∈IN

Z(ψi∗j ),

where the last inequality is a consequence of (51). Therefore it follows from (52)
and Z(ψij ) = −Z(ψji), ∀i, j that

‖fī − f ‖2
2 ≤ ‖fi∗ − f ‖2

2 + 4‖fī − fi∗‖2ε max
j∈IN

|Z(ψi∗j )|.
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Hence by the triangle inequality

‖fī − f ‖2
2 − ‖fi∗ − f ‖2

2 ≤ 4(‖fī − f ‖2 + ‖fi∗ − f ‖2)ε max
j∈IN

|Z(ψi∗j )|
and finally

‖f̄ − f ‖2 ≤ ‖fi∗ − f ‖2 + 4ε max
j∈IN

|Z(ψi∗j )|.
Taking the expectation we complete the proof.

5.5. Proofs of Lemma 1 and Theorem 5.

PROOF OF LEMMA 1. Let g ∈ G�, that is, for some λ, ν ∈ � one has g =∑N
i=1(λi − νi)fi . There exist λ̃, ν̃ ∈ �η such that |λ̃ − λ|1 ≤ η and |ν̃ − ν|1 ≤ η.

Define g̃ = ∑N
i=1(λ̃i − ν̃i)fi ; by definition, g̃ ∈ G�η . Because � is (0,p)-good

with respect to G�η , there exists ψ = ψg̃ ∈ � such that∫
ψg̃(t)g̃(t) dt = ‖g̃‖p.

With this representer ψg̃ applied to g ∈ G� we obtain∫
ψg̃(t)g(t) dt = ‖g̃‖p +

∫
ψg̃(t)[g(t) − g̃(t)]dt,

and therefore∣∣∣∣∫ ψg̃(t)g(t) dt − ‖g‖p

∣∣∣∣ ≤ ∣∣‖g̃‖p − ‖g‖p

∣∣ + ∣∣∣∣∫ ψg̃(t)[g(t) − g̃(t)]dt

∣∣∣∣
≤ ‖g̃ − g‖p + ‖ψg̃‖q‖g̃ − g‖p

= (1 + ‖ψg̃‖q)‖g̃ − g‖p.

To complete the proof it is sufficient to note that

g̃(t) − g(t) =
N∑

i=1

(λ̃i − λi)fi(t) −
N∑

i=1

(ν̃i − νi)fi(t);

hence

‖g̃ − g‖p ≤
N∑

i=1

[|λ̃i − λi | + |ν̃i − νi |]‖fi‖p ≤ 2Lη.
�

PROOF OF THEOREM 5. The proof goes along the same lines as the proof of
Theorem 1; here we indicate only the main differences. First we note that similarly
to (44) one has

max
ψ∈��ε

1

‖ψ‖q

[|
λ(ψ)| − εκ‖ψ‖2]1(Aκ) ≤ ‖f − Fλ‖p ∀λ ∈ �,
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where Aκ is the event defined in (42) with maxψ∈�IN
replaced by maxψ∈��ε

.
Define λ∗ = arg minλ ‖f − Fλ‖p . The main difference with the proof of Theo-

rem 1 is that now the set of probe functions ��ε is (γ,p)-good with respect to G�

with γ given by (32), and the inequality (47) holds for some representer, say ψ
λ̂,ν

,
with ν ∈ �ε . In contrast to the proof of Theorem 1, in general ν 	= λ∗, because
λ∗ does not necessarily belong to �ε . This implies that in the resulting oracle in-
equality we have maxima over ψ ∈ ��ε , and not over the subset of ��ε related to
λ∗. All other details of the proof remain unchanged. �
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