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We have generalized the notion of statistical boundedness by introducing the concept of 𝑓-statistical boundedness for scalar
sequences where 𝑓 is an unbounded modulus. It is shown that bounded sequences are precisely those sequences which are 𝑓-
statistically bounded for every unbounded modulus 𝑓. A decomposition theorem for 𝑓-statistical convergence for vector valued
sequences and a structure theorem for 𝑓-statistical boundedness have also been established.

1. Introduction and Background

The idea of statistical convergence was given in the first
edition (published in Warsaw in 1935) of the monograph of
Zygmund [1]. Formally the concept of statistical convergence
was introduced by Steinhaus [2] and Fast [3] and later rein-
troduced by Schoenberg [4]. Although statistical convergence
was introduced over nearly last 60 years, it has become an
active area of research in recent years. Statistical convergence
has been studied most recently by several authors [5–15].

The standard definition of “(𝑥𝑘) is convergent to 𝐿”
requires that the set {𝑘 ∈ N : |𝑥𝑘 − 𝐿| ≥ 𝜀} should be finite for
every 𝜀 > 0, where N is the set of natural numbers.

The number sequence (𝑥𝑘) is said to be statistically
convergent to the number 𝐿 provided that the set {𝑘 ∈ N :
|𝑥𝑘 − 𝐿| ≥ 𝜀}, instead of being finite, has natural density 0,
where the natural density of a subset𝐾 ⊂ N (see [16], chapter
11) is defined by

𝑑 (𝐾) = lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| , (1)

where |{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| denotes the number of elements of
𝐾 not exceeding 𝑛. A set 𝐾 is said to be statistically dense
[17] if 𝑑(𝐾) = 1. A subsequence of a sequence is said to

be statistically dense if the set of all indices of its elements
is statistically dense. In other words, a subsequence of a
sequence is said to be statistically dense if the complement
of the set of all indices of its elements has natural density 0.
Obviously, we have 𝑑(𝐾) = 0 provided that𝐾 is a finite set of
positive integers.

We will be particularly concerned with those subsets ofN
which have natural density zero. To facilitate this, Fridy [18]
introduced the following notation: if 𝑥 = (𝑥𝑘) is a sequence
such that 𝑥𝑘 satisfies property𝑃 for all 𝑘 except a set of natural
density zero, then we say that 𝑥 = (𝑥𝑘) satisfies 𝑃 for “almost
all 𝑘” and we abbreviate this by “a.a. 𝑘.”

Using this notation, we have the following.

Definition 1. The number sequence 𝑥 = (𝑥𝑘) is said to be
statistically convergent to the number 𝐿 if, for each 𝜀 > 0,

𝑑 (𝐴𝜀) = 0,

where 𝐴𝜀 = {𝑘 ∈ N :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 ≥ 𝜀} , that is,

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 ≥ 𝜀}
󵄨󵄨󵄨󵄨 = 0, that is,

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 < 𝜀 a.a. 𝑘.

(2)
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Definition 2. A number sequence 𝑥 = (𝑥𝑘) is said to be
statistically Cauchy if, for each 𝜀 > 0, there exists a positive
integer 𝑝 = 𝑝(𝜀) such that

𝑑 {𝑘 ∈ N :
󵄨󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥𝑝

󵄨󵄨󵄨󵄨󵄨 ≥ 𝜀} = 0, that is,
󵄨󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥𝑝

󵄨󵄨󵄨󵄨󵄨 < 𝜀 a.a. 𝑘.
(3)

In 1997, Fridy and Orhan [19] introduced the concept of
statistical boundedness as follows.

Definition 3. The number sequence 𝑥 = (𝑥𝑘) is said to be
statistically bounded if there is a number 𝑀 > 0 such that
𝑑({𝑘 ∈ N : |𝑥𝑘| > 𝑀}) = 0; that is,

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨 ≤ 𝑀 a.a. 𝑘. (4)

We denote the set of all statistically bounded sequences by
𝑆(𝑏).

In the same year, that is, 1997, Tripathy [20] proved a
decomposition theorem for statistically bounded sequences
and also established a necessary and sufficient condition for
a sequence to be statistically bounded.

Quite recently, Bhardwaj and Gupta [10] have introduced
and studied the concepts of statistical boundedness of order
𝛼, 𝜆-statistical boundedness, and 𝜆-statistical boundedness
of order 𝛼 for scalar sequences. Bhardwaj et al. [11] have also
introduced and studied a new concept of lacunary statistical
boundedness as a lacunary analog of the concept of statistical
boundedness.

The idea of amodulus functionwas structured byNakano
[21] in 1953. FollowingRuckle [22] andMaddox [23], we recall
that amodulus𝑓 is a function from [0,∞) to [0,∞) such that
(i)𝑓(𝑥) = 0 if and only if 𝑥 = 0, (ii)𝑓(𝑥+𝑦) ≤ 𝑓(𝑥)+𝑓(𝑦) for
𝑥 ≥ 0, 𝑦 ≥ 0, (iii) 𝑓 is increasing, and (iv) 𝑓 is continuous
from the right at 0. Hence 𝑓must be continuous everywhere
on [0,∞). A modulus may be unbounded or bounded. For
example, 𝑓(𝑥) = 𝑥𝑝, where 0 < 𝑝 < 1, is unbounded, but
𝑓(𝑥) = 𝑥/(1 + 𝑥) is bounded.

Connor [24], Pehlivan [25], Pehlivan and Fisher [26],
Kolk [27], Ghosh and Srivastava [28], Bhardwaj and Singh
[29, 30], Çolak [31], Altin and Et [32], and some others have
used a modulus function to construct some sequence spaces.

In the year 2014, Aizpuru et al. [6] have defined a
new concept of density with the help of modulus function
and consequently obtained a new concept of 𝑓-statistical
convergence, which is in fact a generalization of the notion
of statistical convergence. They proved that the ordinary
convergence is equivalent to the 𝑓-statistical convergence for
every unbounded modulus function 𝑓.

Quite recently, Bhardwaj and Dhawan have introduced
and studied the concepts of𝑓-statistical convergence of order
𝛼 [9] and𝑓-lacunary statistical convergence [33] by using the
approach of Aizpuru et al. [6].

Throughout the paper, unless otherwise specified, 𝑋 will
denote a real normed space.

First we recall some definitions from [6].

Definition 4. Let 𝑓 be an unbounded modulus function. The
𝑓-density of a set 𝐴 ⊂ N is defined by

𝑑𝑓 (𝐴) = lim
𝑛

𝑓 (|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐴}|)

𝑓 (𝑛)
, (5)

in case this limit exists. Clearly, finite sets have zero𝑓-density
and 𝑑𝑓(N − 𝐴) = 1 − 𝑑𝑓(𝐴) does not hold, in general.

Remark 5. For any unbounded modulus 𝑓 and 𝐴 ⊂ N,
𝑑𝑓(𝐴) = 0 implies 𝑑(𝐴) = 0 (see [6]). But the converse need
not be true in the sense that a set having natural density zero
may not have𝑓-density zerowith respect to someunbounded
modulus 𝑓.

Definition 6. A sequence (𝑥𝑘) in𝑋 is said to be 𝑓-statistically
convergent to 𝐿 ∈ 𝑋, if, for each 𝜀 > 0, 𝑑𝑓({𝑘 ∈ N : ‖𝑥𝑘 −𝐿‖ ≥
𝜀}) = 0 and one writes it as 𝑓-st lim𝑥𝑘 = 𝐿.

In view ofDefinition 6 andRemark 5, it follows that every
𝑓-statistically convergent sequence is statistically convergent
but a statistically convergent sequence need not be 𝑓-
statistically convergent for every unbounded modulus 𝑓.

Definition 7. A sequence (𝑥𝑘) in𝑋 is said to be 𝑓-statistically
Cauchy if, for each 𝜀 > 0, there exists a positive integer 𝑝 =
𝑝(𝜀) such that

𝑑𝑓 ({𝑘 ∈ N :
󵄩󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑝

󵄩󵄩󵄩󵄩󵄩 ≥ 𝜀}) = 0. (6)

We now introduce the following notation: if 𝑥 = (𝑥𝑘) is
a sequence such that 𝑥𝑘 satisfies property 𝑃 for all 𝑘 except a
set of 𝑓-density zero, then we say that 𝑥 = (𝑥𝑘) satisfies 𝑃 for
“almost all 𝑘 with respect to 𝑓,” where 𝑓 is any unbounded
modulus and we abbreviate this by “a.a. 𝑘 w.r.t. 𝑓.”

Using this notation, the definitions of 𝑓-statistical con-
vergence and 𝑓-statistically Cauchy can be reformulated as
follows.

Definition 8. An 𝑋-valued sequence (𝑥𝑘) is said to be 𝑓-
statistically convergent to 𝐿 ∈ 𝑋, if, for each 𝜀 > 0,

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝐿
󵄩󵄩󵄩󵄩 < 𝜀 a.a. 𝑘 w.r.t. 𝑓. (7)

Definition 9. An 𝑋-valued sequence (𝑥𝑘) is said to be 𝑓-
statistically Cauchy if, for each 𝜀 > 0, there exists a positive
integer 𝑝 = 𝑝(𝜀) such that

󵄩󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥𝑝
󵄩󵄩󵄩󵄩󵄩 < 𝜀 a.a. 𝑘 w.r.t. 𝑓. (8)

The main object of this paper is to introduce and
study a new concept of 𝑓-statistical boundedness for scalar
sequences defined as follows.

Definition 10. A number sequence (𝑥𝑘) is said to be 𝑓-
statistically bounded if there exists 𝑀 > 0 such that 𝑑𝑓({𝑘 ∈
N : |𝑥𝑘| > 𝑀}) = 0; that is, |𝑥𝑘| ≤ 𝑀 a.a. 𝑘 w.r.t. 𝑓. By 𝑠𝑓(𝑏),
one will denote the space of all 𝑓-statistically bounded scalar
sequences.
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In this paper, we establish a relation between statistical
boundedness and 𝑓-statistical boundedness. It is shown
that the concept of 𝑓-statistical boundedness is intermedi-
ate between the ordinary boundedness and the statistical
boundedness. We also prove that bounded sequences are
precisely those sequences which are 𝑓-statistically bounded
for every unbounded modulus 𝑓. Apart from studying 𝑓-
statistical boundedness we also propose to derive further
properties concerning𝑓-statistical convergence.We establish
a decomposition theorem for 𝑓-statistical convergence. It
is proved that the terms of an 𝑓-statistically convergent
sequence (𝑥𝑘) are coincident with those of a convergent
sequence for almost all 𝑘 with respect to 𝑓. We also show
that ℓ𝑓

∞
, the set of all bounded 𝑓-statistically convergent

sequences of scalars, is a closed linear subspace of the normed
linear space ℓ∞ of all bounded sequences of scalars and hence
is a nowhere dense set in ℓ∞.

2. Some More Results on
𝑓-Statistical Convergence

Throughout this section, unless otherwise specified, we deal
with𝑋-valued sequences. By 𝑠𝑓(𝑋), we will denote the space
of all𝑋-valued 𝑓-statistically convergent sequences.

We begin this section by establishing a decomposition
theorem for𝑓-statistical convergence. In fact, the decomposi-
tion theorem for statistically convergent sequences of scalars
was given by Connor [34]. The following theorem extends
the decomposition theorem of Connor [34] to 𝑓-statistical
convergence.

Theorem 11 (decomposition theorem). If 𝑥 = (𝑥𝑘) is
𝑓-statistically convergent to 𝐿, then there is a sequence 𝑦
converging to 𝐿 and an 𝑓-statistically null sequence 𝑧 such that
𝑥 = 𝑦 + 𝑧. Moreover, if 𝑥 is bounded then 𝑧 is also bounded
and ‖𝑧‖∞ ≤ ‖𝑥‖∞ + ‖𝐿‖.

Proof. As 𝑥 = (𝑥𝑘) is 𝑓-statistically convergent to 𝐿, there
exists 𝐴 ⊂ N with 𝑑𝑓(𝐴) = 0 such that lim𝑘∈N−𝐴𝑥𝑘 = 𝐿. For
𝑘 ∈ N, let

𝑦𝑘 =
{
{
{

𝑥𝑘, if 𝑘 ∈ N − 𝐴;

𝐿, if 𝑘 ∈ 𝐴,

𝑧𝑘 =
{
{
{

0, if 𝑘 ∈ N − 𝐴;

𝑥𝑘 − 𝐿, if 𝑘 ∈ 𝐴.

(9)

Clearly 𝑥 = 𝑦 + 𝑧. As {𝑘 ∈ N : ‖𝑧𝑘 − 0‖ > 𝜖} ⊂ 𝐴 for every
𝜖 > 0, we have 𝑑𝑓({𝑘 ∈ N : ‖𝑧𝑘 − 0‖ > 𝜖}) = 0 for every
𝜖 > 0. Thus 𝑧 = (𝑧𝑘) is an 𝑓-statistically null sequence and
‖𝑧‖∞ ≤ ‖𝑥‖∞ + ‖𝐿‖, if 𝑥 is bounded.

For 𝑘 ∈ N, we have

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝐿
󵄩󵄩󵄩󵄩 =

{
{
{

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝐿
󵄩󵄩󵄩󵄩 , if 𝑘 ∈ N − 𝐴;

0, if 𝑘 ∈ 𝐴;
(10)

and so

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝐿

󵄩󵄩󵄩󵄩 > 𝜖}

⊂ {𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝐿

󵄩󵄩󵄩󵄩 > 𝜖} ∩ (N − 𝐴) .
(11)

As lim𝑘∈N−𝐴𝑥𝑘 = 𝐿, the set on right hand side of (11) is finite
for each 𝜀 > 0 and hence lim𝑘𝑦𝑘 = 𝐿.

Remark 12. If we denote the space of all𝑋-valued convergent
and 𝑓-statistically null sequences by 𝑐(𝑋) and 𝑠0

𝑓
(𝑋), respec-

tively, then in view of Theorem 11 we have 𝑠𝑓(𝑋) = 𝑐(𝑋) +

𝑠0
𝑓
(𝑋). Moreover 𝑠𝑓(𝑋) ̸= 𝑐(𝑋) ⊕ 𝑠0

𝑓
(𝑋) as 𝑐(𝑋) ∩ 𝑠0

𝑓
(𝑋) ⊃

𝑐0(𝑋), the space of 𝑋-valued null sequences.

Fridy [18] proved that, in case of scalar sequences, every
statistically convergent sequence has entries coincident with
those of a convergent sequence for almost all 𝑘. We establish
a similar result for 𝑓-statistical convergence of 𝑋-valued
sequences, which includes the above stated result of Fridy
[18].

Theorem 13. A sequence 𝑥 = (𝑥𝑘) is 𝑓-statistically convergent
if and only if there exists a convergent sequence 𝑦 = (𝑦𝑘) such
that 𝑥𝑘 = 𝑦𝑘 𝑎.𝑎. 𝑘 𝑤.𝑟.𝑡. 𝑓.

Proof. First suppose 𝑥 = (𝑥𝑘) is an 𝑓-statistically convergent
sequence. Proceeding on the same lines as in Theorem 11, we
get a convergent sequence 𝑦 = (𝑦𝑘) with 𝑑𝑓({𝑘 ∈ N : 𝑥𝑘 ̸=
𝑦𝑘}) ≤ 𝑑𝑓(𝐴) = 0; that is, 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓. Conversely,
it is given that there exists a convergent sequence 𝑦 = (𝑦𝑘)
such that 𝑥𝑘 = 𝑦𝑘 a.a. 𝑘 w.r.t. 𝑓. Now

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝐿

󵄩󵄩󵄩󵄩 > 𝜖}

⊂ {𝑘 ∈ N : 𝑥𝑘 ̸= 𝑦𝑘} ∪ {𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑦𝑘 − 𝐿

󵄩󵄩󵄩󵄩 > 𝜖} .
(12)

Since lim𝑘𝑦𝑘 = 𝐿, the latter set on the right hand side of (12)
is finite. Therefore 𝑑𝑓({𝑘 ∈ N : ‖𝑥𝑘 − 𝐿‖ > 𝜖}) = 0 for every
𝜖 > 0.Thus 𝑥 = (𝑥𝑘) is an𝑓-statistically convergent sequence.

As an immediate consequence ofTheorem 13, we have the
following.

Corollary 14. If 𝑥 = (𝑥𝑘) is a sequence such that𝑓-st lim𝑥𝑘 =
𝐿, then 𝑥 has a subsequence 𝑦 = (𝑦𝑘) such that lim𝑘𝑦𝑘 = 𝐿.

Aizpuru et al. [6] proved that, in a Banach space 𝑋, (𝑥𝑛)
is 𝑓-statistically Cauchy if and only if (𝑥𝑛) is 𝑓-statistically
convergent. Combining this result with Theorem 13, we get
the following result which includes Theorem 7 of Fridy [18].

Theorem 15. Let 𝑋 be a Banach space and 𝑓 an unbounded
modulus. Then the following are equivalent:

(a) (𝑥𝑘) is 𝑓-statistically convergent.
(b) (𝑥𝑘) is 𝑓-statistically Cauchy.
(c) There exists a convergent sequence 𝑦 = (𝑦𝑘) such that

𝑥𝑘 = 𝑦𝑘 𝑎.𝑎. 𝑘 𝑤.𝑟.𝑡. 𝑓.
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Remark 16. We know that every subsequence of a convergent
sequence is convergent but this is no longer true in case of 𝑓-
statistical convergence; that is, an 𝑓-statistically convergent
sequence may have a subsequence which is not 𝑓-statistically
convergent. This can be verified by the following example.

Example 17. Consider 𝑋 = C, the space of complex
numbers, and 𝑓(𝑥) = 𝑥𝑝 with 0 < 𝑝 ≤ 1. Let (𝑥𝑛) =
(1, 0, 0, 4, 0, 0, 0, 0, 9, . . .). Now 𝑑𝑓({𝑖 ∈ N : |𝑥𝑖 − 0| > 𝜖}) =
𝑑𝑓(𝐴) for every 𝜖 > 0 where 𝐴 = {1, 4, 9, . . .}. Then |𝐴(𝑛)| =

|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐴}| ≤ √𝑛 for every 𝑛 ∈ N and so

𝑓 (|𝐴 (𝑛)|)

𝑓 (𝑛)
≤

(𝑛1/2)
𝑝

𝑛𝑝
󳨀→ 0 as 𝑛 󳨀→ ∞; (13)

that is, 𝑑𝑓(𝐴) = 0. Thus (𝑥𝑛) is 𝑓-statistically convergent,
whereas (1, 4, 9, . . .) is a subsequence of (𝑥𝑛) which is not 𝑓-
statistically convergent.

Definition 18. A subsequence of a sequence (𝑥𝑘) is said to be
𝑓-statistically dense if the complement of the set of all indices
of its elements has 𝑓-density zero.

Remark 19. Every 𝑓-statistically dense subsequence of a
sequence (𝑥𝑘) is statistically dense.

Burgin and Duman [17] proved that a number sequence
(𝑥𝑘) is statistically convergent if and only if every statistically
dense subsequence of it is statistically convergent. We extend
this result to the following.

Theorem 20. A sequence (𝑥𝑘) is 𝑓-statistically convergent if
and only if every 𝑓-statistically dense subsequence of it is 𝑓-
statistically convergent.

Theproof is similar toTheorem 2.1 of Burgin andDuman
[17] and hence is omitted.

Corollary 21. 𝑓-statistically dense subsequences of an 𝑓-
statistically convergent sequence are 𝑓-statistically convergent.

The following theorem shows that continuous functions
preserve the 𝑓-statistical convergence of sequences.

Theorem22. If𝑓-st lim𝑥𝑘 = 𝐿 and𝑔(𝑥) defined for all𝑥 ∈ 𝑋
is continuous at 𝐿, then 𝑓-st lim𝑔(𝑥𝑘) = 𝑔(𝐿).

Proof. As 𝑓-st lim𝑥𝑘 = 𝐿, it follows by Theorem 3.1 of
Aizpuru et al. [6] that there exists a set 𝐴 ⊂ N such that
𝑑𝑓(𝐴) = 0 and lim𝑘∈N−𝐴𝑥𝑘 = 𝐿. As 𝑔 is continuous at 𝐿,
lim𝑘∈N−𝐴𝑔(𝑥𝑘) = 𝑔(𝐿). Using Theorem 3.1 of Aizpuru et al.
[6], the result follows.

Šalát [35] proved that the set 𝑚0 of all bounded sta-
tistically convergent sequences of real numbers is a closed
linear subspace of the normed linear space 𝑚 of all bounded
sequences of real numbers. We establish a similar result
for ℓ𝑓
∞
, the set of all bounded 𝑓-statistically convergent

sequences of scalars.

Theorem 23. The set ℓ𝑓
∞

is a closed linear subspace of the
normed linear space ℓ∞.

Theproof is similar toTheorem 2.1 of Šalát [35] and hence
is omitted.

The above theorem provides us with the following infor-
mation related to the structure of the set ℓ𝑓

∞
.

Theorem 24. The set ℓ𝑓
∞

is a nowhere dense set in ℓ∞.

Since the sequence ((−1)𝑘) ∈ ℓ∞ does not belong to ℓ𝑓
∞
,

the proof follows from the fact that every proper closed linear
subspace of an arbitrary normed linear space 𝐸 is a nowhere
dense set in 𝐸.

3. 𝑓-Statistical Boundedness

In this section we show that the concept of 𝑓-statistical
boundedness is intermediate between the ordinary bound-
edness and the statistical boundedness. Some of the results
of this section include the corresponding earlier results of
Bhardwaj and Gupta [10] on statistical boundedness. 𝑓-
statistical analog of monotone convergence theorem is estab-
lished in Theorem 38. Theorem 40 shows that a sequence
which is 𝑓-statistically bounded for each modulus 𝑓 is also
bounded in the ordinary sense.

Throughout this section, we deal with the sequences of
scalars.

Theorem 25. Every bounded sequence is 𝑓-statistically
bounded; however, the converse need not be true.

Proof. The result follows in view of the fact that empty set has
zero𝑓-density for every unboundedmodulus𝑓. For the con-
verse part, the sequence 𝑥 = (𝑥𝑘) = (1, 0, 0, 4, 0, 0, 0, 0, 9, . . .)
of Example 17 serves the purpose.

Theorem 26. Every 𝑓-statistically bounded sequence is statis-
tically bounded.

The proof follows in view of the fact that 𝐴 ⊂ N, 𝑑𝑓(𝐴) =
0 implies 𝑑(𝐴) = 0.

Remark 27. The converse of the above theorem need not be
true which can be verified by the following example.

Example 28. Let 𝑓(𝑥) = log(𝑥 + 1) and (𝑥𝑘) = (1, 0, 0, 4, 0, 0,
0, 0, 9, . . .). Let 𝐴 = {1, 4, 9, . . .} = the set of squares of natural
numbers. For any𝑀 > 0,

{𝑘 ∈ N :
󵄨󵄨󵄨󵄨𝑥𝑘

󵄨󵄨󵄨󵄨 > 𝑀} = 𝐴 − a finite subset of N. (14)

Since 𝑑𝑓(𝐴) = 1/2 ̸= 0 and 𝑑(𝐴) = 0, (𝑥𝑘) ∉ 𝑠𝑓(𝑏) and
(𝑥𝑘) ∈ 𝑠(𝑏). Consequently, 𝑠𝑓(𝑏) ⊊ 𝑠(𝑏).

Remark 29. From Theorems 25 and 26 and Example 28, we
get ℓ∞ ⊊ 𝑠𝑓(𝑏) ⊊ 𝑠(𝑏); that is, 𝑓-statistical boundedness
is intermediate between the ordinary boundedness and the
statistical boundedness and agrees with the statistical bound-
edness when 𝑓 = 𝐼, the identity mapping.
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Aizpuru et al. [6] proved that 𝑓-st lim𝑥𝑘 = 𝐿 if and only
if there exists𝐴 ⊂ Nwith 𝑑𝑓(𝐴) = 0 and lim𝑘∈N−𝐴𝑥𝑘 = 𝐿. We
also establish a similar structure theorem for 𝑓-statistically
bounded sequences; however, our proof is quite different
from that of [6].

Theorem 30 (structure theorem). A sequence 𝑥 = (𝑥𝑘) is 𝑓-
statistically bounded if and only if there exists 𝐴 ⊂ N such that
𝑑𝑓(𝐴) = 0 and (𝑥𝑘)𝑘∈N−𝐴 ∈ ℓ∞.

Proof. First, we suppose (𝑥𝑘) is 𝑓-statistically bounded. So
there exists𝑀 > 0 such that𝑑𝑓({𝑘 ∈ N : |𝑥𝑘| > 𝑀}) = 0. Take
𝐴 = {𝑘 ∈ N : |𝑥𝑘| > 𝑀}. Then 𝑑𝑓(𝐴) = 0 and for 𝑘 ∈ N − 𝐴,
we have |𝑥𝑘| ≤ 𝑀; that is, (𝑥𝑘)𝑘∈N−𝐴 ∈ ℓ∞. Conversely, it
is given that there exists 𝐴 ⊂ N such that 𝑑𝑓(𝐴) = 0 and
(𝑥𝑘)𝑘∈N−𝐴 ∈ ℓ∞. As (𝑥𝑘)𝑘∈N−𝐴 ∈ ℓ∞ there exists 𝑀 > 0
such that |𝑥𝑘| ≤ 𝑀 for all 𝑘 ∈ N − 𝐴. This implies that
{𝑘 ∈ N : |𝑥𝑘| > 𝑀} ⊂ 𝐴 and so 𝑑𝑓({𝑘 ∈ N : |𝑥𝑘| > 𝑀}) = 0.
Hence (𝑥𝑘)𝑘∈N is 𝑓-statistically bounded.

Remark 31. Let (𝑥𝑘) ∈ 𝑠𝑓(𝑏). Then there exists 𝑀 > 0 such
that 𝑑𝑓({𝑘 ∈ N : |𝑥𝑘| > 𝑀}) = 0. Take 𝐴 = {𝑘 ∈ N : |𝑥𝑘| >
𝑀}. For 𝑘 ∈ N, let

𝑦𝑘 =
{
{
{

𝑥𝑘, if 𝑘 ∈ N − 𝐴;

0, if 𝑘 ∈ 𝐴,

𝑧𝑘 =
{
{
{

0, if 𝑘 ∈ N − 𝐴;

𝑥𝑘, if 𝑘 ∈ 𝐴.

(15)

Clearly 𝑦 = (𝑦𝑘) ∈ ℓ∞ and 𝑧 = (𝑧𝑘) ∈ 𝑠0
𝑓
, the space of 𝑓-

statistically null sequences. Here 𝑥𝑘 = 𝑦𝑘 +𝑧𝑘 for 𝑘 ∈ N. Thus
𝑠𝑓(𝑏) ⊂ ℓ∞ + 𝑠0

𝑓
. As ℓ∞, 𝑠

0

𝑓
⊂ 𝑠𝑓(𝑏) and 𝑠𝑓(𝑏) is a linear space,

we have 𝑠𝑓(𝑏) = ℓ∞ + 𝑠0
𝑓
.

It is easy to note that 𝑠𝑓(𝑏) ̸= ℓ∞ ⊕ 𝑠0
𝑓
as ℓ∞ ∩ 𝑠0

𝑓
̸= {0}. In

fact ℓ∞ ∩ 𝑠0
𝑓
⊃ 𝑐0, the space of null scalar sequences.

Remark 32. A subsequence of an 𝑓-statistically bounded
sequence need not be 𝑓-statistically bounded. The sequence
𝑥 = (𝑥𝑘) = (1, 0, 0, 4, 0, 0, 0, 0, 9, . . .) of Example 17 is 𝑓-
statistically bounded whereas (1, 4, 9, . . .) is a subsequence of
it which is not 𝑓-statistically bounded.

We now characterize 𝑓-statistically bounded sequences
in terms of their subsequences.

Theorem 33. A sequence is 𝑓-statistically bounded if and only
if every 𝑓-statistically dense subsequence of it is 𝑓-statistically
bounded.

The proof is easy in view of Theorem 2.1 of Burgin and
Duman [17] and hence is omitted.

Theorem 34. Every 𝑓-statistically convergent sequence is 𝑓-
statistically bounded; however, the converse need not be true.

Proof. The proof follows from the fact that {𝑘 ∈ N : |𝑥𝑘| >
|𝐿| + 𝜖} ⊂ {𝑘 ∈ N : |𝑥𝑘 − 𝐿| > 𝜖}. For the converse part, taking
𝑓 = 𝐼, identity map, and 𝑥𝑘 = (−1)𝑘, we get (𝑥𝑘) ∈ 𝑠𝑓(𝑏);
however (𝑥𝑘) ∉ 𝑠𝑓, the space of 𝑓-statistically convergent
sequences of scalars.

The following theorem shows that every 𝑓-statistically
bounded sequence has entries coincident with those of
a bounded sequence for almost all 𝑘 with respect to
𝑓.

Theorem 35. A sequence 𝑥 = (𝑥𝑘) is 𝑓-statistically bounded if
and only if there exists a bounded sequence 𝑦 = (𝑦𝑘) such that
𝑥𝑘 = 𝑦𝑘 𝑎.𝑎. 𝑘 𝑤.𝑟.𝑡. 𝑓.

The proof is easy and hence omitted.

Theorem 36. Every 𝑓-statistically Cauchy sequence is 𝑓-
statistically bounded; however, the converse need not be true.

Theorem 37. (a) 𝑠𝑓(𝑏) is normal and hence monotone.
(b) 𝑠𝑓(𝑏) is a sequence algebra.
(c) 𝑠𝑓(𝑏) is not symmetric, in general.

Theorem 38. Every monotone and 𝑓-statistically bounded
sequence is 𝑓-statistically convergent.

Proof. Let (𝑥𝑘) be a monotone and 𝑓-statistically bounded
sequence. ByTheorem 30, there exists 𝐴 ⊂ N with 𝑑𝑓(𝐴) = 0
such that (𝑥𝑘)𝑘∈N−𝐴 ∈ ℓ∞. So there exists 𝐿 ∈ C such that
lim𝑘∈N−𝐴𝑥𝑘 = 𝐿. Using Theorem 3.1 of [6], we have (𝑥𝑘) ∈
𝑠𝑓.

Lemma 39 (see [6]). If 𝐴 ⊂ N is infinite, then there exists an
unbounded modulus 𝑓 such that 𝑑𝑓(𝐴) = 1.

The following theorem shows that a sequence which is 𝑓-
statistically bounded for each modulus 𝑓 is also bounded in
ordinary sense.

Theorem 40. If, for every unbounded modulus 𝑓, (𝑥𝑘) ∈
𝑠𝑓(𝑏), then (𝑥𝑘) ∈ ℓ∞.

Proof. Suppose, if possible, (𝑥𝑘) ∉ ℓ∞. Then for every𝑀 > 0,
we have that 𝐴 = {𝑘 ∈ N : |𝑥𝑘| > 𝑀} is an infinite set and
so by Lemma 39, there exists an unbounded modulus 𝑓 such
that 𝑑𝑓(𝐴) = 1 which contradicts the assumption that (𝑥𝑘) ∈
𝑠𝑓(𝑏) for every modulus 𝑓.

Remark 41. FromTheorem 25, we have ℓ∞ ⊂ 𝑠𝑓(𝑏) for every
unbounded modulus 𝑓. Using this and Theorem 40, we can
say that bounded sequences are precisely those sequences
which are 𝑓-statistically bounded for every unbounded
modulus 𝑓.
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[35] T. Šalát, “On statistically convergent sequences of real numbers,”
Mathematica Slovaca, vol. 30, no. 2, pp. 139–150, 1980.


