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90-238 Łódź, Poland

Correspondence should be addressed to Robert Plebaniak; robpleb@math.uni.lodz.pl

Received 24 October 2015; Revised 17 December 2015; Accepted 20 December 2015

Academic Editor: Ngai-Ching Wong

Copyright © 2016 Robert Plebaniak. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In quasi-pseudometric spaces (not necessarily sequentially complete), we continue the research on the quasi-generalized
pseudodistances. We introduce the concepts of semiquasiclosed map and contraction of Nadler type with respect to generalized
pseudodistances. Next, inspired byAbkar andGabeleh we proved new best proximity point theorem in a quasi-pseudometric space.
A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem
of globally minimizing the error inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝑇(𝑥)}, and hence the existence of a consummate approximate solution to the
equation 𝑇(𝑋) = 𝑥.

1. Preliminaries

Let 𝐴, 𝐵 be nonempty subsets of a metric space (𝑋, 𝑑). Then
denote dist(𝐴, 𝐵) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}; 𝐷(𝑥, 𝐵) =
inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐵} for 𝑥 ∈ 𝑋; and

𝐴
0

= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ;

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(1)

We say that the pair (𝐴, 𝐵) has the 𝑃-property if and only if

{𝑑 (𝑥
1
, 𝑦
1
) = dist (𝐴, 𝐵) ∧ 𝑑 (𝑥2, 𝑦2) = dist (𝐴, 𝐵)}

󳨐⇒ 𝑑 (𝑥
1
, 𝑥
2
) = 𝑑 (𝑦

1
, 𝑦
2
) ,

(2)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
. It is worth noticing that

the concept of 𝑃-property was first introduced by Sankar Raj
[1] (for details see also Abkar and Gabeleh [2]).

In 2013, Abkar and Gabeleh proved the following inter-
esting results.

Theorem 1 (see [3]). Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of a complete metric space (𝑋, 𝑑) such that 𝐴

0
̸= 0

and (𝐴, 𝐵) has the 𝑃-property. We assume that 𝑇 : 𝐴 →

2
𝐵 is a multivalued non-self-contraction mapping; that is,

{𝐻(𝑇(𝑥), 𝑇(𝑦)) ⩽ 𝜆𝑑(𝑥, 𝑦)} ∃0 ⩽ 𝜆 < 1 ∀𝑥, 𝑦 ∈ 𝐴. If 𝑇(𝑥)
is bounded and closed in 𝐵 for all 𝑥 ∈ 𝐴, and 𝑇(𝑥

0
) ⊂ 𝐵
0
for

each 𝑥
0
∈ 𝐴
0
, then 𝑇 has a best proximity point in 𝐴.

In this paper, inspired by Abkar and Gabeleh [3], we
proved the best proximity point theorem in (not neces-
sarily sequentially complete) quasi-pseudometric space. We
introduced new class of multivalued contractions, which
are generalization of classical contractions of Nadler type.
For generality, this new class of narrower contractions is
studied in quasi-pseudometric space. It is worth noticing
that in the fixed point theory there exist many results
in asymmetrics spaces (e.g., see Latif and Al-Mezel [4],
Karuppiah and Marudai [5], Gaba [6, 7], and Otafudu [8]).
The study in which conditions of contraction are defined
by nonsymmetric distance is a new and extensive branch of
metric fixed point theory. However, even in metric space,
or 𝑏-metric space, these new contractions are extension
of classical contractions of Nadler type. Furthermore, the
concept of narrowing can be used not only for contractions
of Nadler type, but also for Banach contraction (for single-
valued map) and different generalizations of Banach and
Nadler contractions.

The following terminologies from papers of Kelly [9],
Reilly [10], and Reilly et al. [11] will be used in the sequel.
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Definition 2. Let𝑋 be a nonempty set. A quasi-pseudometric
on𝑋 is a map 𝑝 : 𝑋 × 𝑋 → [0,∞) such that

(𝑝1) {𝑝(𝑥, 𝑥) = 0} ∀𝑥 ∈ 𝑋; and
(𝑝2) {𝑝(𝑥, 𝑧) ⩽ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧)} ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 .

For a given quasi-pseudometric 𝑝 on 𝑋, a pair (𝑋, 𝑝)
is called quasi-pseudometric space. A quasi-pseudometric
space (𝑋, 𝑝) is called Hausdorff if

{(𝑥 ̸= 𝑦) 󳨐⇒ (max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑦, 𝑥)} > 0)}

∀𝑥, 𝑦 ∈ 𝑋.
(3)

Definition 3. Let (𝑋, 𝑝) be a quasi-pseudometric space. Then
consider the following.

(i) ([10, Definition 5.1], [11, Definition 1(v) and p. 129])
One says that a sequence (𝑤

𝑚
: 𝑚 ∈ N) in 𝑋 is left

(right) Cauchy sequence in𝑋 if

{𝑝 (𝑤
𝑚
, 𝑤
𝑛
) < 𝜀}

∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛,

({𝑝 (𝑤
𝑛
, 𝑤
𝑚
) < 𝜀} ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛

∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛) .

(4)

(ii) One says that a sequence (𝑤
𝑚
: 𝑚 ∈ N) in 𝑋 is left

(right) convergent 𝑖𝑛 𝑋 if

{𝑝 (𝑤,𝑤
𝑚
) < 𝜀}

∃𝑤 ∈ 𝑋, ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚,

({𝑝 (𝑤
𝑚
, 𝑤) < 𝜀} ∃𝑤 ∈ 𝑋, ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀)

∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚) ,

(5)

that is, if {lim
𝑚→∞

𝑝(𝑤,𝑤
𝑚
) = 0} ∃𝑤 ∈ 𝑋 (∃𝑤 ∈

𝑋 {lim
𝑚→∞

𝑝(𝑤,𝑤
𝑚
) = 0}), for short.

(iii) ([10, Definition 5.3]) If every left (right) Cauchyse-
quence in 𝑋 is left (right) convergent to some point
in 𝑋, then (𝑋, 𝑝) is called left (right) sequentially
complete quasi-pseudometric space.

Remark 4. Let (𝑋, 𝑝) be a quasi-pseudometric space. Then
(i) every left (right) convergent sequence in 𝑋 is left (right)
Cauchy sequence in𝑋 and the converse is false ([11, Example
2], [9, Example 5.8]); (ii) the limit of a left (right) convergent
sequence is not unique. More precisely it is possible that if a
sequence (𝑤

𝑚
: 𝑚 ∈ N) in 𝑋 is left (right) convergent in 𝑋

then

{𝑝 (𝑤,𝑤
𝑚
) < 𝜀}

∃𝑊 ⊂ 𝑋, ∀𝑤 ∈ 𝑊, ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚,

({𝑝 (𝑤
𝑚
, 𝑤) < 𝜀} ∃𝑊 ⊂ 𝑋, ∀𝑤 ∈ 𝑊, ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀)

∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚) .

(6)

Example 5 (see [12]). Let 𝑋 ⊂ R be a nonempty set and let
𝑝 : 𝑋 × 𝑋 → [0,∞) be given by the formula

𝑝 (𝑥, 𝑦) =
{

{

{

0 if 𝑥 ⩾ 𝑦,

1 if 𝑥 < 𝑦.
(7)

The map 𝑝 is a quasi-pseudometric on𝑋 and (𝑋, 𝑝) is quasi-
pseudometric space (for details see Reilly et al. [11]). Morever
it is easy to verify that (𝑋, 𝑝) is Hausdorff. Now, if 𝑋 = [0, 6]

and we consider the sequence (𝑤
𝑚
= 1/𝑚 : 𝑚 ∈ N) in𝑋 then

we obtain that each point of the set𝑊 = (0, 6] is a left limit
of the sequence (𝑤

𝑚
: 𝑚 ∈ N). Indeed, for each 𝑤 ∈ 𝑊 there

exists 𝑘 ∈ N such that for each 𝑚 ∈ N such that 𝑘 ⩽ 𝑚 we
have 𝑝(𝑤,𝑤

𝑚
) = 0. Hence {𝑝(𝑤, 𝑤

𝑚
) < 𝜀} ∀𝑤 ∈ 𝑊 ∀𝜀 >

0 ∃𝑘 = 𝑘(𝜀) ∈ N ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚.

Definition 6 (see [13, Section 3]). Let (𝑋, 𝑝) be a quasi-
pseudometric space. The map 𝐽 : 𝑋 × 𝑋 → [0,∞) is said to
be a left (right) quasi-generalized pseudodistance on 𝑋 if the
following two conditions hold:

(𝐽1) {𝐽(𝑢, 𝑤) ⩽ 𝐽(𝑢, V) + 𝐽(V, 𝑤)} ∀𝑢, V, 𝑤 ∈ 𝑋;
(𝐽2) for any sequences (𝑢

𝑚
: 𝑚 ∈ N) and (V

𝑚
: 𝑚 ∈ N) in

𝑋 satisfying

{𝐽 (𝑢
𝑚
, 𝑢
𝑛
) < 𝜀}

∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛,

({𝐽 (𝑢
𝑛
, 𝑢
𝑚
) < 𝜀} ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛

∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛) ,

{𝐽 (V
𝑚
, 𝑢
𝑚
) < 𝜀}

∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚,

({𝐽 (𝑢
𝑚
, V
𝑚
) < 𝜀} ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚

∈ N; 𝑘 ⩽ 𝑚) ,

(8)

the following holds

{𝑝 (V
𝑚
, 𝑢
𝑚
) < 𝜀}

∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚 ∈ N; 𝑘 ⩽ 𝑚,
(9)

({𝑝 (𝑢
𝑚
, V
𝑚
) < 𝜀} ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚

∈ N; 𝑘 ⩽ 𝑚) .
(10)

We observe that conditions (9) and (10) are equivalent to
lim
𝑚→∞

𝑝(V
𝑚
, 𝑢
𝑚
) = 0 and lim

𝑚→∞
𝑝(𝑢
𝑚
, V
𝑚
) = 0, respec-

tively. In the following remark, we list some basic properties
of left (right) generalized pseudodistance on (𝑋, 𝑝).

Remark 7. Let (𝑋, 𝑝) be a quasi-pseudometric space. The
following hold: (a) quasi-pseudometric is left and right quasi-
generalized pseudodistance on 𝑋; (b) let 𝐽 be left (right)
quasi-generalized pseudodistance on𝑋. If ∀𝑢 ∈ 𝑋 {𝐽(𝑢, 𝑢) =

0}, then, 𝐽 is quasi-pseudometric; (c) there are examples of
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left (right) generalized pseudodistance such that the map 𝐽 is
not quasi-pseudometrics (see Example 4.2 in [13]); (d) ([13,
Proposition 3.1]) if (𝑋, 𝑝) is a Hausdorff quasi-pseudometric
space and 𝐽 is a left (right) quasi-generalized pseudodistance,
then {𝑢 ̸= V⇒ {max{𝐽(𝑢, V), 𝐽(V, 𝑢)} > 0}} ∀𝑢, V ∈ 𝑋.

Definition 8 (see [13]). Let (𝑋, 𝑝) be a quasi-pseudometric
space and let 𝐽 : 𝑋 × 𝑋 → [0,∞) be a left (right) quasi-
generalized pseudodistance on𝑋.

(i) One says that a sequence (𝑢
𝑚
: 𝑚 ∈ N) in 𝑋 is left

(right) 𝐽-Cauchy sequence in𝑋 if

{𝐽 (𝑢
𝑚
, 𝑢
𝑛
) < 𝜀}

∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛,

({𝐽 (𝑢
𝑛
, 𝑢
𝑚
) < 𝜀} ∀𝜀 > 0, ∃𝑘 = 𝑘 (𝜀) ∈ N, ∀𝑚, 𝑛

∈ N; 𝑘 ⩽ 𝑚 ⩽ 𝑛) .

(11)

(ii) Let 𝑢 ∈ 𝑋 and let (𝑢
𝑚
: 𝑚 ∈ N) be a sequence in 𝑋.

One says that (𝑢
𝑚
: 𝑚 ∈ N) is left (right) 𝐽-convergent

to 𝑢 if lim𝐿−𝐽
𝑚→∞

𝑢
𝑚
= 𝑢; that is, lim

𝑚→∞
𝐽(𝑢, 𝑢

𝑚
) = 0

(lim𝑅−𝐽
𝑚→∞

𝑢
𝑚
= 𝑢); that is, lim

𝑚→∞
𝐽(𝑢
𝑚
, 𝑢) = 0).

(iii) One says that a sequence (𝑢
𝑚
: 𝑚 ∈ N) in 𝑋 is left

(right) 𝐽-convergent in 𝑋 if 𝑆𝐿−𝐽
(𝑢
𝑚
:𝑚∈N)

:= {𝑢 ∈ 𝑋 :

lim𝐿−𝐽
𝑚→∞

𝑢
𝑚
= 𝑢} ̸= ⌀ (𝑆𝑅−𝐽

(𝑢
𝑚
:𝑚∈N)

:= {𝑢 ∈ 𝑋 :

lim𝑅−𝐽
𝑚→∞

𝑢
𝑚
= 𝑢} ̸= ⌀).

(iv) If every left (right) 𝐽-Cauchy sequence (𝑢
𝑚
: 𝑚 ∈

N) in 𝑋 is left (right) 𝐽-convergent in 𝑋, that is,
𝑆
𝐿−𝐽

(𝑢
𝑚
:𝑚∈N)

̸= ⌀ (𝑆𝑅−𝐽
(𝑢
𝑚
:𝑚∈N)

̸= ⌀), then (𝑋, 𝑝) is called
left (right) 𝐽-sequentially complete quasi-pseudometric
space.

(v) Let the class of all nonempty closed subsets of 𝑋 be
denoted byCl(𝑋). Let∀𝑢 ∈ 𝑋 ∀𝑉 ∈ Cl(𝑋) {𝐽(𝑢, 𝑉) =
infV∈𝑉𝐽(𝑢, V)}. Define the distance of Hausdorff type,
as the map𝐻

𝐽
: Cl(𝑋) × Cl(𝑋) → [0,∞), where

{𝐻
𝐽
(𝐴, 𝐵) = max{sup

𝑢∈𝐴

𝐽 (𝑢, 𝐵) , sup
V∈𝐵

𝐽 (V, 𝐴)}}

∀𝐴, 𝐵 ∈ Cl (𝑋) .

(12)

It is worth noticing that if (𝑋, 𝑑) is a metric space and we
put 𝐽 = 𝑑, then we obtain the classical Hausdorff distance.
Example of left 𝐽-sequentially complete quasi-pseudometric
space which is not left sequentially complete is given in [12,
Examples 6.1 and 6.2]. Now, we will present some indications
that we will use later in the work.

Let (𝑋, 𝑝) be a quasi-pseudometric space, and let 𝐽 :

𝑋 × 𝑋 → [0,∞) be a left (right) quasi-generalized
pseudodistance on 𝑋. Let 𝐴 ̸= 0 and 𝐵 ̸= 0 be subsets
of 𝑋. We adopt the following notations and definitions:

dist
𝑝
(𝐴, 𝐵) = inf{𝑝(𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}; 𝑝(𝑎, 𝐵) =

inf{𝑝(𝑎, 𝑏) : 𝑏 ∈ 𝐵}, where 𝑎 ∈ 𝑋; and

𝐴
𝐽

0
= {𝑥 ∈ 𝐴 : 𝐽 (𝑥, 𝑦) = dist

𝑝
(𝐴, 𝐵) , for some 𝑦

∈ 𝐵} ;

𝐵
𝐽

0
= {𝑦 ∈ 𝐵 : 𝐽 (𝑥, 𝑦) = dist

𝑝
(𝐴, 𝐵) , for some 𝑥

∈ 𝐴} .

(13)

Definition 9. Let (𝑋, 𝑝) be a quasi-pseudometric space, and
let 𝐽 : 𝑋 × 𝑋 → [0,∞) be a left (right) quasi-generalized
pseudodistance on𝑋. Let (𝐴, 𝐵) be a pair of nonempty subset
of𝑋 with 𝐴𝐽

0
̸= 0.

(i) The pair (𝐴, 𝐵) is said to have the𝑊𝑃𝐽-property if and
only if

𝐽 (𝑥
1
, 𝑦
1
) = dist

𝑝
(𝐴, 𝐵)

𝐽 (𝑥
2
, 𝑦
2
) = dist

𝑝
(𝐴, 𝐵)

󳨐⇒ (𝐽 (𝑥
1
, 𝑥
2
) ⩽ 𝐽 (𝑦

1
, 𝑦
2
)) , (14)

where 𝑥
1
, 𝑥
2
∈ 𝐴
𝐽

0
and 𝑦

1
, 𝑦
2
∈ 𝐵
𝐽

0
.

(ii) One says that a left (right) quasi-generalized pseu-
dodistance on 𝑋 is associated with the pair (𝐴, 𝐵) if, for any
sequences (𝑥

𝑚
: 𝑚 ∈ N) and (𝑦

𝑚
: 𝑚 ∈ N) in𝑋 such that∃𝑥 ∈

𝑋 {lim
𝑚→∞

𝑝(𝑥, 𝑥
𝑚
) = 0}; ∃𝑦 ∈ 𝑋 {lim

𝑚→∞
𝑝(𝑦, 𝑦

𝑚
) = 0};

and

{𝐽 (𝑥
𝑚
, 𝑦
𝑚−1
) = dist

𝑝
(𝐴, 𝐵)} ∀𝑚 ∈ N, (15)

one has max{𝑝(𝑥, 𝑦), 𝑝(𝑦, 𝑥)} = dist
𝑝
(𝐴, 𝐵).

2. Best Proximity Point Theory in
Quasi-Pseudometric Spaces

In this section we recall a definition of quasiclosed map and
introduce the concepts of semiquasiclosedmap and narrower
𝐽-contraction of Nadler type.

Definition 10. Let (𝑋, 𝑝) be a quasi-pseudometric space and
let 𝐴, 𝐵 be a nonempty subsets of𝑋.

(i) ([12, Definition 4.2(i)]) The set-valued non-self-
mapping 𝑇 : 𝐴 → 2

𝐵 is called quasiclosed if
whenever (𝑥

𝑚
: 𝑚 ∈ N) is a sequence in 𝐴 left

converging to𝑊 ⊂ 𝐴 and (𝑦
𝑚
: 𝑚 ∈ N) is a sequence

in 𝐵 satisfying the condition {𝑦
𝑚
∈ 𝑇(𝑥

𝑚
)} ∀𝑚 ∈ N

and left converging to each point of the set 𝑉 ⊂ 𝐵,
then

{V ∈ 𝑇 (𝑤)} ∃V ∈ 𝑉, ∀𝑤 ∈ 𝑊. (16)

(ii) The set-valued non-self-mapping 𝑇 : 𝐴 → 2
𝐵 is

called semiquasiclosed if whenever (𝑥
𝑚
: 𝑚 ∈ N) is

a sequence in 𝐴 left converging to𝑊 ⊂ 𝐴 and (𝑦
𝑚
:

𝑚 ∈ N) is a sequence in 𝐵 satisfying the condition
{𝑦
𝑚
∈ 𝑇(𝑥

𝑚
)} ∀𝑚 ∈ N and left converging to each

point of the set 𝑉 ⊂ 𝐵, then

{V ∈ 𝑇 (𝑤)} ∃V ∈ 𝑉, ∃𝑤 ∈ 𝑊. (17)
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(iii) Let 𝐽 : 𝑋 × 𝑋 → [0,∞) be a left (right) generalized
pseudodistance on 𝑋. Let the map 𝑇 : 𝐴 → 2

𝐵 be
such that 𝑇(𝑥) ∈ Cl(𝑋), for each 𝑥 ∈ 𝑋. The map 𝑇
is called a set-valued non-self-mapping 𝐽-contraction
of Nadler type, if the following condition holds:

{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)}

∃0 ⩽ 𝜆 < 1 ∀𝑥, 𝑦 ∈ 𝐴.
(18)

(iv) The map 𝑇 is called a set-valued non-self-mapping
narrower 𝐽-contraction of Nadler type, if the fol-
lowing condition holds: {𝐻

𝐽
(𝑇(𝑥), 𝑇(𝑦)) ⩽ 𝜆𝐽(𝑥,

𝑦)} ∃0 ⩽ 𝜆 < 1 ∀𝑥, 𝑦 ∈ 𝐴
𝐽

0
.

Theorem 11. Let (𝑋, 𝑝) be a Hausdorff left (right) 𝐽-
sequentially complete quasi-pseudometric space, where 𝐽 : 𝑋 ×
𝑋 → [0,∞) is a left (right) quasi-generalized pseudodis-
tance on 𝑋. Let (𝐴, 𝐵) be a pair of nonempty subset of 𝑋 with
𝐴
𝐽

0
̸= 0 and such that (𝐴, 𝐵) has the 𝑊𝑃𝐽-property and 𝐽 is

associated with (𝐴, 𝐵). Let 𝑇 : 𝐴 → 2
𝐵 be a semiquasiclosed

set-valued non-self-mapping narrower contraction of Nadler
type. Let 𝑇(𝑥) be bounded and closed in 𝐵 for all 𝑥 ∈ 𝐴, and
𝑇(𝑥) ⊂ 𝐵

𝐽

0
for each 𝑥 ∈ 𝐴𝐽

0
. Then 𝑇 has a best proximity point

in 𝐴.

Proof. Part I. We assume that (𝑋, 𝑝) is a quasi-pseudometric
space and 𝐽 : 𝑋 × 𝑋 → [0,∞) is a left generalized
pseudodistance on 𝑋, such that (𝑋, 𝑝) is a left 𝐽-sequentially
complete quasi-pseudometric space. To begin, we observe
that

{𝐽 (𝑤, V) ⩽ 𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) + 𝛾}

∀𝑥, 𝑦 ∈ 𝐴, ∀𝛾 > 0, ∀𝑤 ∈ 𝑇 (𝑥) , ∃V ∈ 𝑇 (𝑦) .
(19)

Let 𝑥, 𝑦 ∈ 𝐴, we know that 𝐽(𝑤, 𝑇(𝑦)) ⩽ 𝐽(𝑤, 𝑏) for all
𝑏 ∈ 𝑇(𝑦) and for all𝑤 ∈ 𝑇(𝑥). Moreover for each 𝛾 > 0, using
characterisation of infimum, there exists V ∈ 𝑇(𝑦) such that

𝐽 (𝑤, 𝑇 (𝑦)) ⩽ 𝐽 (𝑤, V) ⩽ 𝐽 (𝑤, 𝑇 (𝑦)) + 𝛾. (20)

Property (20) implies that

𝐽 (𝑤, 𝑇 (𝑦)) ⩽ 𝐽 (𝑤, V) ⩽ 𝐽 (𝑤, 𝑇 (𝑦)) + 𝛾

⩽ sup
𝑤∈𝑇(𝑥)

𝐽 (𝑤, 𝑇 (𝑦)) + 𝛾.
(21)

Since sup
𝑤∈𝑇(𝑥)

𝐽(𝑤, 𝑇(𝑦)) ⩽ 𝐻
𝐽
(𝑇(𝑥), 𝑇(𝑦)), we conclude

that

𝐽 (𝑤, V) ⩽ 𝐽 (𝑤, 𝑇 (𝑦)) + 𝛾 ⩽ sup
𝑤∈𝑇(𝑥)

𝐽 (𝑤, 𝑇 (𝑦)) + 𝛾

⩽ 𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) + 𝛾.

(22)

Hence property (19) holds.The proof will be broken into four
steps.

Step 1. We can construct the sequences (𝑤𝑚 : 𝑚 ∈ {0} ∪ N)

and (V𝑚 : 𝑚 ∈ {0} ∪ N) such that

{𝑤
𝑚
∈ 𝐴
𝐽

0
∧ V𝑚 ∈ 𝐵𝐽

0
} ∀𝑚 ∈ {0} ∪ N, (23)

{V𝑚 ∈ 𝑇 (𝑤𝑚)} ∀𝑚 ∈ {0} ∪ N, (24)

{𝐽 (𝑤
𝑚
, V𝑚−1) = dist

𝑝
(𝐴, 𝐵)} ∀𝑚 ∈ N, (25)

{𝐽 (V𝑚−1, V𝑚) ⩽ 𝐻
𝐽
(𝑇 (𝑤

𝑚−1
) , 𝑇 (𝑤

𝑚
)) + 𝜆

𝑚
}

∀𝑚 ∈ N,
(26)

{𝐽 (𝑤
𝑚
, 𝑤
𝑚+1
) ⩽ 𝐽 (V𝑚−1, V𝑚)} ∀𝑚 ∈ N, (27)

{𝐽 (𝑤
𝑚
, 𝑤
𝑛
) < 𝜀}

∀𝜀 > 0, ∃𝑛
0
= 𝑛
0 (𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑛

0
⩽ 𝑚 ⩽ 𝑛,

(28)

{𝐽 (V𝑚, V𝑛) < 𝜀}

∀𝜀 > 0, ∃𝑛
0
= 𝑛
0
(𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑛

0
⩽ 𝑚 ⩽ 𝑛.

(29)

Indeed, since 𝐴𝐽
0
̸= 0 and 𝑇(𝑥) ⊆ 𝐵𝐽

0
for each 𝑥 ∈ 𝐴𝐽

0
, we

may choose𝑤0 ∈ 𝐴𝐽
0
and next V0 ∈ 𝑇(𝑤0) ⊆ 𝐵𝐽

0
. By definition

of 𝐵𝐽
0
, there exists 𝑤1 ∈ 𝐴 such that

𝐽 (𝑤
1
, V0) = dist

𝑝
(𝐴, 𝐵) . (30)

Of course, since V0 ∈ 𝐵, by (30), we have𝑤1 ∈ 𝐴𝐽
0
. Next, since

𝑇(𝑥) ⊆ 𝐵
𝐽

0
for each 𝑥 ∈ 𝐴𝐽

0
, from (19) (for 𝑥 = 𝑤0, 𝑦 = 𝑤1,

𝛾 = 𝜆,𝑤 = V0) we conclude that there exists V = V1 ∈ 𝑇(𝑤1) ⊆
𝐵
𝐽

0
(since 𝑤1 ∈ 𝐴𝐽

0
) such that

𝐽 (V0, V1) ⩽ 𝐻
𝐽
(𝑇 (𝑤

0
) , 𝑇 (𝑤

1
)) + 𝜆. (31)

Next, since V1 ∈ 𝐵𝐽
0
, by definition of 𝐵𝐽

0
, there exists 𝑤2 ∈ 𝐴

such that

𝐽 (𝑤
2
, V1) = dist

𝑝 (𝐴, 𝐵) . (32)

Of course, since V1 ∈ 𝐵, by (32), we have 𝑤2 ∈ 𝐴𝐽
0
. Since

𝑇(𝑥) ⊆ 𝐵
𝐽

0
for each 𝑥 ∈ 𝐴𝐽

0
, from (19) (for 𝑥 = 𝑤1, 𝑦 = 𝑤2,

𝛾 = 𝜆
2,𝑤 = V1) we conclude that there exists V2 ∈ 𝑇(𝑤2) ⊆ 𝐵𝐽

0

(since 𝑤2 ∈ 𝐴𝐽
0
) such that

𝐽 (V1, V2) ⩽ 𝐻
𝐽
(𝑇 (𝑤

1
) , 𝑇 (𝑤

2
)) + 𝜆

2
. (33)

By (30)–(33) and by the induction, we produce sequences
(𝑤
𝑚
: 𝑚 ∈ {0} ∪ N) and (V𝑚 : 𝑚 ∈ {0} ∪ N) such that {𝑤𝑚 ∈

𝐴
𝐽

0
∧ V𝑚 ∈ 𝐵𝐽

0
} ∀𝑚 ∈ {0} ∪ N; {V𝑚 ∈ 𝑇(𝑤𝑚)} ∀𝑚 ∈ {0} ∪ N;

{𝐽(𝑤
𝑚
, V𝑚−1) = dist

𝑝
(𝐴, 𝐵)} ∀𝑚 ∈ N; and {𝐽(V𝑚−1, V𝑚) ⩽

𝐻
𝐽
(𝑇(𝑤
𝑚−1
), 𝑇(𝑤

𝑚
)) + 𝜆

𝑚
} ∀𝑚 ∈ N. Thus (23)–(26) hold. In

particular (25) gives

{𝐽 (𝑤
𝑚
, V𝑚−1) = dist

𝑝
(𝐴, 𝐵) ∧ 𝐽 (𝑤

𝑚+1
, V𝑚)

= dist
𝑝
(𝐴, 𝐵)} ∀𝑚 ∈ N.

(34)
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Now, since the pair (𝐴, 𝐵) has the 𝑊𝑃𝐽-property, from the
above we conclude ∀𝑚 ∈ N {𝐽(𝑤

𝑚
, 𝑤
𝑚+1
) ⩽ 𝐽(V𝑚−1, V𝑚)}.

Consequently, property (27) holds.
We recall that the contractive condition is as follows:
{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)}

∃0 ⩽ 𝜆 < 1, ∀𝑥, 𝑦 ∈ 𝐴
𝐽

0
.
(35)

In particular, by (35) (for 𝑥 = 𝑤𝑚 ∈ 𝐴𝐽
0
, 𝑦 = 𝑤𝑚+1 ∈ 𝐴𝐽

0
,

𝑚 ∈ {0} ∪ N) we obtain

{𝐻
𝐽
(𝑇 (𝑤

𝑚
) , 𝑇 (𝑤

𝑚+1
)) ⩽ 𝜆𝐽 (𝑤

𝑚
, 𝑤
𝑚+1
)}

∃0 ⩽ 𝜆 < 1, ∀𝑚 ∈ {0} ∪ N.
(36)

Next, by (27), (26), and (36) we calculate

{𝐽 (𝑤
𝑚
, 𝑤
𝑚+1
) ⩽ 𝐽 (V𝑚−1, V𝑚)

⩽ 𝐻
𝐽
(𝑇 (𝑤

𝑚−1
) , 𝑇 (𝑤

𝑚
)) + 𝜆

𝑚
⩽ 𝜆𝐽 (𝑤

𝑚−1
, 𝑤
𝑚
)

+ 𝜆
𝑚
⩽ 𝜆𝐽 (V𝑚−2, V𝑚−1) + 𝜆𝑚

⩽ 𝜆 [𝐻
𝐽
(𝑇 (𝑤

𝑚−2
) , 𝑇 (𝑤

𝑚−1
)) + 𝜆

𝑚−1
] + 𝜆
𝑚

= 𝜆𝐻
𝐽
(𝑇 (𝑤

𝑚−2
) , 𝑇 (𝑤

𝑚−1
)) + 2𝜆

𝑚

⩽ 𝜆
2
𝐽 (𝑤
𝑚−2
, 𝑤
𝑚−1
) + 2𝜆

𝑚
⩽ 𝜆
2
𝐽 (V𝑚−3, V𝑚−2)

+ 2𝜆
𝑚
⩽ 𝜆
2
[𝐻
𝐽
(𝑇 (𝑤

𝑚−3
) , 𝑇 (𝑤

𝑚−2
)) + 𝜆

𝑚−2
]

+ 2𝜆
𝑚
= 𝜆
2
𝐻
𝐽
(𝑇 (𝑤

𝑚−3
) , 𝑇 (𝑤

𝑚−2
)) + 3𝜆

𝑚

⩽ 𝜆
3
𝐽 (𝑤
𝑚−3
, 𝑤
𝑚−2
) + 3𝜆

𝑚
⩽ ⋅ ⋅ ⋅ ⩽ 𝜆

𝑚
𝐽 (𝑤
0
, 𝑤
1
)

+ 𝑚𝜆
𝑚
} ∃0 ⩽ 𝜆 < 1, ∀𝑚 ∈ N.

(37)

Hence, ∃0 ⩽ 𝜆 < 1 ∀𝑚 ∈ N {𝐽(𝑤
𝑚
, 𝑤
𝑚+1
) ⩽ 𝜆
𝑚
𝐽(𝑤
0
, 𝑤
1
) +

𝑚𝜆
𝑚
}. This implies that ∑∞

𝑚=0
𝐽(𝑤
𝑚
, 𝑤
𝑚+1
) < ∞. Now, we

have ∀𝜀 > 0 ∃𝑛
0
(𝜀) ∈ N {∑

∞

𝑘=𝑛
0

𝐽(𝑤
𝑘
, 𝑤
𝑘+1
) < 𝜀}. Hence, by

(𝐽1) we get

{

{

{

𝐽 (𝑤
𝑚
, 𝑤
𝑛
) ⩽ sup
𝑛⩾𝑚

𝐽 (𝑤
𝑚
, 𝑤
𝑛
) ⩽

∞

∑
𝑘=𝑛
0

𝐽 (𝑤
𝑘
, 𝑤
𝑘+1
)

< 𝜀
}

}

}

∀𝜀 > 0, ∃𝑛
0
(𝜀) ∈ N, ∀𝑚, 𝑛 ∈ N; 𝑛

0
⩽ 𝑚 ⩽ 𝑛.

(38)

In consequence ∀𝜀 > 0 ∃𝑛
0
(𝜀) ∈ N ∀𝑚, 𝑛 ∈ N; 𝑛

0
⩽ 𝑚 ⩽

𝑛 {𝐽(𝑤
𝑚
, 𝑤
𝑛
) < 𝜀}. Similarly, by (27), (26), and (36) we obtain

{𝐽 (V𝑚−1, V𝑚) ⩽ 𝐻
𝐽
(𝑇 (𝑤

𝑚−1
) , 𝑇 (𝑤

𝑚
)) + 𝜆

𝑚

⩽ 𝜆𝐽 (𝑤
𝑚−1
, 𝑤
𝑚
) + 𝜆
𝑚
⩽ 𝜆𝐽 (V𝑚−2, V𝑚−1) + 𝜆𝑚

⩽ ⋅ ⋅ ⋅ ⩽ 𝜆
𝑚
𝐽 (𝑤
0
, 𝑤
1
) + 𝑚𝜆

𝑚
}

∃0 ⩽ 𝜆 < 1, ∀𝑚 ∈ N.

(39)

Using the analogous method as in the above we get ∀𝜀 >
0 ∃𝑛
0
(𝜀) ∈ N ∀𝑚, 𝑛 ∈ N; 𝑛

0
⩽ 𝑚 ⩽ 𝑛 {𝐽(𝑤

𝑚
, 𝑤
𝑛
) < 𝜀}.

Then properties (23)–(29) hold.

Step 2.We can show that the sequences (𝑤𝑚 : 𝑚 ∈ {0}∪N) and
(V𝑚 : 𝑚 ∈ {0} ∪ N) are left 𝐽-Cauchy sequences in 𝑋. Indeed,
it is an easy consequence of (28) and (29).

Step 3. We can show that the sets 𝑆𝐿−𝐽
(𝑤
𝑚
:𝑚∈N)

and 𝑆𝐿−𝐽
(V𝑚 :𝑚∈N) are

nonempty. Indeed, by Step 2, the sequences (𝑤𝑚 : 𝑚 ∈ {0}∪N)
and (V𝑚 : 𝑚 ∈ {0}∪N) are left 𝐽-Cauchy. By left 𝐽-sequentially
completeness, both sequences are left 𝐽-convergent in𝑋; that
is, 𝑆𝐿−𝐽
(𝑤
𝑚
:𝑚∈N)

̸= ⌀ and 𝑆𝐿−𝐽
(V𝑚 :𝑚∈N) ̸= ⌀.

Step 4. We can show that

{ lim
𝑚→∞

𝑝 (𝑤,𝑤
𝑚
) = 0} ∀𝑤 ∈ 𝑆

𝐿−𝐽

(𝑤
𝑚
:𝑚∈N)

,

{ lim
𝑚→∞

𝑝 (V, V
𝑚
) = 0} ∀V ∈ 𝑆𝐿−𝐽

(V𝑚 :𝑚∈N).

(40)

Indeed, by Step 3, 𝑆𝐿−𝐽
(𝑤
𝑚
:𝑚∈N)

̸= ⌀ and 𝑆𝐿−𝐽
(V𝑚 :𝑚∈N) ̸= ⌀. Let

𝑤 ∈ 𝑆
𝐿−𝐽

(𝑤
𝑚
:𝑚∈N)

and V ∈ 𝑆𝐿−𝐽
(V𝑚 :𝑚∈N) be arbitrary and fixed. From

Definition 8(iii), lim𝐿−𝐽
𝑚→∞

𝑤
𝑚
= 𝑤 and lim𝐿−𝐽

𝑚→∞
V𝑚 = V,

which by Definition 8(ii) gives lim
𝑚→∞

𝐽(𝑤, 𝑤
𝑚
) = 0, and

lim
𝑚→∞

𝐽(V, V𝑚) = 0. Hence, if we define the sequences
(𝑧
𝑚
= 𝑤 : 𝑚 ∈ {0} ∪ N) and (𝑦𝑚 = V : 𝑚 ∈ {0} ∪ N), we

obtain

lim
𝑚→∞

𝐽 (𝑧
𝑚
, 𝑤
𝑚
) = 0, (41)

lim
𝑚→∞

𝐽 (𝑦
𝑚
, V𝑚) = 0. (42)

In consequence, by (28) and (41) we have that (8) hold. Next
by (𝐽2) we obtain that

lim
𝑚→∞

𝑝 (𝑧
𝑚
, 𝑤
𝑚
) = 0. (43)

Similarly, by (29) and (42) and (𝐽2) we obtain that

lim
𝑚→∞

𝑝 (𝑦
𝑚
, V𝑚) = 0. (44)

Next, by (43), (44), and definition of sequences (𝑧𝑚 = 𝑤 :
𝑚 ∈ {0}∪N) and (𝑦𝑚 = V : 𝑚 ∈ {0}∪N) and fromarbitrariness
𝑤 ∈ 𝑆

𝐿−𝐽

(𝑤
𝑚
:𝑚∈N)

and V ∈ 𝑆𝐿−𝐽
(V𝑚 :𝑚∈N) we obtain that (40) hold.

Step 5. We can show that the there exists a best proximity
point; that is, there exists 𝑤

0
∈ 𝐴 such that inf{𝑝(𝑤

0
, 𝑧) : 𝑧 ∈

𝑇(𝑤
0
)} = dist

𝑝
(𝐴, 𝐵). Indeed, if we denote 𝑊

0
= 𝑆
𝐿−𝐽

(𝑤
𝑚
:𝑚∈N)

and 𝑉
0
= 𝑆
𝐿−𝐽

(V𝑚 :𝑚∈N), then, by Step 4, {lim
𝑚→∞

𝑝(𝑤,𝑤
𝑚
) =

0} ∀𝑤 ∈ 𝑊
0
and {lim

𝑚→∞
𝑝(V, V𝑚) = 0} ∀V ∈ 𝑉

0
. Now, since

𝐴 and 𝐵 are left quasiclosed (we recall that {𝑤𝑚 ∈ 𝐴 ∧ V𝑚 ∈
𝐵} ∀𝑚 ∈ {0} ∪ N), thus𝑊

0
⊂ 𝐴 and 𝑉

0
⊂ 𝐵. Finally, since by

(24) we have {V𝑚 ∈ 𝑇(𝑤𝑚)} ∀𝑚 ∈ {0} ∪ N, and since 𝑇 is left
semiquasiclosed, we have

{V ∈ 𝑇 (𝑤)} ∃V ∈ 𝑉
0
, ∃𝑤 ∈ 𝑊

0
. (45)
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Next, since𝑊
0
⊂ 𝐴, 𝑉

0
⊂ 𝐵 and 𝑇(𝐴) ⊂ 𝐵, by (45) we

have 𝑇(𝑤) ⊂ 𝐵 and

dist
𝑝 (𝐴, 𝐵) = inf {𝑝 (𝑎, 𝑏) : 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

⩽ 𝑝 (𝑤, 𝐵) ⩽ 𝑝 (𝑤, 𝑇 (𝑤))

= inf {𝑝 (𝑤, 𝑧) : 𝑧 ∈ 𝑇 (𝑤)} ⩽ 𝑝 (𝑤, V) .

(46)

We know that lim
𝑚→∞

𝑝(𝑤,𝑤
𝑚
) = 0 and lim

𝑚→∞
𝑝(V, V𝑚) =

0. Moreover by (25) we get {𝐽(𝑤𝑚, V𝑚−1) = dist
𝑝
(𝐴, 𝐵)} ∀𝑚 ∈

N. Thus, since the map 𝐽 is associated with the pair (𝐴, 𝐵),
then by Definition 9(ii), we conclude that

max {𝑝 (𝑤, V) , 𝑝 (V, 𝑤)} = dist
𝑝
(𝐴, 𝐵) . (47)

Finally, (46) and (47), we obtain

dist
𝑝
(𝐴, 𝐵) ⩽ inf {𝑝 (𝑤, 𝑧) : 𝑧 ∈ 𝑇 (𝑤)} ⩽ 𝑝 (𝑤, V)

⩽ max {𝑝 (𝑤, V) , 𝑝 (V, 𝑤)} = dist
𝑝 (𝐴, 𝐵) ,

(48)

and hence

inf {𝑝 (𝑤, 𝑧) : 𝑧 ∈ 𝑇 (𝑤)} = max {𝑝 (𝑤, V) , 𝑝 (V, 𝑤)}

= dist
𝑝 (𝐴, 𝐵) ;

(49)

that is, 𝑤 is a best proximity point of the mapping 𝑇.

Part II. We assume that (𝑋, 𝑝) is a quasi-pseudometric space
and 𝐽 : 𝑋×𝑋 → [0,∞) is a right generalized pseudodistance
on𝑋, such that (𝑋, 𝑝) is a right 𝐽-sequentially complete quasi-
pseudometric space.Then proof is analogous as in Part I.

Remark 12. It is worth noticing that, (a) in assumption of
Theorem 11, the space (𝑋, 𝑝) does not need to be left (right)
sequentially complete. Consequently if, in particular, we
put 𝑝 = 𝑑 and we consider usual metric space, then in
Theorem 11 the assumption about sequential completeness
will be not necessary. (b) The class of set-valued non-self-
mapping 𝐽-contractions of Nadler type is wider than the
class of set-valued non-self-mapping contractions of Nadler
type. (c) The class of set-valued non-self-mapping narrower
𝐽-contractions of Nadler type is wider than the class of set-
valued non-self-mapping 𝐽-contractions of Nadler type.

Remark 13. It is worth noticing that, in a metric space 𝑋,
a point 𝑥 ∈ 𝐴 is said to be a best proximity point of a
mapping 𝑇 : 𝐴 → 𝐵 if 𝑑(𝑥, 𝑇𝑥) = dist(𝐴, 𝐵), where 𝐴, 𝐵
are nonempty subsets of 𝑋. If 𝐴 = 𝐵, then dist(𝐴, 𝐵) =
0 and a best proximity point reduces to a fixed point of a
self-mapping. In our theorem, let (𝑋, 𝑝) be a Hausdorff left
(right) sequentially complete quasi-pseudometric space, and
let 𝐽 : 𝑋 × 𝑋 → [0,∞) be a left (right) quasi-generalized
pseudodistance on𝑋. Let (𝐴, 𝐵) be a pair of nonempty subset
of𝑋 with 𝐴𝐽

0
̸= 0 and such that (𝐴, 𝐵) has the𝑊𝑃𝐽-property,

𝐽 is associated with (𝐴, 𝐵), and 𝐴 = 𝐵. Then if 𝑇 : 𝐴 → 2
𝐴

is a semiquasiclosed set-valued non-self-mapping narrower
contraction of Nadler type and𝑇(𝑥) is bounded and closed in
𝐵 = 𝐴 for all 𝑥 ∈ 𝐴, and 𝑇(𝑥) ⊂ 𝐵𝐽

0
for each 𝑥 ∈ 𝐴𝐽

0
, then we

have that𝑇 has a fixed point in𝐴. Indeed, it is consequence of
the proof of Theorem 11. More precisely, by (45) we have V ∈
𝑇(𝑤). Moreover by (49) we have 𝑝(V, 𝑤) = 0 and 𝑝(𝑤, V) = 0.
Since (𝑋, 𝑝) is a Hausdorff space, we conclude that V = 𝑤, so
V ∈ 𝑇(V), and consequently V is a fixed point of 𝑇.

Next results are straightforward consequences of
Theorem 11.

Corollary 14. Let (𝑋, 𝑝) be a Hausdorff left (right) 𝐽-
sequentially complete quasi-pseudometric space, where 𝐽 : 𝑋 ×
𝑋 → [0,∞) is a left (right) quasi-generalized pseudodis-
tance on 𝑋. Let (𝐴, 𝐵) be a pair of nonempty subset of 𝑋 with
𝐴
𝐽

0
̸= 0 and such that (𝐴, 𝐵) has the 𝑊𝑃𝐽-property and 𝐽 is

associated with (𝐴, 𝐵). Let 𝑇 : 𝐴 → 𝐵 be a continuous single-
valued narrower contraction of Banach type; that is,

{𝐽 (𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)}

∃0 ⩽ 𝜆 < 1, ∀𝑥, 𝑦 ∈ 𝐴
𝐽

0
.
(50)

If 𝑇(𝐴𝐽
0
) ⊂ 𝐵
𝐽

0
, then 𝑇 has a best proximity point in 𝐴.

Now we give some examples which illustrate the main
results of the paper.

Example 15. Let (𝑋, 𝑑) be a metric space, where 𝑋 = R,
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, 𝑥, 𝑦 ∈ 𝑋. Let (𝐴, 𝐵) be a pair of subset
𝑋, where 𝐴 = [4, 5] and 𝐵 = [2, 3] ∪ [6, 7]. Let 𝐸 = [2, 3] ∪
[4, 4(1/2)] and let 𝐽 : 𝑋 × 𝑋 → [0,∞) be defined by the
formula

𝐽 (𝑥, 𝑦) =
{

{

{

𝑑 (𝑥, 𝑦) if 𝐸 ∩ {𝑥, 𝑦} = {𝑥, 𝑦} ,

9 if 𝐸 ∩ {𝑥, 𝑦} ̸= {𝑥, 𝑦} ,

𝑥, 𝑦 ∈ 𝑋.

(51)

Themap 𝐽 is a generalized pseudodistance on𝑋 (see Example
4.2 in [13]). It is clear that 𝐽 is associated with the pair (𝐴, 𝐵).
Assume that 𝑇 : 𝐴 → 2

𝐵 is of the form
𝑇 (𝑥)

=

{{

{{

{

[−2𝑥 + 11, 3] ∪ [6, 2𝑥 − 2] if 𝑥 ∈ [4, 41
2
) ,

[2𝑥 − 7, 3] ∪ [6, −2𝑥 + 16] if 𝑥 ∈ [41
2
, 5] .

(52)

(I) We show that the pair (𝐴, 𝐵) has the𝑊𝑃𝐽-property.

Indeed, we observe that dist(𝐴, 𝐵) = 1 and

𝐴
𝐽

0
= {𝑥 ∈ 𝐴 : there exists 𝑢 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= dist (𝐴, 𝐵)} = {4, 5} ,

𝐵
𝐽

0
= {𝑢 ∈ 𝐵 : there exists 𝑥 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= dist (𝐴, 𝐵)} = {3, 6} .

(53)

Hence, it is easy to verify that the pair (𝐴, 𝐵) has the weak
𝑊𝑃
𝐽-property.
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(II) We see that𝐴 is complete andby (52)wehave𝑇(𝐴𝐽
0
) =

{3, 6} ⊂ 𝐵
𝐽

0
.

(III) We see that 𝑇 is a set-valued non-self-mapping
narrower 𝐽-contraction of Nadler type; that is,

{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)}

∃0 ⩽ 𝜆 < 1, ∀𝑥, 𝑦 ∈ 𝐴
𝐽

0
.
(54)

Indeed, let 𝑥, 𝑦 ∈ 𝐴
𝐽

0
be arbitrary and fixed. Then by (52),

𝑇(𝑥) = 𝑇(𝑦) = {5, 6} ⊂ 𝐸, which, by (51), gives

𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) = 𝐻

𝐽
({5, 6} , {5, 6}) = 0 ⩽ 𝜆𝑑 (𝑥, 𝑦)

= 𝜆𝐽 (𝑥, 𝑦) .
(55)

In consequence the map 𝑇 is a set-valued non-self-mapping
narrower 𝐽-contraction of Nadler type.

(V) We see that there exists a best proximity point of 𝑇.

Indeed, for 𝑧 = 4 we have 𝑑(𝑧, 𝑇(𝑧)) = 𝑑(4, {3, 6}) = 1 =
dist(𝐴, 𝐵) and for 𝑧 = 5 we have 𝑑(𝑧, 𝑇(𝑧)) = 𝑑(5, {3, 6}) =
1 = dist(𝐴, 𝐵).

Now, we will compare our result with another result for
𝐽-generalized pseudodistance in 𝑏-metric space (with 𝑠 ⩽ 1)
[14]. For the reader’s convenience, we formulate this result in
metric spaces (with 𝑠 = 1).

Theorem 16 (see [14]). Let 𝑋 be a complete metric space
and let the map 𝐽 : 𝑋 × 𝑋 → [0,∞) be a 𝑏-generalized
pseudodistance on 𝑋. Let (𝐴, 𝐵) be a pair of nonempty closed
subsets of 𝑋 with 𝐴𝐽

0
̸= 0 and such that (𝐴, 𝐵) has the 𝑃𝐽-

property and 𝐽 is associated with (𝐴, 𝐵). Let 𝑇 : 𝐴 → 2
𝐵 be

a closed set-valued non-self-mapping 𝐽-contraction of Nadler
type. That is,

{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)} ∃

0⩽𝜆<1
, ∀
𝑥,𝑦∈𝐴

. (56)

If𝑇(𝑥) is bounded and closed in 𝐵 for all 𝑥 ∈ 𝐴, and𝑇(𝑥) ⊂ 𝐵
0

for each 𝑥 ∈ 𝐴
0
, then 𝑇 has a best proximity point in 𝐴.

Remark 17. Let𝑋, 𝐴, 𝐵, 𝑇, 𝐸, and 𝐽 be as in Example 15.

(I) We see that the map 𝑇 is not a set-valued non-self-
mapping 𝐽-contraction of Nadler type.

Indeed, we suppose that for 𝑇 the following condition
holds:

{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆0𝐽 (𝑥, 𝑦)} ∃

0⩽𝜆
0
<1
, ∀
𝑥,𝑦∈𝐴

. (57)

In particular, for 𝑥
0
= 4 and 𝑦

0
= 4, by (51) we have

𝐽(𝑥
0
, 𝑦
0
) = 9 and𝐻

𝐽
(𝑇(𝑥
0
), 𝑇(𝑦

0
)) = 9 (since 7 ∈ 𝑇(𝑦

0
) and

7 ∉ 𝐸). Hence, by (57) we get

9 = 𝐻
𝐽
(𝑇 (𝑥
0
) , 𝑇 (𝑦

0
)) ⩽ 𝜆

0
𝐽 (𝑥
0
, 𝑦
0
) = 𝜆
0
⋅ 9 < 9, (58)

which is absurd.

(II) We show that the pair (𝐴, 𝐵) does not have the 𝑃𝐽-
property.

Indeed, we observe that dist(𝐴, 𝐵) = 1 and

𝐴
𝐽

0
= {𝑥 ∈ 𝐴 : there exists 𝑢 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= 𝑑 (𝐴, 𝐵)} = {4, 5} ,

𝐵
𝐽

0
= {𝑢 ∈ 𝐵 : there exists 𝑥 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= 𝑑 (𝐴, 𝐵)} = {3, 6} .

(59)

Hence, it is easy to verify that, for the pairs (𝑥
1
, 𝑦
1
) = (4, 3)

and (𝑥
2
, 𝑦
2
) = (5, 6), by (51) we have 𝐽(𝑥

1
, 𝑦
1
) = 𝑑(𝑥

1
, 𝑦
1
) =

1 and 𝐽(𝑥
2
, 𝑦
2
) = 𝑑(𝑥

2
, 𝑦
2
) = 1, but 𝐽(𝑥

1
, 𝑥
2
) ̸= 𝐽(𝑦

1
, 𝑦
2
).

Therefore, the pair (𝐴, 𝐵) does not have the 𝑃𝐽-property.

Now we give the examples which illustrate the main
results of the paper in case when 𝑋 is quasi-pseudometric
space.

Example 18. Let𝑋 = [0, 1] ⊂ R,𝐴 = [0, 1/8]∪[5/8, 6/8] ⊂ 𝑋,
𝐵 = [2/8, 3/8] ∪ [7/8, 1] ⊂ 𝑋 and let 𝐹 = {1/2𝑛 : 𝑛 ∈ N}. Let
𝑝 : 𝑋 × 𝑋 → [0,∞) be given by the formula

𝑝 (𝑥, 𝑦) =
{

{

{

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 + 1 if 𝑥 ∉ 𝐹 ∧ 𝑦 ∈ 𝐹,

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 if 𝑥 ∈ 𝐹 ∨ 𝑦 ∉ 𝐹,

𝑥, 𝑦 ∈ 𝑋.

(60)

Then (𝑋, 𝑝) is a noncomplete quasi-pseudometric space (for
details see Examples 6.1–6.3 in [12]). Let 𝐸 = [1/8, 1] and
𝐽 : 𝑋 × 𝑋 → [0,∞) be defined by the formula

𝐽 (𝑥, 𝑦) =
{

{

{

𝑝 (𝑥, 𝑦) if 𝐸 ∩ {𝑥, 𝑦} = {𝑥, 𝑦} ,

4 if 𝐸 ∩ {𝑥, 𝑦} ̸= {𝑥, 𝑦} ,

𝑥, 𝑦 ∈ 𝑋.

(61)

The map 𝐽 is a generalized pseudodistance and 𝑋 is a Haus-
dorff left (right) 𝐽-sequentially complete quasi-pseudometric
space (see Examples 6.1–6.4 in [12]). It is clear that 𝐽 is also
associated with the pair (𝐴, 𝐵). Assume that 𝑇 : 𝐴 → 2

𝐵 is
of the form
𝑇 (𝑥)

=

{{{

{{{

{

{−8𝑥
2
+
3

8
, −8𝑥
2
+ 1] if 𝑥 ∈ [0, 1

8
]

{−8𝑥
2
+ 10𝑥 −

22

8
, −8𝑥
2
+ 10𝑥 −

17

8
} if 𝑥 ∈ [5

8
,
6

8
] .

(62)

(I) We show that the pair (𝐴, 𝐵) has the𝑊𝑃𝐽-property.

Indeed, we observe that dist
𝑝
(𝐴, 𝐵) = 1/8 and

𝐴
𝐽

0
= {𝑥 ∈ 𝐴 : there exists 𝑢 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= dist (𝐴, 𝐵)} = {1
8
,
6

8
} ,

𝐵
𝐽

0
= {𝑢 ∈ 𝐵 : there exists 𝑥 ∈ 𝐵 such that 𝐽 (𝑥, 𝑢)

= dist (𝐴, 𝐵)} = {2
8
,
7

8
} .

(63)
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Hence, it is easy to verify that the pair (𝐴, 𝐵) has the weak
𝑊𝑃
𝐽-property. Indeed, the assumption of definition of𝑊𝑃𝐽-

property is satisfied only in the two following cases:
(1) if 𝑥

1
= 1/8, 𝑦

1
= 2/8, 𝑥

2
= 6/8, and 𝑦

2
= 7/8, and

then, by (61) and (60) we obtain

𝐽 (𝑥
1
, 𝑥
2
) = 𝐽 (

1

8
,
6

8
) =

5

8
⩽
5

8
= 𝐽 (

2

8
,
7

8
)

= 𝐽 (𝑦
1
, 𝑦
2
) ;

(64)

(2) if 𝑥
1
= 6/8, 𝑦

1
= 7/8, 𝑥

2
= 1/8 and 𝑦

2
= 2/8, and

then, by (61) and (60) we obtain

𝐽 (𝑥
1
, 𝑥
2
) = 𝐽 (

6

8
,
1

8
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

8
−
1

8

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 1 = 1 +

5

8
⩽ 1 +

5

8

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

7

8
−
2

8

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 1 = 𝐽 (

7

8
,
2

8
) = 𝐽 (𝑦

1
, 𝑦
2
) .

(65)

(II) We see that 𝐴 is complete and by (62) we have
𝑇(𝐴
𝐽

0
) ⊂ 𝐵
𝐽

0
.

(III) We see that 𝑇 is a set-valued non-self-mapping
narrower 𝐽-contraction of Nadler type; that is,

{𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) ⩽ 𝜆𝐽 (𝑥, 𝑦)} ∃

0⩽𝜆<1
, ∀
𝑥,𝑦∈𝐴

𝐽

0

. (66)

Indeed, let 𝑥, 𝑦 ∈ 𝐴
𝐽

0
be arbitrary and fixed. Then by (52),

𝑇(𝑥) = 𝑇(𝑦) = {2/8, 7/8} ⊂ 𝐸, which, by (61), gives

𝐻
𝐽
(𝑇 (𝑥) , 𝑇 (𝑦)) = 𝐻

𝐽
({
2

8
,
7

8
} , {

2

8
,
7

8
}) = 0

⩽ 𝜆𝑝 (𝑥, 𝑦) = 𝜆𝐽 (𝑥, 𝑦) .

(67)

In consequence the map 𝑇 is a set-valued non-self-mapping
narrower 𝐽-contraction of Nadler type. Moreover, by (60),
(61), and Definition 10(ii), we obtain that 𝑇 is semi-
quasiclosed.

(V) We see that there exists a best proximity point of 𝑇.

Indeed, by (61), (60), and (62), for 𝑧 = 1/8 we have
𝑝(𝑧, 𝑇(𝑧)) = 𝑝(1/8, {2/8, 7/8}) = 𝑝(1/8, 2/8) = 1/8 =
dist
𝑝
(𝐴, 𝐵) and for 𝑧 = 6/8 we have 𝑝(𝑧, 𝑇(𝑧)) = 𝑝(6/8,

{2/8, 7/8}) = 𝑝(6/8, 7/8) = 1/8 = dist
𝑝
(𝐴, 𝐵).
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