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This paper presents a complete stochastic solution represented by the first probability density function for random first-order linear
difference equations.The study is based on RandomVariable Transformationmethod.The obtained results are given in terms of the
probability density functions of the data, namely, initial condition, forcing term, and diffusion coefficient. To conduct the study, all
possible cases regarding statistical dependence of the random input parameters are considered. A complete collection of illustrative
examples covering all the possible scenarios is provided.

1. Introduction and Motivation

The birth/death rates of species in biology, the volatility of
assets in finance, the transmission rates of the spread of
epidemics or social addictions in epidemiology, the diffusion
and advection coefficients of mass transport processes in
physics, and so forth are quantities that, in practice, involve
uncertainty. Thus, their deterministic modelling is clearly
limited. This motivates the search of mathematical models
that consider randomness in their formulation.Deterministic
differential and difference equations have been demonstrated
to be useful mathematical representations for modelling
numerous real problems. The consideration of randomness
in these types of equations is a relatively recent research
area whose main goal is to extend classical deterministic
results to the random scenario. Regarding continuous mod-
els, most of the contributions have focussed on Itô-type
stochastic differential equations. In this class of differential
equations, uncertainty is considered through a Gaussian and
stationary stochastic process (SP) called white noise, which
is the derivative of the Wiener SP [1–3]. Autoregressive (AR)
models can be interpreted as their discrete counterpart.These
types of models are extensively used in time series analysis
in statistics [4]. Some recent interesting models based on
Itô-type stochastic differential equations include [5–7], for
instance. Complementary to these approaches, uncertainty

can be directly introduced in differential and difference
equations by assuming that coefficients, source term, and/or
initial/boundary conditions are random variables and/or
stochastic processes. Under this approach, the probability
distributions associated with RVs and SPs are not required
to be Gaussian. This approach leads to the area usually
referred to as randomdifferential/difference equations [8], [9,
p. 66]. Intensive studies on randomdifferential and difference
equations have been undertaken only over the last few
decades. Currently, they are exerting a profound influence
on the analysis of many problems in engineering and science
[10, 11]. Most of these contributions are based onmean square
calculus [8, 12–14].

The solution of a random difference equation is a discrete
SP, say {𝑍

𝑛
: 𝑛 ≥ 0}. In dealing with random difference equa-

tions, the main goals are computing the solution SP and its
statistical characteristics, such as the mean function, E[𝑍

𝑛
],

and the variance function, V[𝑍
𝑛
] = E[(𝑍

𝑛
)
2

] − (E[𝑍
𝑛
])
2.

Despite being more complicated, the computation of the first
probability density function (1-PDF),𝑓

1
(𝑧, 𝑛), associatedwith

solution 𝑍
𝑛
is more convenient since from 1-PDF, besides

determining the mean and the variance functions, one can
also compute higher-order statistical moments of 𝑍

𝑛
:

E [(𝑍
𝑛
)
𝑘

] = ∫
∞

−∞

𝑧
𝑘

𝑓
1
(𝑧, 𝑛) d𝑧, 𝑛, 𝑘 = 0, 1, 2, . . . . (1)
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In the context of random differential equations, a number
of contributions have dealt with the computation of the 1-
PDF in specific problems appearing in physics [15–17] or
in mathematics [18, 19]. A comprehensive study for the
random first-order linear differential equation under general
hypotheses has been recently published by the authors of
[20]. The unifying element of all these contributions is
the Random Variable Transformation (RVT) method. This
technique permits, under certain hypotheses that will be
specified later, the computation of the PDF of a random
variable (RV) resulting aftermapping another RVwhose PDF
is known [21–23]. Although RVT technique is a classical
probability result, it must be pointed out that its application
to study differential equations with randomness is likely due
to Professor M. El-Tawil. He was the first author who had
used RVT technique to present some approximate solutions
of random differential equations. In [24], the RVT method
together with different numerical schemes (finite difference
and Runge-Kutta) is implemented to get the 1-PDF of the
solution SP in solving both partial and/or ordinary (first-
and/or second-order) random differential equations. His
contribution includes the definition of probabilistic error and
a formula for its computation as well.

As continuation of the study initiated in [20], the aim of
this paper is to develop a comprehensive study to determine
the 1-PDF of the solution discrete SP of the following random
initial value problem:

𝑍
𝑛+1

= 𝐴𝑍
𝑛
+ 𝐵, 𝑛 = 0, 1, 2, . . . ,

𝑍
0
= Γ
0
,

(2)

taking advantage of RVT method. All the input parameters,
Γ
0
, 𝐵, and 𝐴, are assumed to be continuous RVs defined on a

common probability space (Ω,F,P). Although RVTmethod
is the unifying technique used to conduct the analysis of
model (2) and also the one studied in [20], it is important
to point out that both problems have distinctly different
nature. Indeed, model (2) is discrete whereas problem faced
in [20] is continuous counterpart. As we will see later,
Proposition 1 constitutes the key result we have had to
establish to conduct the analysis of problem (2). Its for-
mulation is based on RVT method. Throughout the paper,
significant differences between the new analytical expressions
and graphical behaviour of the 1-PDF of the solution of (2)
and its continuous counterpart will be also exhibited.

As it also happens in the deterministic framework, in
general, the study of random difference equations has been
less prolific than of random differential equations. In [25],
the authors study the mean square exponential stability of
impulsive stochastic difference equations. In [26], one studies
random matrix linear difference equations assuming that
diffusion coefficient 𝐴 in (2) is a deterministic matrix rather
than aRV. In [26], the authors focus on the computation of the
mean vector and variance-covariance matrix of the solution
discrete SP instead of the 1-PDF. In this paper, we present a
comprehensive study of model (2) assuming randomness in
all the inputs, Γ

0
, 𝐵, and 𝐴. This includes the general case

where inputs are statistically dependent. From a statistical
point of view, (2) is a generalization of autoregressive model

of order 1, AR(1), where uncertainty is enclosed in the term
𝐵 through white noise.

For the sake of clarity in the presentation and in order to
facilitate the comparison of the results obtained in this paper
against the ones achieved in [20], we will keep the notation
used in both contributions identical. Hence, the domain of
the random inputs Γ

0
, 𝐵, and 𝐴 will be denoted by

𝐷
Γ0
= {𝛾
0
= Γ
0
(𝜔) , 𝜔 ∈ Ω : 𝛾

0,1
≤ 𝛾
0
≤ 𝛾
0,2
} ,

𝐷
𝐵
= {𝑏 = 𝐵 (𝜔) , 𝜔 ∈ Ω : 𝑏

1
≤ 𝑏 ≤ 𝑏

2
} ,

𝐷
𝐴
= {𝑎 = 𝐴 (𝜔) , 𝜔 ∈ Ω : 𝑎

1
≤ 𝑎 ≤ 𝑎

2
} ,

(3)

respectively. From this point forward, we will omit the 𝜔-
notation when writing RVs. In this manner, for instance,
we will write Γ

0
rather than Γ

0
(𝜔). The same can be said

for the notation of the PDFs that appear throughout this
paper. For example, 𝑓

Γ0
(𝛾
0
) will denote the PDF of RV Γ

0
;

𝑓
𝐵,𝐴

(𝑏, 𝑎) will denote the joint PDF of RVs 𝐵 and 𝐴; we will
write 𝑓

Γ0,𝐵,𝐴
(𝛾
0
, 𝑏, 𝑎) for the joint PDF of the random vector

(Γ
0
, 𝐵, 𝐴), and so on. As usual, we will assume that any PDF

is null outside its domain.
Based on the same arguments exhibited in [20, Section

1], we will distinguish the thirteen cases listed in Table 1
to conduct our study. These casuistries consider whether
the random difference equation (2) is homogeneous or
nonhomogeneous as well as all possible cases regarding the
random or deterministic nature of the input parameters Γ

0
, 𝐵,

and 𝐴. Note that, by splitting the study in all these cases, the
comparison of the results concerning the discrete problem
(2) against its continuous counterpart is facilitated. Examples
have also been devised with the same aim. Even more, in the
majority of the examples, the same statistical distributions
have been taken as in [20] to highlight better analogies and
differences between both models.

The paper is organized as follows. Section 2 is addressed
to introduce the preliminaries related to RVT technique
required to conduct our study. In this section, we establish
a key result related to the PDF of the power transformation
of RVs which will be crucial to deal with Case I.2 of Table 1,
where uncertainty just enters in model (2) through the RV
𝐴. Section 3 is divided into three subsections where the 1-
PDF of the discrete solution SP of (2) is determined for
each one of Cases I, II, and III listed in Table 1. Illustrative
examples covering the thirteen cases are provided throughout
the paper. In the last section, we present our conclusions.
Finally, we present an appendix where the main obtained
results are collected in order to facilitate their practical use.

2. Preliminaries

As it has been pointed out in the previous section, the goal
of this paper is to compute the 1-PDF {𝑓

1
(𝑧, 𝑛) : 𝑛 ≥ 0}

of the solution SP of problem (2) in each one of the cases
listed in Table 1. The key result to achieve this goal is the
RVT method. This is a probabilistic technique that allows
us to calculate the PDF of a random variable/vector which
is obtained after mapping another random variable/vector
whose PDF is known. Depending on the type of mapping as
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Table 1: List of the thirteen different cases considered to conduct the full study. This classification is made regarding whether the discrete
initial value problem is homogeneous (H) or nonhomogeneous (NH) and the way that uncertainty is considered (one random variable or a
random vector in two or three dimensions).

Type Discrete initial value problem Case

H
𝑍
𝑛+1

= 𝐴𝑍
𝑛
, 𝑛 = 0, 1, 2, . . .

𝑍
0
= Γ
0

(I)
I.1 Γ
0
is a random variable

I.2 𝐴 is a random variable
I.3 (Γ
0
, 𝐴) is a random vector

NH

𝑍
𝑛+1

= 𝑍
𝑛
+ 𝐵, 𝑛 = 0, 1, 2, . . .

𝑍
0
= Γ
0

(II)
II.1 Γ
0
is a random variable

II.2 𝐵 is a random variable
II.3 (Γ

0
, 𝐵) is a random vector

P [{𝜔 ∈ Ω : 𝐴 (𝜔) = 1}] = 0

𝑍
𝑛+1

= 𝐴𝑍
𝑛
+ 𝐵, 𝑛 = 0, 1, 2, . . .

𝑍
0
= Γ
0

(III)

III.1 Γ
0
is a random variable

III.2 𝐵 is a random variable
III.3 𝐴 is a random variable
III.4 (Γ

0
, 𝐵) is a random vector

III.5 (Γ
0
, 𝐴) is a random vector

III.6 (𝐵, 𝐴) is a random vector
III.7 (Γ

0
, 𝐵, 𝐴) is a random vector

well as its dimension, several versions of RVTmethod can be
established.Throughout this paper, the general scalar version
and its specialization to the linear case, as well as the general
multidimensional version, will be required. These results are
stated in [20, Theorem 1, Proposition 2 and Theorem 4],
respectively.

Next, we will establish the following result concerning the
PDF of a RV which is obtained after mapping another RV
via a power transformation. This result will play a relevant
role in the analysis of Case I.2. listed in Table 1. It is
important to underline the notion that power transformation
is a distinctive feature to describe the solution SP of the
discrete model (2) against the exponential transformation
which appears when its continuous counterpart is dealt with.
In this sense, the next result plays the same role as [20,
Proposition 3] performed there.

Proposition 1 (RVT technique: power transformation). Let
𝑋 be a continuous RV with domain 𝐷

𝑋
= {𝑥 : 𝑥

1
≤ 𝑥 ≤ 𝑥

2
}

and PDF𝑓
𝑋
(𝑥). Let one denote by 𝛿(⋅) the Dirac delta function.

Then, the PDF 𝑓
𝑌
(𝑦) of the power transformation 𝑌 = 𝑘𝑋

𝑛,
with 𝑛 ≥ 0 and 𝑘 ̸= 0, is given by the following:

(i) If 𝑛 = 0,

𝑓
𝑌
(𝑦) = 𝛿 (𝑦 − 𝑘) , −∞ < 𝑦 < +∞. (4)

(ii) If 𝑛 = 1,

𝑓
𝑌
(𝑦) =

1

|𝑘|
𝑓
𝑋
(
𝑦

𝑘
) ,

{

{

{

𝑘𝑥
1
≤ 𝑦 ≤ 𝑘𝑥

2
, if 𝑘 > 0,

𝑘𝑥
2
≤ 𝑦 ≤ 𝑘𝑥

1
, if 𝑘 < 0.

(5)

(iii) If 𝑛 is even, then one has the following:

Case 1 (𝑥
1
≥ 0):

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(6)

Case 2 (𝑥
2
≤ 0):

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 < 0.

(7)

Case 3 (𝑥
1
𝑥
2
< 0).

Case 3.1 (𝑥
2
≥ |𝑥
1
|):

𝑓
𝑌
(𝑦) = 𝑓

1

𝑌
(𝑦) + 𝑓

2

𝑌
(𝑦) , (8)

where
𝑓
1

𝑌
(𝑦)

=
1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) + 𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
)} ,

(9)

on the domain

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0,

𝑓
2

𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

< 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(10)
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Case 3.2 (𝑥
2
< |𝑥
1
|):

𝑓
𝑌
(𝑦) = 𝑓

1

𝑌
(𝑦) + 𝑓

2

𝑌
(𝑦) , (11)

where

𝑓
1

𝑌
(𝑦)

=
1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) + 𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
)} ,

(12)

on the domain

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0,

𝑓
2

𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
2
)
𝑛

< 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 𝑘 (𝑥
2
)
𝑛

, if 𝑘 < 0.

(13)

(iv) If 𝑛 ≥ 3 and is odd, then one has the following:

Case 1 (𝑥
1
> 0 or 𝑥

2
< 0):

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

𝑓
𝑋
( 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(14)

Case 2 (𝑥
1
𝑥
2
≤ 0):

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

𝑓
𝑋
( 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 0, 0 < 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 0, 0 < 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(15)

If 𝑘 = 0, for 𝑛 ≥ 0,

𝑓
𝑌
(𝑦) = 𝛿 (𝑦) , −∞ < 𝑦 < +∞. (16)

Proof. (i) If 𝑛 = 0, then 𝑌 = 𝑘 w.p. 1 and its PDF is given by

𝑓
𝑌
(𝑦) = 𝛿 (𝑦 − 𝑘) , −∞ < 𝑦 < +∞. (17)

(ii) If 𝑛 = 1, the mapping 𝑟 is monotone on the whole
domain of RV𝑋; then the inverse function of 𝑟 takes the form

𝑥 = 𝑠 (𝑦) =
𝑦

𝑘
, (18)

whose derivative is given by

𝑠
󸀠

(𝑦) =
1

𝑘
. (19)

Then, applying expression [20, Eq. (3)] and taking into
account (18)-(19), one gets

𝑓
𝑌
(𝑦) =

1

|𝑘|
𝑓
𝑋
(
𝑦

𝑘
) ,

{

{

{

𝑘𝑥
1
≤ 𝑦 ≤ 𝑘𝑥

2
, if 𝑘 > 0,

𝑘𝑥
2
≤ 𝑦 ≤ 𝑘𝑥

1
, if 𝑘 < 0.

(20)

(iii) Let us assume 𝑛 is even. We distinguish three cases
depending on the domain 𝐷

𝑋
= {𝑥 : 𝑥

1
≤ 𝑥 ≤ 𝑥

2
} of the

RV𝑋. In order to avoid any confusion, it is important to note
that these cases are mutually exclusive.

Case 1 (𝑥
1
≥ 0). Assuming 𝑘 > 0, the mapping 𝑟 is monotone

in𝐷
𝑋
. Hence, the inverse function of 𝑟, denoted by 𝑠(𝑦), takes

the form

𝑥 = 𝑠 (𝑦) = + 𝑛√
𝑦

𝑘
, (21)

and its derivative, 𝑠󸀠(𝑦), is given by

𝑠
󸀠

(𝑦) = +
1

𝑘𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

. (22)

Then, applying [20, Eq. (3)] and taking into account (21)-(22),
one gets

𝑓
𝑌
(𝑦) =

1

𝑘𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
) ,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

.

(23)

When 𝑘 < 0, the reasoning is analogous. Then, considering
expression (23) when 𝑘 > 0, both cases for the sign of 𝑘 can
be expressed as follows:

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
) , (24)

on the domain

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.
(25)

Case 2 (𝑥
2
≤ 0). In this case, the mapping 𝑟 is monotone in

𝐷
𝑋
. Using an analogous development as we did in Case 1, one

obtains

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) , (26)

on the domain

{

{

{

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 < 0.
(27)
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Case 3 (𝑥
1
𝑥
2

< 0). We will consider two subcases: 𝑥
2

≥

|𝑥
1
| and 𝑥

2
< |𝑥
1
|. We split each subcase into appropriate

subintervals in order to apply [20, Theorem 1] in order to
compute the PDF.

Case 3.1 (𝑥
2
≥ |𝑥
1
|). Let us consider the piece [𝑥

1
, −𝑥
1
]. On

the subinterval [𝑥
1
, 0], the mapping 𝑟 (denoted by 𝑟

1
, for the

sake of clarity) is monotone and its inverse 𝑠
1
is

𝑥 = 𝑠
1
(𝑦) = − 𝑛√

𝑦

𝑘
, (28)

whose derivative, 𝑠󸀠
1
(𝑦), for 𝑦 ̸= 0, is given by

𝑠
󸀠

1
(𝑦) = −

1

𝑘𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

. (29)

On the other hand, on the piece [0, −𝑥
1
], its corresponding

mapping 𝑟
2
is monotone and its inverse 𝑠

2
is

𝑥 = 𝑠
2
(𝑦) = + 𝑛√

𝑦

𝑘
, (30)

and, for 𝑦 ̸= 0,

𝑠
󸀠

2
(𝑦) = +

1

𝑘𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

. (31)

Notice that 𝑠󸀠
1
(𝑦) ̸= 0 and 𝑠

󸀠

2
(𝑦) ̸= 0 if 𝑦 ̸= 0. Then, applying

[23, Theorem 2.1.8] and taking into account (28)–(31), one
gets

𝑓
1

𝑌
(𝑦) = 𝑓

𝑋
(𝑠
1
(𝑦))

󵄨󵄨󵄨󵄨󵄨
𝑠
󸀠

1
(𝑦)

󵄨󵄨󵄨󵄨󵄨
+ 𝑓
𝑋
(𝑠
2
(𝑦))

󵄨󵄨󵄨󵄨󵄨
𝑠
󸀠

2
(𝑦)

󵄨󵄨󵄨󵄨󵄨

=
1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) + 𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
)} ,

(32)

on the domain

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0.
(33)

As usual, we assume 𝑓1
𝑌
(𝑦) ≡ 0 outside domain (33).

To complete the computation of PDF 𝑓
𝑌
(𝑦) on the whole

domain, finally we consider the subinterval ] − 𝑥
1
, 𝑥
2
], where

the RV 𝑋 is positive. Hence, we are in Case 1 and according
to (24) it follows that

𝑓
2

𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
) , (34)

on the domain

{

{

{

𝑘 (−𝑥
1
)
𝑛

< 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 𝑘 (−𝑥
1
)
𝑛

, if 𝑘 < 0.
(35)

Again, as usual, we assume 𝑓2
𝑌
(𝑦) ≡ 0 outside domain (35).

Notice that one satisfies

∫
𝑘(𝑥1)
𝑛

0

𝑓
1

𝑌
(𝑦) 𝑑𝑦 + ∫

𝑘(𝑥2)
𝑛

𝑘(𝑥1)
𝑛

𝑓
2

𝑌
(𝑦) 𝑑𝑦 = 1 if 𝑘 > 0,

∫
𝑘(𝑥1)
𝑛

𝑘(𝑥2)
𝑛

𝑓
2

𝑌
(𝑦) 𝑑𝑦 + ∫

0

𝑘(𝑥1)
𝑛

𝑓
1

𝑌
(𝑦) 𝑑𝑦 = 1 if 𝑘 < 0.

(36)

To summarize, from (32)–(35), the complete PDF of𝑌 = 𝑘𝑋
𝑛

in this case is given by

𝑓
𝑌
(𝑦) = 𝑓

1

𝑌
(𝑦) + 𝑓

2

𝑌
(𝑦) ,

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0.

(37)

Case 3.2 (𝑥
2

< |𝑥
1
|). Let us consider the piece [−𝑥

2
, 𝑥
2
].

Following analogous reasoning as in Case 3.1, according
to (32), one obtains the piece of the PDF of the power
transformation 𝑌:

𝑓
1

𝑌
(𝑦)

=
1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
{𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) + 𝑓
𝑋
(+ 𝑛√

𝑦

𝑘
)} ,

(38)

on the domain

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0.
(39)

We assume 𝑓1
𝑌
(𝑦) ≡ 0 outside domain (39).

We complete the computation of PDF 𝑓
𝑌
(𝑦) on the

whole domain considering the subinterval [𝑥
1
, −𝑥
2
[. In this

subinterval,𝑋 is negative. As it was shown in Case 2, the PDF
is given by

𝑓
2

𝑌
(𝑦) =

1

|𝑘| 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
𝑦

𝑘
)
(1−𝑛)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝑋
(− 𝑛√

𝑦

𝑘
) , (40)

on the domain

{

{

{

𝑘 (𝑥
2
)
𝑛

< 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 𝑘 (𝑥
2
)
𝑛

, if 𝑘 < 0.
(41)

We assume 𝑓2
𝑌
(𝑦) ≡ 0 outside domain (41).

To summarize, from (38)–(41), the complete PDF of 𝑌 =

𝑘𝑋
𝑛 in this case is

𝑓
𝑌
(𝑦) = 𝑓

1

𝑌
(𝑦) + 𝑓

2

𝑌
(𝑦) ,

{

{

{

0 < 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 0, if 𝑘 < 0.

(42)

(iv) Let us assume that 𝑛 ≥ 3 and is odd. The mapping 𝑟
is monotone on the whole domain of RV 𝑋; then the inverse
function of 𝑟 takes the form

𝑥 = 𝑠 (𝑦) = 𝑛√
𝑦

𝑘
, (43)

whose derivative, for 𝑦 ̸= 0, is given by

𝑠
󸀠

(𝑦) =
1

𝑘𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

. (44)
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Notice that 𝑠󸀠(𝑦) ̸= 0 if 𝑦 ̸= 0. Therefore, we distinguish two
cases depending on the domain 𝐷

𝑋
= {𝑥 : 𝑥

1
≤ 𝑥 ≤ 𝑥

2
} of

the RV𝑋.

Case 1 (𝑥
1
> 0 or 𝑥

2
< 0). Applying [20, Theorem 1] and

taking into account (43)-(44), one gets

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

𝑓
𝑋
( 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(45)

Case 2 (𝑥
1
𝑥
2
≤ 0). Applying [20, Theorem 1] and taking into

account (43)-(44), one gets

𝑓
𝑌
(𝑦) =

1

|𝑘| 𝑛
(
𝑦

𝑘
)
(1−𝑛)/𝑛

𝑓
𝑋
( 𝑛√

𝑦

𝑘
) ,

{

{

{

𝑘 (𝑥
1
)
𝑛

≤ 𝑦 < 0, 0 < 𝑦 ≤ 𝑘 (𝑥
2
)
𝑛

, if 𝑘 > 0,

𝑘 (𝑥
2
)
𝑛

≤ 𝑦 < 0, 0 < 𝑦 ≤ 𝑘 (𝑥
1
)
𝑛

, if 𝑘 < 0.

(46)

Finally, if 𝑘 = 0 and 𝑛 ≥ 0, then 𝑌 = 0with probability 1 (w.p.
1) and its PDF is given by

𝑓
𝑌
(𝑦) = 𝛿 (𝑦) , −∞ < 𝑦 < +∞. (47)

3. Case Study: Homogeneous Discrete
Initial Value Problem (I)

This section is addressed to compute the 1-PDF {𝑓
1
(𝑧, 𝑛) :

𝑛 ≥ 0} of the solution discrete stochastic process {𝑍
𝑛
: 𝑛 ≥ 0}

of the homogeneous discrete initial value problem (I) in all
different cases collected in Table 1. In this case, the solution
{𝑍
𝑛
: 𝑛 ≥ 0} can be expressed as follows:

𝑍
0
= Γ
0
,

𝑍
𝑛
= 𝐴
𝑛

Γ
0
, 𝑛 = 1, 2, . . . .

(48)

3.1. Case I.1: Γ
0
Is a Random Variable. For the sake of clarity

in the presentation, we rewrite solution (48) by using the
lowercase letter 𝑎 in order to indicate the deterministic
character of parameter 𝐴:

𝑍
0
= Γ
0
,

𝑍
𝑛
= 𝑎
𝑛

Γ
0
, 𝑛 = 1, 2, . . . .

(49)

Let 𝑛 ≥ 0 be an arbitrary and fixed integer. Let us assume
𝑎 ̸= 0 and denote 𝑍 = 𝑍

𝑛
= 𝑎
𝑛

Γ
0
. By applying [20,

Proposition 2] to

𝑌 = 𝑍,

𝑋 = Γ
0
,

𝛼 = 𝑎
𝑛

̸= 0,

𝛽 = 0,

(50)

one gets the 1-PDF

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛
𝑓
Γ0
(
𝑧

𝑎𝑛
) , 𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R. (51)

Note that if 𝑎 = 0, from (49), it follows that 𝑍
𝑛
= 0 w.p. 1

for each 𝑛 ≥ 1 and 𝑍
0
= Γ
0
. So, the 1-PDF for the trivial case,

𝑎 = 0, can be written as

𝑓
1
(𝑧, 𝑛) =

{

{

{

𝑓
Γ0
(𝑧) , 𝑛 = 0,

𝛿 (𝑧) , 𝑛 = 1, 2, . . . ,
𝑧 ∈ R. (52)

In order to facilitate the comparison of the 1-PDF of the
solution of problem (49) against its continuous counterpart
provided in [20], in the following example, Γ

0
is assumed to be

a Gaussian RV. Note that we are going to consider a standard
distribution, although themethod is also able to be applied to
nonstandard distributions.

Example 1. Let us assume 𝑎 ̸= 0 and consider Γ
0
a Gaussian

distribution, Γ
0
∼ 𝑁(𝜇; 𝜎

2

). Hence, applying (51), the 1-PDF
of {𝑍
𝑛
: 𝑛 ≥ 0} is given by

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛√2𝜋𝜎2

𝑒
−(𝑧/𝑎

𝑛
−𝜇)
2
/2𝜎
2

,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(53)

It can be checked that𝑓
1
(𝑧, 𝑛) is a PDF for each 𝑛 ≥ 0. Figure 1

shows 𝑓
1
(𝑧, 𝑛) for 𝑛 ∈ {0, . . . , 10}, in the particular case that

Γ
0

∼ 𝑁(0; 1): 𝑎 = 10/9 (a) and 𝑎 = 9/10 (b). Note the
different behavior of 1-PDF depending on the modulus of the
parameter 𝑎. This is in agreement with the expectation and
variance of the solution which are given, respectively, by

E [𝑍
𝑛
] = 0,

V [𝑍
𝑛
] = 𝑎
2𝑛

𝜎
2

,

𝑛 = 0, 1, 2, . . . .

(54)

Indeed, in Figure 1, we observe that, for each 𝑛, the 1-PDF
is symmetric about 𝑧 = 0, whereas, in the case that 𝑎 =

10/9 > 1 (𝑎 = 9/10 ∈ ] − 1, 1[), it becomes flat (sharp) as
𝑛 increases. This means that its variability around zero, that
is, the variance, tends to infinity (zero).

3.2. Case I.2: 𝐴 Is a Random Variable. In order to emphasize
the deterministic nature of the initial condition Γ

0
, we recast

(48) by using the lowercase letter 𝛾
0
:

𝑍
𝑛
= 𝐴
𝑛

𝛾
0
, 𝑛 = 0, 1, 2, . . . . (55)
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Figure 1: 𝑓
1
(𝑧, 𝑛), 𝑛 ∈ {0, 1, . . . , 10}, in Example 1, where Γ

0
∼ 𝑁 (𝜇 = 0; 𝜎

2

= 1); 𝑎 = 10/9 (a) and 𝑎 = 9/10 (b).

Let 𝑛 ≥ 0 be an arbitrary and fixed integer and denote
𝑍 = 𝑍

𝑛
= 𝐴
𝑛

𝛾
0
. The RV 𝑍 represents power transformation

of RV 𝐴; that is, 𝑍 can be written as 𝑍 = 𝑘𝐴
𝑛. By applying

Proposition 1 to 𝑌 = 𝑍, 𝑘 = 𝛾
0
, and 𝑋 = 𝐴, one obtains

the 1-PDF 𝑓
1
(𝑧, 𝑛). For the sake of clarity, we do not provide

the corresponding explicit expression for 𝑓
1
(𝑧, 𝑛) since it just

consists of substituting the previous identification. Below, we
show an illustrative example.

Example 2. Let us assume that 𝐴 has a uniform distribution
on the interval [−2, 4], 𝐴 ∼ Un([−2, 4]), and 𝛾

0
= 1 > 0.

Therefore, according to Proposition 1, the 1-PDF of {𝑍
𝑛
: 𝑛 ≥

0} is given by

𝑓
1
(𝑧, 𝑛)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝛿 (𝑧 − 1) , 𝑛 = 0, 𝑧 ∈ R,

1

6
, 𝑛 = 1, − 2 ≤ 𝑧 ≤ 4,

1

3𝑛
𝑧
(1−𝑛)/𝑛

, 𝑛 even, 0 < 𝑧 ≤ 2
𝑛

,

1

6𝑛
𝑧
(1−𝑛)/𝑛

, 𝑛 even, 2𝑛 < 𝑧 ≤ 4
𝑛

,

1

6𝑛
𝑧
(1−𝑛)/𝑛

, 𝑛 odd, 𝑛 ≥ 3, (−2)
𝑛

≤ 𝑧 < 0, 0 < 𝑧 ≤ 4
𝑛

.

(56)

It can be checked that𝑓
1
(𝑧, 𝑛) is a PDF for each 𝑛 = 0, 1, 2, . . ..

Figure 2 shows 𝑓
1
(𝑧, 𝑛) at different values of 𝑛.

This example exhibits a different behaviour of the 1-PDF
of the solution of (55) depending onwhether 𝑛 is odd or even.

3.3. Case I.3: (Γ
0
, 𝐴) Is a Random Vector. Throughout this

case, the joint PDF of the random vector (Γ
0
, 𝐴) will be

denoted by 𝑓
Γ0,𝐴

(𝛾
0
, 𝑎). Let 𝑛 ≥ 0 be an arbitrary and fixed

integer and denote 𝑍 = 𝑍
𝑛
= 𝐴
𝑛

Γ
0
. To compute the PDF

of 𝑍, first we will determine the joint PDF of the RVs 𝑍 and

𝐴 by applying [20, Theorem 4] to the two-dimensional RV
Y = r(X) with

X = [
Γ
0

𝐴
] ,

Y = [
𝑌
1

𝑌
2

] = [
𝑟
1
(Γ
0
, 𝐴)

𝑟
2
(Γ
0
, 𝐴)

] = [
𝐴
𝑛

Γ
0

𝐴
] .

(57)

From (57), the inverse transformation of r(X), X = r−1(Y) =
s(Y), takes the form

X = [
Γ
0

𝐴
] = [

𝑠
1
(𝑌
1
, 𝑌
2
)

𝑠
2
(𝑌
1
, 𝑌
2
)
] =

[
[

[

𝑌
1

(𝑌
2
)
𝑛

𝑌
2

]
]

]

. (58)

Taking into account the fact that 𝜕𝑠
2
(𝑦
1
, 𝑦
2
)/𝜕𝑦
1

= 0, the
involved Jacobian simplifies to |𝐽

2
| = 1/|𝑦

2
|
𝑛

> 0. Therefore,
the joint PDF 𝑓Y(y) is given by

𝑓
𝑌1,𝑌2

(𝑦
1
, 𝑦
2
) =

1
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨
𝑛
𝑓
Γ0,𝐴

(
𝑦
1

(𝑦
2
)
𝑛
, 𝑦
2
) . (59)

Going back to the original RVs, that is, 𝑍 = 𝐴
𝑛

Γ
0
= 𝑌
1
and

𝐴 = 𝑌
2
, one gets

𝑓
𝑍,𝐴

(𝑧, 𝑎) =
1

|𝑎|
𝑛
𝑓
Γ0,𝐴

(
𝑧

𝑎𝑛
, 𝑎) , 𝑛 = 0, 1, 2, . . . . (60)

Finally, considering the marginal density function of 𝑍 in
(60), the 1-PDF of {𝑍

𝑛
; 𝑛 ≥ 0} is given by

𝑓
1
(𝑧, 𝑛) = ∫

𝑎2

𝑎1

1

|𝑎|
𝑛
𝑓
Γ0,𝐴

(
𝑧

𝑎𝑛
, 𝑎) 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(61)

Example 3. Let (Γ
0
, 𝐴) be a random vector and let us assume

that its PDF is given by

𝑓
Γ0,𝐴

(𝛾
0
, 𝑎) = 4𝛾

0
𝑎, if 0 < 𝛾

0
, 𝑎 < 1. (62)
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Figure 2: 𝑓
1
(𝑧, 𝑛) in Example 2 at different values of 𝑛.

By (61)-(62), the following 1-PDF of {𝑍
𝑛
: 𝑛 ≥ 0} is obtained:

𝑓
1
(𝑧, 𝑛) =

{{{{{{{{{{{

{{{{{{{{{{{

{

4𝑧∫
1

0

𝑎 𝑑𝑎 = 2𝑧, 𝑛 = 0, 0 < 𝑧 < 1,

4𝑧∫
1

𝑧

1

𝑎
𝑑𝑎 = −4𝑧 ln 𝑧, 𝑛 = 1, 0 < 𝑧 < 1,

4𝑧∫
1

𝑛
√𝑧

1

𝑎2𝑛−1
𝑑𝑎 =

2𝑧 (1 −
𝑛√𝑧2(1−𝑛))

1 − 𝑛
, 𝑛 = 2, 3, . . . , 0 < 𝑧 < 1.

(63)

Figure 3 shows 𝑓
1
(𝑧, 𝑛) for 𝑛 ∈ {0, 1, 2, . . . , 10}. From 𝑛 ≥ 2,

we observe that the density of probability accumulates around
𝑧 = 0, which is in agreement with the asymptotic behaviour
of the solution which tends to zero as 𝑛 → ∞.

4. Case Study: Nonhomogeneous Discrete
Initial Value Problem (II)

In this section, we deal with the computation of the 1-PDF
{𝑓
1
(𝑧, 𝑛) : 𝑛 ≥ 0} of the solution discrete SP {𝑍

𝑛
: 𝑛 ≥ 0} of

the nonhomogeneous discrete initial value problem (II).This
will be done for every one of the cases considered in Table 1.
Now, the solution {𝑍

𝑛
: 𝑛 ≥ 0} has the following form:

𝑍
𝑛
= Γ
0
+ 𝑛𝐵, 𝑛 = 0, 1, 2, . . . . (64)

As we did in Section 3 and for the sake of clarity in the
presentation, we will recast the input parameters in (64) by
lowercase letters when they indicate deterministic quantities.

4.1. Case II.1: Γ
0
Is a Random Variable. In this case, solution

(64) takes the form

𝑍
𝑛
= Γ
0
+ 𝑛𝑏, 𝑛 = 0, 1, 2, . . . . (65)

Let 𝑛 ≥ 0 be an arbitrary and fixed integer and denote 𝑍 =

𝑍
𝑛
= Γ
0
+ 𝑛𝑏. By applying [20, Proposition 2] to

𝑌 = 𝑍,

𝑋 = Γ
0
,

𝛼 = 1 ̸= 0,

𝛽 = 𝑛𝑏,

(66)

one obtains the 1-PDF

𝑓
1
(𝑧, 𝑛) = 𝑓

Γ0
(𝑧 − 𝑛𝑏) , 𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R. (67)

Example 4. Let Γ
0
be a gamma RV of parameters 𝛼, 𝛽 > 0,

Γ
0
∼ Ga(𝛼; 𝛽). Then, by (67), the 1-PDF of {𝑍

𝑛
: 𝑛 ≥ 0} reads

𝑓
1
(𝑧, 𝑛) =

1

𝛽𝛼Γ (𝛼)
(𝑧 − 𝑛𝑏)

𝛼−1

𝑒
−(𝑧−𝑛𝑏)/𝛽

,

𝑛 = 0, 1, 2, . . . , 𝑛𝑏 ≤ 𝑧 < +∞,

(68)

where Γ(𝛼) means the classical gamma function. Notice
that, for each 𝑛 = 0, 1, 2, . . ., the domain of 𝑧 follows
from the corresponding domain of a gamma distribution. In
Figure 4, the 1-PDF 𝑓

1
(𝑧, 𝑛) is plotted at different values of

𝑛 considering Γ
0
∼ Ga(2; 1) and 𝑏 = 1/2. In this case, from
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1
(𝑧, 𝑛), 𝑛 ∈ {0, 1, 2, . . . , 10}, in Example 3, where (Γ

0
, 𝐴)

is a random vector, whose PDF is given by (62).
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Figure 4: 𝑓
1
(𝑧, 𝑛), 𝑛 ∈ {0, 1, 2, . . . , 10}, in Example 4, where Γ

0
∼

Ga(2; 1) and 𝑏 = 1/2.

the plot of 𝑓
1
(𝑧, 𝑛), one observes that the expectation E[𝑍

𝑛
]

increases as 𝑛 does. It is straightforward to check that the
expectation lies on the straight line (1/2)𝑛 + 2, whereas the
variance takes the constant value 2.

4.2. Case II.2: 𝐵 Is a Random Variable. In this case, the
solution discrete stochastic process (64) takes the form

𝑍
𝑛
= 𝛾
0
+ 𝑛𝐵, 𝑛 = 0, 1, 2, . . . . (69)

For 𝑛 = 0, 𝑍
0
= 𝛾
0
and the PDF is 𝛿(𝑧 − 𝛾

0
). If 𝑛 ≥ 1 is an

arbitrary and fixed integer, denoting 𝑍 = 𝑍
𝑛
= 𝛾
0
+ 𝑛𝐵, the

PDF is obtained by applying [20, Proposition 2] to

𝑌 = 𝑍,

𝑋 = 𝐵,

𝛼 = 𝑛 ̸= 0,

𝛽 = 𝛾
0
.

(70)

This leads to the 1-PDF

𝑓
1
(𝑧, 𝑛) =

{{

{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0

1

𝑛
𝑓
𝐵
(
𝑧 − 𝛾
0

𝑛
) , 𝑛 = 1, 2, . . . ,

𝑧 ∈ R. (71)

Example 5. Let 𝐵 be a RVwith 𝜒2-distribution with ] degrees
of freedom, 𝐵 ∼ 𝜒

2

(]), ] > 0. Then, by (71), the 1-PDF of
{𝑍
𝑛
: 𝑛 ≥ 0} writes

𝑓
1
(𝑧, 𝑛) =

{{{

{{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0, 𝑧 ∈ R,

2

𝑛]
1

2]/2
1

Γ (]/2)
(𝑧 − 𝛾

0
)
]/2−1

𝑒
−(1/2)((𝑧−𝛾0)/𝑛)

2

, 𝑛 = 1, 2, . . . , 𝛾
0
≤ 𝑧 < ∞.

(72)

For each 𝑛 ≥ 1, the domain of 𝑧 has been determined
considering the domain of 𝜒2-distribution with ] degrees of
freedom. For the sake of clarity, Figure 5 shows a 2D plot (a)
and a 3D plot (b) of 𝑓

1
(𝑧, 𝑛) at different values of 𝑛 in the

particular case that 𝐵 ∼ 𝜒
2

(3) and 𝛾
0
= 1.

4.3. Case II.3: (Γ
0
, 𝐵) Is a Random Vector. In accordance with

the notation previously introduced, 𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) stands for the

joint PDF of the random vector (Γ
0
, 𝐵). Let 𝑛 ≥ 0 be an

arbitrary and fixed integer and denote 𝑍 = 𝑍
𝑛
= Γ
0
+ 𝑛𝐵.

To compute the PDF of 𝑍, first we will determine the joint

PDF of the RVs 𝑍 and 𝐵 by applying [20, Theorem 1] to the
two-dimensional RV Y = r(X) with

X = [
Γ
0

𝐵
] ,

Y = [
𝑌
1

𝑌
2

] = [
𝑟
1
(Γ
0
, 𝐵)

𝑟
2
(Γ
0
, 𝐵)

] = [
Γ
0
+ 𝑛𝐵

𝐵
] .

(73)

From (73), the inverse transformation of r(X): X = r−1(Y) =
s(Y) takes the form

X = [
Γ
0

𝐵
] = [

𝑠
1
(𝑌
1
, 𝑌
2
)

𝑠
2
(𝑌
1
, 𝑌
2
)
] = [

𝑌
1
− 𝑛𝑌
2

𝑌
2

] . (74)
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Figure 5: 𝑓
1
(𝑧, 𝑛) in Example 5, where 𝐵 ∼ 𝜒

2

(3) and 𝛾
0
= 1, at different values of 𝑛. (a) 2D plot for 𝑛 ∈ {1, 2, 4, 10}. (b) 3D plot for

𝑛 ∈ {1, 2, . . . , 10}.

By [20,Theorem4] and taking into account the fact that |𝐽
2
| =

1 ̸= 0, the joint PDF 𝑓Y(y) is given by

𝑓
𝑌1,𝑌2

(𝑦
1
, 𝑦
2
) = 𝑓
Γ0,𝐵

(𝑦
1
− 𝑛𝑦
2
, 𝑦
2
) . (75)

Going back to the original RVs, that is, 𝑍 = Γ
0
+ 𝑛𝐵 = 𝑌

1
and

𝐵 = 𝑌
2
, one gets

𝑓
𝑍,𝐵

(𝑧, 𝑏) = 𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) . (76)

Finally, considering the marginal density function of 𝑍, one
gets the 1-PDF of {𝑍

𝑛
: 𝑛 ≥ 0}:

𝑓
1
(𝑧, 𝑛) = ∫

𝑏2

𝑏1

𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(77)

Example 6. Let us consider the random vector (Γ
0
, 𝐵) whose

joint PDF is defined by

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) =

1

4
+
1

4
(𝛾
0
)
3

𝑏 −
1

4
𝛾
0
𝑏
3

,

if − 1 < 𝛾
0
, 𝑏 < 1.

(78)

By (77), the 1-PDF of {𝑍
𝑛
: 𝑛 ≥ 0} is

𝑓
1
(𝑧, 𝑛) = ∫

min{1,(𝑧+1)/𝑛}

max{−1,(𝑧−1)/𝑛}
𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏,

− (𝑛 + 1) ≤ 𝑧 ≤ 𝑛 + 1, 𝑛 = 0, 1, 2, . . . .

(79)

Computing the above integral, one gets

𝑓
1
(𝑧, 𝑛)

=

{{{{

{{{{

{

𝑓
1𝑎
(𝑧, 𝑛) , if 𝑛 = 0, 1, 2, . . . , − (𝑛 + 1) ≤ 𝑧 ≤ −𝑛 + 1,

𝑓
1𝑏
(𝑧, 𝑛) , if 𝑛 = 0, 1, 2, . . . , − 𝑛 + 1 ≤ 𝑧 ≤ 𝑛 − 1,

𝑓
1𝑐
(𝑧, 𝑛) , if 𝑛 = 0, 1, 2, . . . , 𝑛 − 1 ≤ 𝑧 ≤ 𝑛 + 1,

(80)

where

𝑓
1𝑎
(𝑧, 𝑛) = ∫

(𝑧+1)/𝑛

−1

𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏 =
1

80𝑛4
(−4𝑛
7

− 15𝑛
6

𝑧 + 20𝑛
3

(1 + 𝑧) − (−4 + 𝑧) (1 + 𝑧)
4

+ 𝑛
5

(4 − 20𝑧
2

) + 5𝑛
4

(4 + 𝑧 − 2𝑧
3

)

+ 𝑛
2

(−4 − 5𝑧 + 𝑧
5

)) ,

𝑓
1𝑏
(𝑧, 𝑛) = ∫

(𝑧+1)/𝑛

(𝑧−1)/𝑛

𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏

=
1 − 𝑛
2

+ 5𝑛
3

+ 5𝑧
2

10𝑛4
,

𝑓
1𝑐
(𝑧, 𝑛) = ∫

1

(𝑧−1)/𝑛

𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏 =
1

80𝑛4
(−4𝑛
7

− 20𝑛
3

(−1 + 𝑧) + 15𝑛
6

𝑧 + (−1 + 𝑧)
4

(4 + 𝑧)

+ 𝑛
5

(4 − 20𝑧
2

) + 5𝑛
4

(4 − 𝑧 + 2𝑧
3

)

− 𝑛
2

(4 − 5𝑧 + 𝑧
5

)) .

(81)

Figure 6 shows two equivalent plots of 𝑓
1
(𝑧, 𝑛) given by

(80)-(81). It is straightforward to check that the expectation
and variance of the solution 𝑍

𝑛
are given by

E [𝑍
𝑛
] = 0,

V [𝑍
𝑛
] =

1

3
(1 + 𝑛

2

) ,

𝑛 = 0, 1, 2, . . . ,

(82)
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Figure 6: 𝑓
1
(𝑧, 𝑛) in Example 6 at different values of 𝑛, where (Γ

0
, 𝐵) is a random vector whose PDF is given by (78). (a) 2D plot for 𝑛 ∈

{1, 3, 5, 10}. (b) 3D plot for 𝑛 ∈ {1, 2, . . . , 10}.

respectively. Notice that the values of the expectation and
variance obtained from expressions (82) agree with the plots
shown in Figure 6, where one observes that the 1-PDF𝑓

1
(𝑧, 𝑛)

is, for each 𝑛 ≥ 0, symmetric about 𝑧 = 0 and its support
increases as 𝑛 tends to infinity in such a way that the 1-PDF’s
shape becomes flattened. Then, the variability about zero, in
this case the variance, increases as 𝑛 does.

5. Case Study: Nonhomogeneous Discrete
Initial Value Problem (III)

This section is addressed to determine the 1-PDFs {𝑓
1
(𝑧, 𝑛) :

𝑛 ≥ 0} of the solution SPs {𝑍
𝑛
: 𝑛 ≥ 0} of problem (III) in

Cases III.1–III.7 collected in Table 1. Now, the solution {𝑍
𝑛
:

𝑛 ≥ 0} has the following form:

𝑍
0
= Γ
0
,

𝑍
𝑛
= (Γ
0
−

𝐵

1 − 𝐴
)𝐴
𝑛

+
𝐵

1 − 𝐴
, 𝑛 = 1, 2, . . . ,

(83)

which is well defined due to the hypothesis P[{𝜔 ∈ Ω :

𝐴(𝜔) = 1}] = 0.
Analogously to the previous sections, for the sake of

clarity in the presentation, we will rewrite each one of the
involved parameters in (83) by lowercase letters when it
denotes a deterministic quantity.

5.1. Case III.1: Γ
0
Is a Random Variable. In this case, if 𝑎 ̸= 0,

solution (83) takes the form

𝑍
𝑛
= 𝑎
𝑛

Γ
0
+

𝑏

1 − 𝑎
(1 − 𝑎

𝑛

) , 𝑛 = 0, 1, 2, . . . . (84)

Let 𝑛 ≥ 0 be an arbitrary and fixed integer and denote
𝑍 = 𝑍

𝑛
= 𝑎
𝑛

Γ
0
+ 𝑏(1 − 𝑎

𝑛

)/(1 − 𝑎). The application of [20,
Proposition 2] to

𝑌 = 𝑍,

𝑋 = Γ
0
,

𝛼 = 𝑎
𝑛

̸= 0,

𝛽 =
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

)

(85)

permits computing the 1-PDF. This yields

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛
𝑓
Γ0
(
𝑧 (1 − 𝑎) − 𝑏 (1 − 𝑎

𝑛

)

𝑎𝑛 (1 − 𝑎)
) ,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(86)

For the trivial case 𝑎 = 0, solution (83) takes the form

𝑍
0
= Γ
0
,

𝑍
𝑛
= 𝑏, 𝑛 = 1, 2, . . . ,

(87)

and hence the 1-PDF is given by

𝑓
1
(𝑧, 𝑛) =

{

{

{

𝑓
Γ0
(𝑧) , 𝑛 = 0,

𝛿 (𝑧 − 𝑏) , 𝑛 = 1, 2, . . . ,
𝑧 ∈ R. (88)
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Figure 7: 𝑓
1
(𝑧, 𝑛) in Example 7 at different values of 𝑛 depending on whether 𝑛 is odd (a) or even (b), where Γ

0
∼ Exp(𝜆 = 1), 𝑎 = −11/10,

and 𝑏 = 1.

Remark 7. Notice that expression (51) obtained in Case I.1 is a
particular case of (86) taking 𝑏 = 0. Similarly, if the parameter
𝑎 tends to 1 in (86), one gets formula (67) of Case II.1.

Example 7. Let Γ
0
be an exponential RV of parameter 𝜆 > 0,

Γ
0
∼ Exp(𝜆). Then, by (86), the 1-PDF of {𝑍

𝑛
: 𝑛 ≥ 0} writes

𝑓
1
(𝑧, 𝑛)

=

{{{{

{{{{

{

−
𝜆

𝑎𝑛
𝑒
−𝜆(𝑧/𝑎

𝑛
−𝑏(1−𝑎

𝑛
)/(𝑎
𝑛
(1−𝑎))) if 𝑛 odd, 𝑧 <

𝑏 (1 − 𝑎
𝑛

)

1 − 𝑎
,

𝜆

𝑎𝑛
𝑒
−𝜆(𝑧/𝑎

𝑛
−𝑏(1−𝑎

𝑛
)/(𝑎
𝑛
(1−𝑎))) if 𝑛 even, 𝑧 >

𝑏 (1 − 𝑎
𝑛

)

1 − 𝑎
,

𝑎 < 0,

(89)

𝑓
1
(𝑧, 𝑛) =

𝜆

𝑎𝑛
𝑒
−𝜆(𝑧/𝑎

𝑛
−𝑏(1−𝑎

𝑛
)/(𝑎
𝑛
(1−𝑎)))

,

𝑧 >
𝑏 (1 − 𝑎

𝑛

)

1 − 𝑎
, 𝑎 > 0,

(90)

where the domain has been determined taking into account
the domain of an exponential RV. Figure 7 shows 𝑓

1
(𝑧, 𝑛) at

different values of 𝑛 depending on whether 𝑛 is odd (a) or
even (b) for 𝜆 = 1, 𝑎 = −11/10, and 𝑏 = 1.

Below, we show an example with the aim of illustrating
that once the 1-PDF has been computed, important statistical
moments of the solution SP, such as the expectation and
variance, can be determined straightforwardly.

Example 8. Within the context of Example 7 and assuming
for illustrative purposes that, for instance, 𝑎 < 0, the

statisticalmoment of order 𝑛 of𝑍
𝑛
can be determined directly

using expression (89) of 𝑓
1
(𝑧, 𝑛) in the following way:

𝑚
𝑍
(𝑛, 𝑘) = E [(𝑍

𝑛
)
𝑘

]

=

{{{{

{{{{

{

∫
𝑏(1−𝑎

𝑛
)/(1−𝑎)

−∞

𝑧
𝑘

𝑓
1
(𝑧, 𝑛) 𝑑𝑧, if 𝑛 is odd,

∫
+∞

𝑏(1−𝑎
𝑛
)/(1−𝑎)

𝑧
𝑘

𝑓
1
(𝑧, 𝑛) 𝑑𝑧, if 𝑛 is even,

𝑘 = 0, 1, 2, . . . .

(91)

For example, taking 𝜆 = 1, 𝑎 = −11/10, and 𝑏 = 1, the
mean and the variance of 𝑍

𝑛
are given by

E [𝑍
𝑛
] = 𝑚

𝑍
(𝑛, 1)

=

{{{

{{{

{

1

21
(10 − 10

−𝑛

11
𝑛+1

) , if 𝑛 is odd,

1

21
(10 + 10

−𝑛

11
𝑛+1

) , if 𝑛 is even,

V [𝑍
𝑛
] = 𝑚

𝑍
(𝑛, 2) − (𝑚

𝑍
(𝑛, 1))

2

= (
121

100
)
𝑛

,

𝑛 = 0, 1, 2, . . . .

(92)

Note that the expression of the variance does not depend on
whether 𝑛 is even or odd.

In Figure 8, the expectation and variance of𝑍
𝑛
have been

plotted using expressions (92) to carry out computations.
In addition to computing the mean and the variance,

further significant information related to the solution SP
can be computed from the 1-PDF, such as the probability of
specific sets in which we could be interested. For example,
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Figure 8: Mean (a) and variance (b) of 𝑍
𝑛
in Example 8, where Γ

0
∼ Exp(𝜆 = 1), 𝑎 = −11/10, and 𝑏 = 1.

the probability that the solution varies between the values
V
1
= 2 and V

2
= 3 is given by

P [2 ≤ 𝑍
𝑛
≤ 3] = ∫

3

2

𝑓
1
(𝑧, 𝑛) 𝑑𝑧 =

{{{{{{{{{

{{{{{{{{{

{

0 if 𝑛 is odd, 𝑛 ≤ 11,

𝑒
(1/21)(−10)((−1)

𝑛
+1)

(1 − 𝑒
(2/21)(2

𝑛+4
(5/11)

𝑛
+5(−1)

𝑛
)

) if 𝑛 is odd, 13 ≤ 𝑛 ≤ 17,

𝑒
(1/21)(−10)11

−𝑛
(10
𝑛
+11
𝑛
)

(𝑒
3(10/11)

𝑛

− 𝑒
(5/11)

𝑛
2
𝑛+1

) if 𝑛 is odd, 𝑛 ≥ 19,

𝑒
(1/21)(−5)(19(10/11)

𝑛
+2)

(𝑒
3(10/11)

𝑛

− e(5/11)
𝑛
2
𝑛+1

) if 𝑛 is even.

(93)

5.2. Case III.2:𝐵 Is a RandomVariable. Let us assume 𝑎 ̸= −1.
In this case, the discrete solution SP (83) takes the form

𝑍
0
= 𝛾
0
,

𝑍
𝑛
=
1 − 𝑎
𝑛

1 − 𝑎
𝐵 + 𝛾
0
𝑎
𝑛

, 𝑛 = 1, 2, . . . .

(94)

Let 𝑛 ≥ 1 be an arbitrary and fixed integer and denote𝑍 = 𝑍
𝑛
.

By applying [20, Proposition 2] to

𝑍 = 𝑌,

𝑋 = 𝐵,

𝛼 =
1 − 𝑎
𝑛

1 − 𝑎
̸= 0,

𝛽 = 𝛾
0
𝑎
𝑛

,

(95)

and taking into account the fact that 𝑍
0
= 𝛾
0
, one obtains the

1-PDF

𝑓
1
(𝑧, 𝑛)

=

{{

{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎

1 − 𝑎𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵
(
1 − 𝑎

1 − 𝑎𝑛
(𝑧 − 𝛾

0
𝑎
𝑛

)) , 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(96)

If 𝑎 = −1, then the discrete solution SP (83) is

𝑍
𝑛
=
1 − (−1)

𝑛

2
𝐵 + 𝛾
0
(−1)
𝑛

=
{

{

{

𝛾
0

if 𝑛 is even,

𝐵 − 𝛾
0

if 𝑛 is odd.

(97)

Then, for 𝑛 ≥ 0, an arbitrary but fixed integer, applying
[20, Proposition 2] to (97), one obtains the 1-PDF of 𝑍

𝑛

defined by (97):

𝑓
1
(𝑧, 𝑛) = {

𝛿 (𝑧 − 𝛾
0
) , 𝑛 even,

𝑓
𝐵
(𝑧 + 𝛾

0
) , 𝑛 odd,

𝑧 ∈ R. (98)

Remark 9. Notice that expression (71) in Case II.2 can be
obtained assuming that parameter 𝑎 tends to 1 in (96).

Example 9. Let 𝐵 be a RV having a gamma distribution of
parameters 𝛼, 𝛽 > 0; that is, 𝐵 ∼ Ga(𝛼; 𝛽). Let us fix 𝑎 ̸= −1.
Then, by (96), the 1-PDF of {𝑍

𝑛
: 𝑛 ≥ 0} reads

𝑓
1
(𝑧, 𝑛)

=

{{{{{{

{{{{{{

{

𝛿 (𝑧 − 𝛾
0
) if 𝑛 = 0, 𝑧 ∈ R,

𝑓
1𝑎
(𝑧, 𝑛) , if 1 − 𝑎

1 − 𝑎𝑛
> 0, 𝑛 = 1, 2, . . . , 𝑧 ≥ 𝛾

0
𝑎
𝑛

,

𝑓
1𝑏
(𝑧, 𝑛) , if 1 − 𝑎

1 − 𝑎𝑛
< 0, 𝑛 = 1, 2, . . . , 𝑧 ≤ 𝛾

0
𝑎
𝑛

,

(99)
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Figure 9: 2D and 3D plots of 𝑓
1
(𝑧, 𝑛) in Example 9, where 𝐵 ∼ Ga(2; 4), 𝑎 = −1/2, and 𝛾

0
= 1. (a) 𝑛 ∈ {1, 2, 3, 4}. (b) 𝑛 ∈ {1, 2, . . . , 10}.

where

𝑓
1𝑎
(𝑧, 𝑛) =

1 − 𝑎

1 − 𝑎𝑛
1

𝛽𝛼Γ (𝛼)
(
1 − 𝑎

1 − 𝑎𝑛
(𝑧 − 𝛾

0
𝑎
𝑛

))
𝛼−1

⋅ 𝑒
(1/𝛽)((𝑎−1)/(1−𝑎

𝑛
))(𝑧−𝛾0𝑎

𝑛
)

,

𝑓
1𝑏
(𝑧, 𝑛) =

𝑎 − 1

1 − 𝑎𝑛
1

𝛽𝛼Γ (𝛼)
(
1 − 𝑎

1 − 𝑎𝑛
(𝑧 − 𝛾

0
𝑎
𝑛

))
𝛼−1

⋅ 𝑒
(1/𝛽)((𝑎−1)/(1−𝑎

𝑛
))(𝑧−𝛾0𝑎

𝑛
)

.

(100)

Taking into account the fact that the domain of a gamma RV
is (0,∞), one deduces the domain of 𝑧 specified in (99) for
each 𝑛 ≥ 1. Figure 9 shows, 𝑓

1
(𝑧, 𝑛) at different values of 𝑛

assuming that 𝐵 ∼ Ga(2; 4), 𝑎 = −1/2, and 𝛾
0
= 1. Note that,

in accordance with (99), 𝑓
1
(𝑧, 0) = 𝛿(𝑧 − 1), −∞ < 𝑧 < ∞.

5.3. Case III.3: 𝐴 Is a Random Variable. So far, we have
taken advantage of RVT method to compute the 1-PDF of
the solution of problem (2). The success of this approach has
relied on the capability to find out an exact expression for
the inverse transformation of the mapping that determines
the solution in terms of the random inputs. However, in
many practical cases, such expression can just be found in
an approximate form rather than in an exact form. Under
these circumstances, the RVT method can still be very
useful. In fact, as it was shown in the analysis of Case III.3
of [20], the application of the Lagrange-Bürmann theorem
[27] together with the RVT technique permits determining
reliable approximations of the 1-PDF of the solution SP of
the continuous counterpart of problem (2). Below, we provide
an illustrative example dealing with a particular case of (83)
where just the parameter𝐴 is assumed to be random.To avoid
repetitions, we omit the theoretical development which can
be found in [20].

Example 10. Throughout this example, we will use the nota-
tion introduced in [20]. Let 𝐴 be a beta RV of parameters

𝛼 = 2, 𝛽 = 3: 𝐴 ∼ Be(2; 3) and 𝛾
0
= 1 and 𝑏 = 1. In Figure 10,

the approximation of 𝑓
1
(𝑧, 𝑛) is shown at different values of

𝑛 ≥ 1. This plot has been made by considering expressions
[20, eqs. (78)–(80)] with 𝑘 = 1, beingA

1
= [0, 1] because of

monotony of 𝑟(𝐴). To carry out computations, A
1
has been

divided into 7 subintervals in agreement with the process
described in [20]. In each subinterval, an approximation of
degree 𝑁

𝑗
= 2 has been considered. If 𝑛 = 0, 𝑓

1
(𝑧, 0) =

𝛿(𝑧 − 𝛾
0
).

5.4. Case III.4: (Γ
0
, 𝐵) Is a Random Vector. Let us denote by

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) the joint PDF of the random vector (Γ

0
, 𝐵).

If 𝑎 ̸= 0, the discrete solution SP (83) takes the form

𝑍
𝑛
=
1 − 𝑎
𝑛

1 − 𝑎
𝐵 + 𝑎
𝑛

Γ
0
, 𝑛 = 0, 1, 2, . . . . (101)

Let us fix 𝑛 : 𝑛 ≥ 0 and denote 𝑍 = 𝑍
𝑛
= (1 − 𝑎

𝑛

)/(1 −

𝑎)𝐵 + 𝑎
𝑛

Γ
0
. To compute the 1-PDFof𝑍, first wewill determine

the joint PDF of the RVs 𝑍 and 𝐵 by applying [20, Theorem
4] to the two-dimensional RV Y = r(X) being

X = [
Γ
0

𝐵
] ,

Y = [
𝑌
1

𝑌
2

] = [
𝑟
1
(Γ
0
, 𝐵)

𝑟
2
(Γ
0
, 𝐵)

] = [

[

1 − 𝑎
𝑛

1 − 𝑎
𝐵 + 𝑎
𝑛

Γ
0

𝐵

]

]

.

(102)

From (102), the inverse transformation of r(X), X = r−1(Y) =
s(Y), takes the form

X = [
Γ
0

𝐵
] = [

𝑠
1
(𝑌
1
, 𝑌
2
)

𝑠
2
(𝑌
1
, 𝑌
2
)
]

=
[
[

[

(𝑌
1
−
1 − 𝑎
𝑛

1 − 𝑎
𝑌
2
)

1

𝑎𝑛

𝑌
2

]
]

]

.

(103)
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Figure 10: 2D and 3D plots of 𝑓
1
(𝑧, 𝑛) in Example 10, where 𝐴 ∼ Be(2; 3), 𝛾

0
= 1, and 𝑏 = 1. (a) 𝑛 ∈ {0, 1, 2, 3}. (b) 𝑛 ∈ {0, 1, 2, . . . , 10}.

By [20,Theorem4] and taking into account the fact that |𝐽
2
| =

1/|𝑎|
𝑛

̸= 0, the joint PDF 𝑓Y(y) is given by

𝑓
𝑌1,𝑌2

(𝑦
1
, 𝑦
2
)

=
1

|𝑎|
𝑛
𝑓
Γ0,𝐵

((𝑦
1
−
1 − 𝑎
𝑛

1 − 𝑎
𝑦
2
)

1

𝑎𝑛
, 𝑦
2
) .

(104)

Going back to the original RVs, that is, 𝑍 = ((1 − 𝑎
𝑛

)/(1 −

𝑎))𝐵 + 𝑎
𝑛

Γ
0
= 𝑌
1
and 𝐵 = 𝑌

2
, one gets

𝑓
𝑍,𝐵

(𝑧, 𝑏) =
1

|𝑎|
𝑛
𝑓
Γ0,𝐵

((𝑧 −
1 − 𝑎
𝑛

1 − 𝑎
𝑏)

1

𝑎𝑛
, 𝑏) . (105)

Finally, considering the marginal PDF of 𝑍 in (105), one
obtains the 1-PDF of 𝑍 for 𝑎 ̸= 0:

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛
∫
𝑏2

𝑏1

𝑓
Γ0,𝐵

((𝑧 −
1 − 𝑎
𝑛

1 − 𝑎
𝑏)

1

𝑎𝑛
, 𝑏) 𝑑𝑏,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(106)

For the trivial case 𝑎 = 0, solution (101) takes the form

𝑍
0
= Γ
0

𝑍
𝑛
= 𝐵, 𝑛 = 1, 2, . . . ,

(107)

and hence the 1-PDF of𝑍 is given by the marginal PDFs of Γ
0

and 𝐵:

𝑓
1
(𝑧, 𝑛)

=

{{{{

{{{{

{

𝑓
Γ0
(𝛾
0
) = ∫
𝑏2

𝑏1

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) 𝑑𝑏, 𝑛 = 0,

𝑓
𝐵
(𝑏) = ∫

𝛾0,2

𝛾0,1

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) 𝑑𝛾

0
, 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(108)

Remark 11. Notice that expression (77) in Case II.3 can be
obtained assuming that parameter 𝑎 tends to 1 in (106).

Example 11. Let us assume that the random vector 𝜂 =

(Γ
0
, 𝐵)

T
∼ 𝑁(𝜇

𝜂
, Σ𝜂) has a bidimensional Gaussian distribu-

tion whose mean vector and covariance matrix are given by

𝜇
𝜂
= (

𝜇
Γ0

𝜇
𝐵

) ,

Σ𝜂 = (
(𝜎
Γ0
)
2

𝜌
Γ0,𝐵

𝜎
Γ0
𝜎
𝐵

𝜌
Γ0 ,𝐵

𝜎
𝑍0
𝜎
𝐵

(𝜎
𝐵
)
2

) ,

(109)

respectively. In (109), 𝜌
Γ0 ,𝐵

denotes the correlation coefficient
of RVs Γ

0
and 𝐵. Let us assume 𝑎 ̸= 0. By (106), the 1-PDF of

{𝑍
𝑛
: 𝑛 ≥ 0} reads as follows:

𝑓
1
(𝑧, 𝑛)

=
1

|𝑎|
𝑛

1

2𝜋√det (Σ𝜂)
∫
+∞

−∞

𝑒
−(1/2)(𝜁−𝜇

𝜂
)
T
(Σ𝜂)
−1
(𝜁−𝜇
𝜂
)

𝑑𝑏,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R,

(110)

being

𝜁 = (
(𝑧 −

1 − 𝑎
𝑛

1 − 𝑎
𝑏)

1

𝑎𝑛

𝑏

) . (111)

To determine the domain of integration in (110), we have
taken into account the fact that 𝐵 is also a Gaussian RV.
Figure 11 shows a graphical representation of 𝑓

1
(𝑧, 𝑛) at

different values of 𝑛 assuming that 𝜇
Γ0

= 1, 𝜇
𝐵
= 0, 𝜎

Γ0
=

0.1, 𝜎
𝐵
= 0.1, 𝜌

Γ0,𝐵
= 0.5, and 𝑎 = −11/10.

5.5. Case III.5: (Γ
0
, 𝐴) Is a Random Vector. In this case,

solution (83) takes the form

𝑍
𝑛
= 𝐴
𝑛

Γ
0
+

𝑏

1 − 𝐴
(1 − 𝐴

𝑛

) , 𝑛 = 0, 1, 2, . . . . (112)
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Figure 11: 𝑓
1
(𝑧, 𝑛) in Example 11 at different values of 𝑛. The input

parameters are assumed to be 𝜂 = (Γ
0
, 𝐵)

T
∼ 𝑁(𝜇

𝜂
, Σ
𝜂
), where

the mean vector and the variance-covariance matrix are defined by
(109), with the values 𝜇

Γ0
= 1, 𝜇

𝐵
= 0, 𝜎

Γ0
= 0.1, 𝜎

𝐵
= 0.1, 𝜌

Γ0 ,𝐵
=

0.5, and 𝑎 = −11/10.

Let us denote by 𝑓
Γ0,𝐴

(𝛾
0
, 𝑎) the joint PDF of the random

vector (Γ
0
, 𝐴). Let us fix 𝑛 : 𝑛 ≥ 0 and denote 𝑍 = 𝑍

𝑛
=

𝐴
𝑛

Γ
0
+𝑏/(1−𝐴)(1−𝐴

𝑛

). To compute the 1-PDF of𝑍, first we
will determine the joint PDF of the RVs 𝑍 and 𝐴 by applying
[20, Theorem 4] to the two-dimensional RV Y = r(X) with

X = [
Γ
0

𝐴
] ,

Y = [
𝑌
1

𝑌
2

] = [
𝑟
1
(Γ
0
, 𝐴)

𝑟
2
(Γ
0
, 𝐴)

]

= [

[

𝐴
𝑛

Γ
0
+

𝑏

1 − 𝐴
(1 − 𝐴

𝑛

)

𝐴

]

]

.

(113)

From (113), the inverse transformation of r(X), X = r−1(Y) =
s(Y), takes the form

X = [
Γ
0

𝐴
] = [

𝑠
1
(𝑌
1
, 𝑌
2
)

𝑠
2
(𝑌
1
, 𝑌
2
)
]

= [

[

(𝑌
1
−

𝑏

1 − 𝑌
2

(1 − (𝑌
2
)
𝑛

))
1

(𝑌
2
)
𝑛

𝑌
2

]

]

.

(114)

Notice that 𝑌
2

̸= 0 w.p. 1. By [20, Theorem 4] and taking into
account the fact that |𝐽

2
| = 1/|𝑦

2
|
𝑛

̸= 0, the joint PDF 𝑓Y(y)
is given by

𝑓
𝑌1,𝑌2

(𝑦
1
, 𝑦
2
) =

1
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨
𝑛

⋅ 𝑓
Γ0,𝐴

((𝑦
1
−

𝑏

1 − 𝑦
2

(1 − (𝑦
2
)
𝑛

))
1

(𝑦
2
)
𝑛
, 𝑦
2
) .

(115)

Going back to the original RVs, that is, 𝑍 = 𝐴
𝑛

Γ
0
+ 𝑏/(1 −

𝐴)(1 − 𝐴
𝑛

) = 𝑌
1
and 𝐴 = 𝑌

2
, one gets

𝑓
𝑍,𝐴

(𝑧, 𝑎)

=
1

|𝑎|
𝑛
𝑓
Γ0,𝐴

((𝑧 −
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

))
1

𝑎𝑛
, 𝑎) .

(116)

Finally, considering themarginal PDF of𝑍 in (116), the 1-PDF
of {𝑍
𝑛
: 𝑛 ≥ 0} is given by

𝑓
1
(𝑧, 𝑛)

= ∫
𝑎2

𝑎1

1

|𝑎|
𝑛
𝑓
Γ0,𝐴

((𝑧 −
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

))
1

𝑎𝑛
, 𝑎) 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(117)

Example 12. Let us consider the two-dimensional Gaussian
vector 𝜂 = (Γ

0
, 𝐴)

T
∼ 𝑁(𝜇

𝜂
, Σ𝜂), whose mean and covariance

matrix are given by

𝜇
𝜂
= (

𝜇
Γ0

𝜇
𝐴

) ,

Σ𝜂 = (
(𝜎
Γ0
)
2

𝜌
Γ0,𝐴

𝜎
Γ0
𝜎
𝐴

𝜌
Γ0,𝐴

𝜎
Γ0
𝜎
𝐴

(𝜎
𝐴
)
2

) ,

(118)

respectively. In (118), 𝜌
Γ0,𝐴

denotes the correlation coefficient
between RVs Γ

0
and 𝐴. Notice that 𝐴 has a Gaussian

distribution; hence, 𝑎
1
= −∞ and 𝑎

2
= +∞. Then, according

to (117), the 1-PDF of {𝑍
𝑛
: 𝑛 ≥ 0} is given by

𝑓
1
(𝑧, 𝑛)

=
1

2𝜋√det (Σ𝜂)
∫
+∞

−∞

1

|𝑎|
𝑛
𝑒
−(1/2)(𝜁−𝜇

𝜂
)
T
(Σ𝜂)
−1
(𝜁−𝜇
𝜂
)

𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R,

(119)

where

𝜁 = (
(𝑧 −

𝑏

1 − 𝑎
(1 − 𝑎

𝑛

))
1

𝑎𝑛

𝑎

) . (120)

Figure 12 shows a graphical representation of the 1-PDF
𝑓
1
(𝑧, 𝑛) given by (117) at different values of 𝑛 assuming that

𝜇
Γ0

= 1, 𝜇
𝐴

= 1.5, 𝜎
Γ0

= 0.1, 𝜎
𝐴

= 0.1, 𝜌
Γ0,𝐴

= 0.5, and
𝑏 = 1. For the sake of clarity, we have split the representation
of 𝑓
1
(𝑧, 𝑛) into two plots due to the significant differences in

the vertical scales required depending on the values of 𝑛.

5.6. Case III.6: (𝐵, 𝐴) Is a RandomVector. Solution (83) takes
the form

𝑍
𝑛
= 𝐴
𝑛

𝛾
0
+
1 − 𝐴
𝑛

1 − 𝐴
𝐵, 𝑛 = 0, 1, 2, . . . . (121)

Let us denote by 𝑓
𝐵,𝐴

(𝑏, 𝑎) the joint PDF of the random
vector (𝐵, 𝐴). Let us fix 𝑛 : 𝑛 ≥ 1 and denote 𝑍 = 𝑍

𝑛
=
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Figure 12: 𝑓
1
(𝑧, 𝑛) in Example 12 at different values of 𝑛. The input parameters are assumed to be 𝜂 = (Γ

0
, 𝐴)

T
∼ 𝑁(𝜇

𝜂
, Σ
𝜂
), where the mean

vector and the variance-covariance matrix are defined by (118), with the values 𝜇
Γ0
= 1, 𝜇

𝐴
= 1.5, 𝜎

Γ0
= 0.1, 𝜎

𝐴
= 0.1, 𝜌

Γ0 ,𝐴
= 0.5, and 𝑏 = 1.

𝐴
𝑛

𝛾
0
+ (1 − 𝐴

𝑛

)/(1 − 𝐴)𝐵. In order to compute the 1-PDF
of 𝑍, first we will determine the joint PDF of the RVs 𝑍 and
𝐴 by applying [20, Theorem 4] to the two-dimensional RV
Y = r(X) with

X = [
𝐵

𝐴
] ,

Y = [
𝑌
1

𝑌
2

] = [
𝑟
1
(𝐵, 𝐴)

𝑟
2
(𝐵, 𝐴)

] = [

[

𝐴
𝑛

𝛾
0
+
1 − 𝐴
𝑛

1 − 𝐴
𝐵

𝐴

]

]

.

(122)

From (122), the inverse transformation of r(X), X = r−1(Y) =
s(Y), takes the form

X = [
𝐵

𝐴
] = [

𝑠
1
(𝑌
1
, 𝑌
2
)

𝑠
2
(𝑌
1
, 𝑌
2
)
]

= [

[

(𝑌
1
− (𝑌
2
)
𝑛

𝛾
0
)

1 − 𝑌
2

1 − (𝑌
2
)
𝑛

𝑌
2

]

]

.

(123)

By [20,Theorem4] and taking into account the fact that |𝐽
2
| =

|(1 − 𝑦
2
)/(1 − (𝑦

2
)
𝑛

)| ̸= 0, the joint PDF 𝑓Y(y) is given by

𝑓
𝑌1,𝑌2

(𝑦
1
, 𝑦
2
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑦
2

1 − (𝑦
2
)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵,𝐴

((𝑦
1
− (𝑦
2
)
𝑛

𝛾
0
)

1 − 𝑦
2

1 − (𝑦
2
)
𝑛
, 𝑦
2
) .

(124)

Going back to the original RVs, that is, 𝑍 = 𝐴
𝑛

𝛾
0
+ (1 −

𝐴
𝑛

)/(1 − 𝐴)𝐵 = 𝑌
1
and 𝐴 = 𝑌

2
, one gets

𝑓
𝑍,𝐴

(𝑧, 𝑎) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎

1 − 𝑎𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵,𝐴

((𝑧 − 𝑎
𝑛

𝛾
0
)
1 − 𝑎

1 − 𝑎𝑛
, 𝑎) ,

𝑛 = 1, 2, . . . .

(125)

Finally, considering the marginal PDF of 𝑍 in (125) and the
case where 𝑛 = 0, which gives 𝑍

0
= 𝛾
0
, one gets the 1-PDF of

{𝑍
𝑛
: 𝑛 ≥ 0}:

𝑓
1
(𝑧, 𝑛)

=

{{

{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0,

∫
𝑎2

𝑎1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎

1 − 𝑎𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵,𝐴

((𝑧 − 𝑎
𝑛

𝛾
0
)
1 − 𝑎

1 − 𝑎𝑛
, 𝑎) 𝑑𝑎, 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(126)

Example 13. So far, we have considered standard distribu-
tions in one or more dimensions to illustrate the obtained
theoretical results. Now, we will assume that the joint PDF
of the input parameters 𝐵 and 𝐴 is constructed by means
of a copula transformation. Let us assume that 𝐵 and 𝐴 are
uniform RVs defined on the interval ]0, 1[; that is, 𝐵, 𝐴 ∼

Un(]0, 1[). We transform these RVs by the Farlie-Gordon-
Morgenstern copula [28], so that a two-dimensional RV
(𝐵, 𝐴) with joint PDF

𝑓
𝐵,𝐴

(𝑏, 𝑎) =
2

3
(2 − 𝑏 − 𝑎 + 2𝑏𝑎) , if 0 < 𝑏, 𝑎 < 1, (127)

is defined. This random vector satisfies the notion that the
marginal distributions of𝑓

𝐵,𝐴
(𝑏, 𝑎) keep the one-dimensional

distributions of 𝐴 and 𝐵. Hereinafter, let us take 𝛾
0

= 0.
Taking into account the fact that 0 < 𝑎, 𝑏 < 1, by (126), for
𝑧 and 𝑛 previously fixed, one must calculate 𝑎 such that

0 < 𝑧
1 − 𝑎

1 − 𝑎𝑛
< 1. (128)

In general, the variable 𝑎 cannot be determined in a closed
form. UsingMathematica software to carry out computations
numerically, in Figure 13, several representations of 𝑓

1
(𝑧, 𝑛)

have been plotted.
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Figure 13: 2D and 3D plots of 𝑓
1
(𝑧, 𝑛) in Example 13 at different values of 𝑛, where 𝛾

0
= 0 and the PDF of the two-dimensional RV (𝐵, 𝐴) is

given by (127). (a) 𝑛 ∈ {1, 2, 5, 10}. (b) 𝑛 ∈ {1, 2, . . . , 10}.

5.7. Case III.7: (Γ
0
, 𝐵, 𝐴) Is a Random Vector. In this last case,

solution (83) takes the form

𝑍
𝑛
= 𝐴
𝑛

Γ
0
+

𝐵

1 − 𝐴
(1 − 𝐴

𝑛

) , 𝑛 = 0, 1, 2, . . . . (129)

Let us denote by 𝑓
Γ0,𝐵,𝐴

(𝛾
0
, 𝑏, 𝑎) the joint PDF of the

random vector (Γ
0
, 𝐵, 𝐴). Let us fix 𝑛 : 𝑛 ≥ 0 and denote

𝑍 = 𝑍
𝑛
= 𝐴
𝑛

Γ
0
+ 𝐵/(1 − 𝐴)(1 − 𝐴

𝑛

). To determine the 1-PDF
of𝑍, first we will calculate the joint PDF of the RVs𝑍, 𝐵, and
𝐴 by applying [20, Theorem 4] to the three-dimensional RV
Y = r(X) with

X =
[
[

[

Γ
0

𝐵

𝐴

]
]

]

,

Y =
[
[

[

𝑌
1

𝑌
2

𝑌
3

]
]

]

=
[
[
[

[

𝑟
1
(Γ
0
, 𝐵, 𝐴)

𝑟
2
(Γ
0
, 𝐵, 𝐴)

𝑟
3
(Γ
0
, 𝐵, 𝐴)

]
]
]

]

=
[
[
[

[

𝐴
𝑛

Γ
0
+

𝐵

1 − 𝐴
(1 − 𝐴

𝑛

)

𝐵

𝐴

]
]
]

]

.

(130)

From (130), the inverse transformation of r(X), X = r−1(Y) =
s(Y), takes the form

X =
[
[

[

Γ
0

𝐵

𝐴

]
]

]

=
[
[
[

[

𝑠
1
(𝑌
1
, 𝑌
2
, 𝑌
3
)

𝑠
2
(𝑌
1
, 𝑌
2
, 𝑌
3
)

𝑠
3
(𝑌
1
, 𝑌
2
, 𝑌
3
)

]
]
]

]

=

[
[
[
[

[

(𝑌
1
−

𝑌
2

1 − 𝑌
3

(1 − (𝑌
3
)
𝑛

))
1

(𝑌
3
)
𝑛

𝑌
2

𝑌
3

]
]
]
]

]

,

(131)

where 𝑌
3

̸= 0 w.p. 1. By [20, Theorem 4] and taking into
account the fact that |𝐽

3
| = 1/|𝑦

3
|
𝑛

̸= 0, the joint PDF 𝑓Y(y)
is given by

𝑓
𝑌1,𝑌2,𝑌3

(𝑦
1
, 𝑦
2
, 𝑦
3
) =

1
󵄨󵄨󵄨󵄨𝑦3

󵄨󵄨󵄨󵄨
𝑛

⋅ 𝑓
Γ0,𝐵,𝐴

((𝑦
1
−

𝑦
2

1 − 𝑦
3

(1 − (𝑦
3
)
𝑛

))
1

(𝑦
3
)
𝑛
, 𝑦
2
, 𝑦
3
) .

(132)

Going back to the original RVs, that is, 𝑍 = 𝐴
𝑛

Γ
0
+ (𝐵/(1 −

𝐴))(1 − 𝐴
𝑛

) = 𝑌
1
, 𝐵 = 𝑌

2
, and 𝐴 = 𝑌

3
, one gets

𝑓
𝑍,𝐵,𝐴

(𝑧, 𝑏, 𝑎)

=
1

|𝑎|
𝑛
𝑓
Γ0,𝐵,𝐴

(𝑧 −
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

)
1

𝑎𝑛
, 𝑏, 𝑎) .

(133)

Finally, considering themarginal PDF of𝑍 in (133), the 1-PDF
of {𝑍
𝑛
: 𝑛 ≥ 0} is given by

𝑓
1
(𝑧, 𝑛) = ∫

𝑎2

𝑎1

∫
𝑏2

𝑏1

1

|𝑎|
𝑛
𝑓
Γ0,𝐵,𝐴

(𝑧

−
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

)
1

𝑎𝑛
, 𝑏, 𝑎) 𝑑𝑏 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(134)

Example 14. Let us assume that 𝜂 = (𝑍
0
, 𝐵, 𝐴)

T
∼ 𝑁(𝜇

𝜂
, Σ𝜂);

that is, 𝜂 is a Gaussian random vector with mean 𝜇
𝜂

=

(𝜇
1
, 𝜇
2
, 𝜇
3
)
T
∈ R3 and variance-covariancematrix Σ𝜂 ∈ R3×3.

By (134), the 1-PDF of 𝑍
𝑛
writes

𝑓
1
(𝑧, 𝑛) =

1

2𝜋√2𝜋√det (Σ𝜂)

⋅ ∬
∞

−∞

1

|𝑎|
𝑛
𝑒
−(1/2)(𝜁−𝜇

𝜂
)
T
(Σ𝜂)
−1
(𝜁−𝜇
𝜂
)

𝑑𝑏 𝑑𝑎,

(135)
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Figure 14: 𝑓
1
(𝑧, 𝑛), 𝑛 ∈ {0, 1, 2, 3}, in Example 14. The input param-

eters (Γ
0
, 𝐵, and 𝐴) are assumed to be a Gaussian distribution with

mean and variance-covariance matrix defined by (137).

where

𝜁 = (

𝑧 −
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

)
1

𝑎𝑛

𝑏

𝑎

) . (136)

In order to illustrate the theoretical results previously estab-
lished, let us fix the mean vector and the variance-covariance
matrix as follows:

𝜇
𝜂
= (

1

1

2

) ,

Σ𝜂 =
1

10
(

4 1 1

1 4 1

1 1 2

) .

(137)

In this example, we do not make the 1-PDF, 𝑓
1
(𝑧, 𝑛), explicit,

since its expression is cumbersome. In Figure 14, we have
plotted 𝑓

1
(𝑧, 𝑛) at different values of 𝑛.

6. Conclusions

In this paper, we have provided general explicit formulae
to compute the first probability density function (1-PDF) of
the solution stochastic process to random first-order linear
difference equations. It has been done in the general case
where the involved random inputs are statistically depen-
dent. The study has been based on the Random Variable
Transformation technique. When solving random difference
equations, most of the available studies focus on the compu-
tation of the solution stochastic process and its expectation
and variance functions. However, the computation of explicit
formulae to determine the 1-PDF is more advisable since it
permits the computation of other higher-order moments and
the probability of certain sets of interest as well. We have

shown, through the theoretical development, that the study
here presented generalizes its deterministic counterpart. In
addition, all the theoretical results have been illustrated by a
comprehensive list of examples. Finally, note that our analysis
can be extended to determine the 1-PDF of the solution to
random nonlinear first-order difference equations in future
studies.

Appendix

In order to facilitate the handling of all the results obtained
throughout the paper in practice, in the following cases, Cases
I–III, we sum up all the expressions of the 1-PDF of the
solution stochastic process of problem (2) according to the
cases listed in Table 1.

Notice that the domains are defined in expression (3).

Case I. Expression of the 1-PDF of the solution SP of problem
𝑍
𝑛+1

= 𝐴𝑍
𝑛
, 𝑛 = 0, 1, 2, . . . and 𝑍

0
= Γ
0
, is listed below from

expressions (A.1)–(A.14).

Case I.1. 𝑎 ̸= 0

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛
𝑓
Γ0
(
𝑧

𝑎𝑛
) , 𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R. (A.1)

𝑎 = 0

𝑓
1
(𝑧, 𝑛) =

{

{

{

𝑓
Γ0
(𝑧) , 𝑛 = 0,

𝛿 (𝑧) , 𝑛 = 1, 2, . . . ,
𝑧 ∈ R. (A.2)

Case I.2. 𝛾
0
= 0

𝑓
1
(𝑧, 𝑛) = 𝛿 (𝑧) , 𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R. (A.3)

𝛾
0

̸= 0

𝑛 = 0

𝑓
1
(𝑧, 𝑛) = 𝛿 (𝑧 − 𝛾

0
) , 𝑧 ∈ R. (A.4)

𝑛 = 1

𝑓
1
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨
𝑓
𝐴
(
𝑧

𝛾
0

) ,

{

{

{

𝛾
0
𝑎
1
≤ 𝑧 ≤ 𝛾

0
𝑎
2
, if 𝛾

0
> 0,

𝛾
0
𝑎
2
≤ 𝑧 ≤ 𝛾

0
𝑎
1
, if 𝛾

0
< 0,

𝑧 ∈ R.

(A.5)

𝑛 ≥ 3 and odd

(i) 𝑎
1
> 0 or 𝑎

2
< 0

𝑓
1
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛
(
𝑧

𝛾
0

)

(1−𝑛)/𝑛

𝑓
𝐴
( 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
< 0.

(A.6)
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(ii) 𝑎
1
𝑎
2
≤ 0

𝑓
1
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛
(
𝑧

𝛾
0

)

(1−𝑛)/𝑛

𝑓
𝐴
( 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 < 0, 0 < 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 < 0, 0 < 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
< 0.

(A.7)

𝑛 even

(i) 𝑎
1
≥ 0

𝑓
1
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝐴
(+ 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
< 0.

(A.8)

(ii) 𝑎
2
≤ 0

𝑓
1
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝐴
(− 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
< 0.

(A.9)

(iii) 𝑎
1
𝑎
2
< 0

(a) 𝑎
2
≥ |𝑎
1
|

𝑓
1
(𝑧, 𝑛) = 𝑓

1

𝑍
(𝑧, 𝑛) + 𝑓

2

𝑍
(𝑧, 𝑛) , (A.10)

where

𝑓
1

𝑍
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ {𝑓
𝐴
(− 𝑛√

𝑧

𝛾
0

) + 𝑓
𝐴
(+ 𝑛√

𝑧

𝛾
0

)} ,

{

{

{

0 < 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 < 0, if 𝛾
0
< 0,

𝑓
2

𝑍
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝐴
(+ 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
1
)
𝑛

< 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 < 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
< 0.

(A.11)

(b) 𝑎
2
< |𝑎
1
|

𝑓
1
(𝑧, 𝑛) = 𝑓

1

𝑍
(𝑧, 𝑛) + 𝑓

2

𝑍
(𝑧, 𝑛) , (A.12)

where

𝑓
1

𝑍
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ {𝑓
𝐴
(− 𝑛√

𝑧

𝛾
0

) + 𝑓
𝐴
(+ 𝑛√

𝑧

𝛾
0

)} ,

{

{

{

0 < 𝑧 ≤ 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
2
)
𝑛

≤ 𝑧 < 0, if 𝛾
0
< 0,

𝑓
2

𝑍
(𝑧, 𝑛) =

1
󵄨󵄨󵄨󵄨𝛾0

󵄨󵄨󵄨󵄨 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑧

𝛾
0

)

(1−𝑛)/𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝐴
(− 𝑛√

𝑧

𝛾
0

) ,

{

{

{

𝛾
0
(𝑎
2
)
𝑛

< 𝑧 ≤ 𝛾
0
(𝑎
1
)
𝑛

, if 𝛾
0
> 0,

𝛾
0
(𝑎
1
)
𝑛

≤ 𝑧 < 𝛾
0
(𝑎
2
)
𝑛

, if 𝛾
0
< 0.

(A.13)

Case I.3. Consider

𝑓
1
(𝑧, 𝑛) = ∫

𝑎2

𝑎1

1

|𝑎|
𝑛
𝑓
Γ0,𝐴

(
𝑧

𝑎𝑛
, 𝑎) 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.14)

Case II. Expression of the 1-PDF of the solution SP of problem
𝑍
𝑛+1

= 𝑍
𝑛
+ 𝐵, 𝑛 = 0, 1, 2, . . . and 𝑍

0
= Γ
0
, is listed below

from expressions (A.15)–(A.17).

Case II.1. Consider

𝑓
1
(𝑧, 𝑛) = 𝑓

Γ0
(𝑧 − 𝑛𝑏) , 𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R. (A.15)

Case II.2. Consider

𝑓
1
(𝑧, 𝑛) =

{{

{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0,

1

𝑛
𝑓
𝐵
(
𝑧 − 𝛾
0

𝑛
) , 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(A.16)

Case II.3. Consider

𝑓
1
(𝑧, 𝑛) = ∫

𝑏2

𝑏1

𝑓
Γ0,𝐵

(𝑧 − 𝑛𝑏, 𝑏) 𝑑𝑏,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.17)

Case III. Expression of the 1-PDF of the solution SP of
problem 𝑍

𝑛+1
= 𝐴𝑍

𝑛
+ 𝐵, 𝑛 = 0, 1, 2, . . . and 𝑍

0
= Γ
0
, is

listed below from expressions (A.18)–(A.27).

Case III.1. 𝑎 ̸= 0

𝑓
1
(𝑧, 𝑛) =

1

|𝑎|
𝑛
𝑓
Γ0
(
𝑧 (1 − 𝑎) − 𝑏 (1 − 𝑎

𝑛

)

𝑎𝑛 (1 − 𝑎)
) ,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.18)
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𝑎 = 0

𝑓
1
(𝑧, 𝑛) = {

𝑓
Γ0
(𝑧) , 𝑛 = 0,

𝛿 (𝑧 − 𝑏) , 𝑛 = 1, 2, . . . ,
𝑧 ∈ R. (A.19)

Case III.2. 𝑎 ̸= −1

𝑓
1
(𝑧, 𝑛)

=

{{

{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎

1 − 𝑎𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵
(
1 − 𝑎

1 − 𝑎𝑛
(𝑧 − 𝛾

0
𝑎
𝑛

)) , 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(A.20)

𝑎 = −1

𝑓
1
(𝑧, 𝑛) =

{

{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 even,

𝑓
𝐵
(𝑧 + 𝛾

0
) , 𝑛 odd,

𝑧 ∈ R. (A.21)

Case III.3. Consider

𝑓
1
(𝑧, 𝑛) =

𝑘

∑
𝑗=1

𝑓
𝐴
(𝑠
𝑗,𝑁𝑗

(𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠
𝑗,𝑁𝑗

(𝑧)

𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(using Lagrange-Bürmann formula) .

(A.22)

Case III.4. 𝑎 ̸= 0

𝑓
1
(𝑧, 𝑛)

=
1

|𝑎|
𝑛
∫
𝑏2

𝑏1

𝑓
Γ0,𝐵

((𝑧 −
1 − 𝑎
𝑛

1 − 𝑎
𝑏)

1

𝑎𝑛
, 𝑏) 𝑑𝑏,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.23)

𝑎 = 0

𝑓
1
(𝑧, 𝑛)

=

{{{

{{{

{

𝑓
Γ0
(𝛾
0
) = ∫
𝑏2

𝑏1

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) 𝑑𝑏, 𝑛 = 0,

𝑓
𝐵
(𝑏) = ∫

𝛾0,2

𝛾0,1

𝑓
Γ0,𝐵

(𝛾
0
, 𝑏) 𝑑𝛾

0
, 𝑛 = 1, 2, . . . ,

𝑧 ∈ R.

(A.24)

Case III.5. Consider

𝑓
1
(𝑧, 𝑛)

= ∫
𝑎2

𝑎1

1

|𝑎|
𝑛
𝑓
Γ0,𝐴

((𝑧 −
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

))
1

𝑎𝑛
, 𝑎) 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.25)

Case III.6. Consider

𝑓
1
(𝑧, 𝑛) =

{{{

{{{

{

𝛿 (𝑧 − 𝛾
0
) , 𝑛 = 0,

∫
𝑎2

𝑎1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑎

1 − 𝑎𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓
𝐵,𝐴

((𝑧 − 𝑎
𝑛

𝛾
0
)
1 − 𝑎

1 − 𝑎𝑛
, 𝑎) 𝑑𝑎, 𝑛 = 1, 2, . . . ,

𝑧 ∈ R. (A.26)

Case III.7. Consider

𝑓
1
(𝑧, 𝑛) = ∫

𝑎2

𝑎1

∫
𝑏2

𝑏1

1

|𝑎|
𝑛
𝑓
Γ0,𝐵,𝐴

(𝑧

−
𝑏

1 − 𝑎
(1 − 𝑎

𝑛

)
1

𝑎𝑛
, 𝑏, 𝑎) 𝑑𝑏 𝑑𝑎,

𝑛 = 0, 1, 2, . . . , 𝑧 ∈ R.

(A.27)
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