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This paper proposes a new theoretic approach to a specific interaction of continuous and discrete dynamics in switched control
systems known as a Zeno behaviour. We study executions of switched control systems with affine structure that admit infinitely
many discrete transitions on a finite time interval. Although the real world processes do not present the corresponding behaviour,
mathematical models of many engineering systems may be Zeno due to the used formal abstraction. We propose two useful
approximative approaches to the Zeno dynamics, namely, an analytic technique and a variational description of this phenomenon.
A generic trajectory associated with the Zeno dynamics can finally be characterized as a result of a specific projection or/and
an optimization procedure applied to the original dynamic model. The obtained analytic and variational techniques provide an
effective methodology for constructive approximations of the general Zeno-type behaviour. We also discuss shortly some possible
applications of the proposed approximation schemes.

1. Introduction

The study of switched and general hybrid dynamic systems
has gained lots of interest in recent years (see, e.g., [1–11]).
These mathematical abstractions are practically motivated by
many significant engineering applications, in which digital
devices interact with an analog environment. On the other
side, the analytic tools and results related to the switched con-
trol constitute a valuable part of the modern systems theory.
The control design technique based on the switched systems
methodology is nowadays a mature adequate approach to the
synthesis of controllers for several nonlinear interconnected
dynamic systems.We refer to [2, 4, 5, 7, 10, 12–17] for the basic
facts and some interesting real world applications of switched
and hybrid dynamic models.

However, in the face of a recent progress in switched
systems theory, there are numbers of fundamental properties
of these systems that have not been investigated in sufficient
detail. Among others, these include a formal description
of the so-called Zeno executions (see [2, 4, 10, 18–22]). A
behaviour of a system is called a Zeno dynamics, if it takes
infinitely many discrete transitions on a finite time interval.
The real world engineering and physical systems are, of

course, non-Zeno, but a complex switched-type mathemati-
cal model of a physical process may be Zeno, due to the usual
modelling overabstractions.

Since the above-mentioned abstraction provides an
inevitable theoretic basis for a concrete control design pro-
cedure, understanding when it leads to a Zeno effect in a
switched system is essential, for an adequate numerical imple-
mentation of the designed control algorithms. Let us also
note that a Zeno-like switched dynamic behaviour can cause
imprecise computer simulations and imply the correspond-
ing calculating andmodelling errors. It is explainable that the
main computer tools and numerical packages developed for
switched systems (see, e.g., [19, 22]) get stuck when a large
number of discrete transitions take place within a short time
interval. A possible improvement of the mentioned simula-
tion technique can be realized on a basis of some adequate
extensions of the available theory of the Zeno effect including
some approximative approaches. Recall that the Zeno hybrid
automata have been usually examined from the point of view
of theoretical computer science [2, 23] such that the necessary
investigations of the continuous part of a system under
consideration and the discrete-continuous interplay are quite
underrated. The general Zeno hybrid executions under some
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specific assumptions have been deeply investigated in [18, 20–
22]. On the other hand, an analytic approach based on the
modern variational analysis and consistent approximation
techniques have not been sufficiently advanced to the Zeno
switched systems setting and to the corresponding control
design procedures.

Usually, one avoids the examination of a Zeno effect in a
work on switched control design by some specific additional
assumptions (see, e.g., [5, 12, 13, 17, 24, 25]). The aim of our
contribution is to give a constructive characterization of the
Zeno executions in a specific case of affine switched systems.
We propose an analytic technique that eliminates the original
Zeno effect from the consideration.These approximations are
consistent in the sense of the resulting trajectories. Theoretic
results obtained in our paper can be useful, for instance,
when designing switched controllers and simulating the
correspondingly sophisticated dynamic behaviour.

The remainder of the paper is organized as follows:
Section 2 contains some necessary formal concepts and facts
related to the class of systems under consideration. Section 3
includes the main analytic results and the corresponding
formal proofs. We propose here a novel approximative
approach to the Zeno dynamics. In Section 4 we discuss a
specific case of a Zeno behaviour determined by a switched
manifold (in the state space) and extend our approximating
scheme to this common situation. In this connection we
also mention shortly the sliding mode control processes.
Section 5 is devoted to the novel variational description of
the Zeno effect in affine switched systems. We establish a
similarity between the approximative Zeno dynamics and
the conventional optimal control methodology. Section 6
summarizes our paper.

2. Zeno Executions in Affine Switched Systems

This paper concerns affine switched control systems (affine
with respect to the control inputs) described by the following
concept (see also [13, 24, 25]).

Definition 1. An affine switched system (ASS) is 7-tuple

{Q,X, 𝑈,A,B,U, Ψ} , (1)

where

(i) Q is a finite set of indices;
(ii) X = {X𝑞}, 𝑞 ∈ Q, is a family of state spaces such that

X𝑞 ⊆ R𝑛;
(iii) 𝑈 ⊆ R𝑚 is a set of admissible control input values

(called control set);
(iv) A = {𝑎𝑞(⋅)}, B = {𝑏𝑞(⋅)}, 𝑞 ∈ Q are families of C∞-

functions

𝑎𝑞 : R 󳨀→ R
𝑛
,

𝑏𝑞 : R 󳨀→ R
𝑛×𝑚

(2)

(real analytic functions) determined on an open set
R ⊆ R𝑛;

(v) U is the set of admissible control functions;
(vi) Ψ ⊂ Ξ fl {(𝑥, 𝑥

󸀠
) | 𝑥 ∈ X𝑞, 𝑥

󸀠
∈ X𝑞󸀠 , 𝑞, 𝑞

󸀠
∈ Q} is a

transitions’ set.

We say that a location switching from 𝑞 to 𝑞
󸀠 occurs at

a switching time from the given (finite) time interval [0, 𝑡𝑓].
Consider a specific ASS from Definition 1 with 𝑟 ∈ N ∪ {∞}

switching times

0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑟−1 < 𝑡𝑟 ≤ 𝑡𝑓. (3)

Denote 𝜏
𝑟 fl {𝑡𝑖}

𝑟

𝑖=0
for a given 𝑟 ∈ N ∪ {∞}. In general,

the above finite or infinite sequence of switching times {𝑡𝑖}

is not an a priory given sequence. A switched control system
remains in location 𝑞𝑖 ∈ Q for all 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑖 = 1, . . . , 𝑟.
We additionally assume that the class of admissible controls
is the set of bounded measurable functions

U fl {V (⋅) ∈ L
∞

𝑚
(0, 𝑡𝑓) | V (𝑡) ∈ 𝑈} , (4)

where 𝑈 is assumed to be compact. Here L∞
𝑚

(0, 𝑡𝑓) denotes
the Lebesgue space of all 𝑚-valued bounded measurable
functions. A “continuous trajectory” of an ASS under con-
sideration is determined as follows.

Definition 2. An admissible trajectory associatedwith anASS
is an absolutely continuous function 𝑥(⋅) such that

(i) 𝑥𝑖(⋅) = 𝑥(⋅)|(𝑡
𝑖−1
,𝑡
𝑖
) is an absolutely continuous function

on (𝑡𝑖−1, 𝑡𝑖) with 𝑥𝑖(𝑡) ∈ X𝑖 continuously prolongable
to [𝑡𝑖−1, 𝑡𝑖], 𝑡𝑖 ∈ 𝜏𝑟, 𝑖 = 1, . . . , 𝑟;

(ii) 𝑥̇𝑖(𝑡) = 𝑎𝑞
𝑖

(𝑥𝑖(𝑡)) + 𝑏𝑞
𝑖

(𝑥𝑖(𝑡))𝑢𝑖(𝑡) for almost all
times 𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], where 𝑢𝑖(⋅) is a restriction of an
admissible control function 𝑢(⋅) ∈ U on the time
interval [𝑡𝑖−1, 𝑡𝑖] and 𝑞𝑖 ∈ Q.

Note that under the above assumptions (smoothness
of the families A, B and boundedness of the admissible
controls) the trajectories𝑥(⋅) fromDefinition 2 have bounded
derivatives almost everywhere. We refer to [3, 4, 6, 10, 17] for
some alternative concepts of switched, hybrid, and general
interconnected dynamic systems. Evidently, every 𝜏𝑟 from
Definition 2 determines a finite or infinite partitioning of
[0, 𝑡𝑓]. The adjoint time intervals [𝑡𝑖−1, 𝑡𝑖) and the corre-
sponding locations 𝑞𝑖 from Q are assumed to be a priori
unknown. Let𝑥(⋅) be a trajectory of anASS associatedwith an
admissible 𝜏𝑟 for a given (finite) number 𝑟 ∈ N.This trajectory
is an absolutely continuous solution of the following initial
value problem:

𝑥̇ (𝑡) =

𝑟

∑
𝑖=1

𝛽[𝑡
𝑖−1
,𝑡
𝑖
) (𝑡) (𝑎𝑞

𝑖

(𝑥 (𝑡)) + 𝑏𝑞
𝑖

(𝑥 (𝑡)) 𝑢 (𝑡)) ,

𝑥 (0) = 𝑥0,

(5)

where 𝛽[𝑡
𝑖−1
,𝑡
𝑖
)(⋅) is a characteristic function of the interval

[𝑡𝑖−1, 𝑡𝑖) for 𝑖 = 1, . . . , 𝑟 and 𝑢(⋅) ∈ U. Note that, in contrast
to the general hybrid systems, the switching times from a
sequence 𝜏

𝑟 do not depend on the state vector. The complete
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(switched-type) control input 𝜌
𝑟
(⋅) associated with the ASS

under consideration can now be expressed as follows:

𝜌
𝑟
(⋅) fl {𝛽 (⋅) , 𝑢 (⋅)} ,

𝛽 (⋅) fl {𝛽[𝑡
0
,𝑡
1
) (⋅) , . . . , 𝛽[𝑡

𝑟−1
,𝑡
𝑟
) (⋅)} ,

(6)

where 𝑟 ∈ N, 𝑢(⋅) ∈ U and the set Γ of all admissible
sequences 𝛽(⋅) is characterized by the generic conditions

𝛽 (𝑡) ⊂ {0, 1}
𝑟

∀𝑡 ∈ [0, 𝑡𝑓] ,

𝑟

∑
𝑖=1

𝛽[𝑡
𝑖−1
,𝑡
𝑖
) (𝑡) = 1.

(7)

Let us note that 𝛽(⋅) ⊂ L1(0, 𝑡𝑓), where L1(0, 𝑡𝑓) is the
standard Lebesgue space of all scalar absolutely integrable
functions.

Definition 3. For an admissible control input 𝜌𝑟(⋅), where

𝛽 (⋅) ⊂ L
1
(0, 𝑡𝑓) ,

𝑢 (⋅) ∈ U,

(8)

an execution of the ASS is defined as a collection
({𝑞𝑖}, 𝜏

𝑟
, 𝑥
𝑟
(⋅)), where 𝑞𝑖 ∈ Q and 𝑥

𝑟
(⋅) is a solution to

(5). Here 𝜏
𝑟 is the corresponding sequence of switching

times.

Let us assume that every admissible control 𝜌
𝑟
(⋅) gen-

erates a unique execution ({𝑞𝑖}, 𝜏
𝑟
, 𝑥
𝑟
(⋅)) of the given ASS.

Following [18, 20–22] we now introduce a formal concept of
a Zeno execution.

Definition 4. An execution ({𝑞𝑖}
𝑍
, 𝜏
𝑍
, 𝑥
𝑍
(⋅)) of an ASS

is called Zeno execution if the corresponding switching
sequence 𝜏

𝑍 fl {𝑡
𝑍

𝑖
}
∞

𝑖=0
is an infinite sequence such that

lim
𝑟→∞

𝑡
𝑍

𝑟
= lim
𝑟→∞

𝑟

∑
𝑖=0

(𝑡
𝑍

𝑖
− 𝑡
𝑍

𝑖−1
) = 𝑡𝑓 < ∞. (9)

An admissible input 𝜌𝑍(⋅) fl {𝛽
𝑍
(⋅), 𝑢
𝑍
(⋅)}, where

𝛽
𝑍
(⋅) fl {𝛽

𝑍

[𝑡
0
,𝑡
1
)
(⋅) , . . . , 𝛽

𝑍

[𝑡
𝑟−1
,𝑡
𝑟
)
(⋅) , . . .} ⊂ L

1
(0, 𝑡𝑓) ,

𝑢
𝑍
(⋅) ∈ U

𝑍
⊆ U,

(10)

which generates the Zeno execution ({𝑞𝑖}
𝑍
, 𝜏
𝑍
, 𝑥
𝑍
(⋅)) is called

a Zeno input.

Due to the specific character of the characteristic func-
tions 𝛽

𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(⋅) (elements of the sequence 𝛽

𝑍
(⋅)) and taking

into account Definition 2, we can express 𝑥
𝑍
(⋅) as a solution

to the initial value problem (5) with 𝑟 = ∞. By U𝑍 ⊆ U we
denote here a set of the “conventional” control inputs 𝑢

𝑍
(⋅)

that imply a Zeno execution in the given ASS.
The existence of the Zeno dynamics for various classes

of switched and hybrid systems is deeply discussed in [22].

Note that the Zeno behaviour is a typical effect that occurs
in a switched and hybrid dynamic system. It appears in
mathematical models of many real engineering systems, such
as water tank model and mechanics of a bouncing ball,
in aircraft conflict resolution model and in the dynamic
models for safety control. We refer to [2, 10, 18–22] for
some further switched-type mathematical models that admit
Zeno executions. Let us also mention the celebrated Fuller’s
problem that constitutes a generic example of the Zeno
behaviour (see [26]).

3. Consistent Approximations of
the Zeno Dynamics

Let us introduce some necessary mathematical concepts and
facts. We next use the notationC𝑛(0, 𝑡𝑓) for the Banach space
of all 𝑛-valued continuous functions on [0, 𝑡𝑓] equipped with
the usual maximum-norm ‖ ⋅ ‖C

𝑛
(0,𝑡
𝑓
).

Definition 5. Consider an ASS given by system (5) and
assume that all the conditions of Section 2 are satisfied. One
says that this ASS possesses a strong approximability property
(with respect to the admissible control inputs) if there exists
a L1(0, 𝑡𝑓) × L∞

𝑚
(0, 𝑡𝑓)-weakly convergent sequence

𝜌
𝑟
(⋅) fl 𝜒

𝑟
(⋅) × {V𝑟 (⋅)} , 𝑟 = 1, . . . ,∞ (11)

of functions 𝜒
𝑟
(⋅) ⊂ L1(0, 𝑡𝑓), {V

𝑟
(⋅)} ⊂ L∞

𝑚
(0, 𝑡𝑓) such that

the initial value problem (5) with the control input 𝜌𝑟(⋅) has a
unique solution 𝑥

𝑟
(⋅) for every 𝑟 ∈ N and {𝑥

𝑟
(⋅)} is aC𝑛(0, 𝑡𝑓)-

convergent (uniformly convergent) sequence.

We now formulate the main analytic result that guar-
antees the strong approximability property for the ASS
given affine systems (5) (see [13, 24, 25] for the additional
mathematical details).

Theorem 6. Let all the assumptions from Section 2 be satisfied
and let

({𝑞𝑖}
𝑍
, 𝜏
𝑍
, 𝑥
𝑍
(⋅)) (12)

be a Zeno execution generated by a Zeno input 𝜌𝑍(⋅). Consider
the initial value problem (5) associated with a L1(0, 𝑡𝑓) ×

L∞
𝑚

(0, 𝑡𝑓)-weakly convergent sequence {𝜌
𝑟
(⋅)} of control inputs

𝜌
𝑟
(⋅) = 𝜒

𝑟
(⋅) × {V𝑟(⋅)}, where

𝜒
𝑟
(⋅) ⊂ L

1
(0, 𝑡𝑓) ,

{V𝑟 (⋅)} ⊂ L
∞

𝑚
(0, 𝑡𝑓)

(13)

and 𝜌
𝑍
(⋅) is a L1(0, 𝑡𝑓) ×L∞

𝑚
(0, 𝑡𝑓)-weak limit of {𝜌𝑟(⋅)}. Then,

for all 𝑟 ∈ N the corresponding initial value problem (5) has
a unique absolutely continuous solution 𝑥

𝑟
(⋅) determined on

[0, 𝑡𝑓] and

lim
𝑟→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑟
(⋅) − 𝑥

𝑍
(⋅)

󵄩󵄩󵄩󵄩󵄩C
𝑛
(0,𝑡
𝑓
)
= 0. (14)
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Proof. L∞
𝑚

(0, 𝑡𝑓)-weak convergence implies the L∞
𝑚

(0, 𝑡𝑓)-
weak∗ convergence (see, e.g., [27]). Therefore, {𝜌

𝑟
(⋅)} also

converges L1(0, 𝑡𝑓) × L∞
𝑚

(0, 𝑡𝑓)-weakly
∗ to the Zeno input

𝜌
𝑍
(⋅). From the equivalent definition of the L∞

𝑚
(0, 𝑡𝑓)-weak

∗

convergence (see [27]) we next deduce the following:

lim
𝑟→∞

∫
𝑡
𝑓

0

V𝑟 (𝑡) 𝑤 (𝑡) 𝑑𝑡 = ∫
𝑡
𝑓

0

𝑢
𝑍
(𝑡) 𝑤 (𝑡) 𝑑𝑡

∀𝑤 (⋅) ∈ L
1

𝑚
(0, 𝑡𝑓) .

(15)

Here 𝑢
𝑍
(⋅) ∈ U𝑍 is the corresponding “conventional” part

of the given Zeno input 𝜌𝑍(⋅). Using the basic properties of
the Lebesgue spaces (L𝑝-spaces) on the finite-measure sets,
we obtain

(L
1

𝑚
(0, 𝑡𝑓))

󸀠

= L
∞

𝑚
(0, 𝑡𝑓) ⊂ L

1

𝑚
(0, 𝑡𝑓) . (16)

By (L1
𝑚
(0, 𝑡𝑓))

󸀠 we denote here the topologically dual space
to L1
𝑚
(0, 𝑡𝑓). Consequently, (15) is also true for all 𝑤(⋅) from

(L1
𝑚
(0, 𝑡𝑓))

󸀠. This fact implies the L1(0, 𝑡𝑓) × L1
𝑚
(0, 𝑡𝑓)-weak

convergence of the given sequence of control inputs

𝜌
𝑟
(⋅) ⊂ L

1
(0, 𝑡𝑓) × L

∞

𝑚
(0, 𝑡𝑓)

⊂ L
1
(0, 𝑡𝑓) × L

1

𝑚
(0, 𝑡𝑓)

(17)

to the same function

𝜌
𝑍
(⋅) ⊂ L

1
(0, 𝑡𝑓) × L

∞

𝑚
(0, 𝑡𝑓)

⊂ L
1
(0, 𝑡𝑓) × L

1

𝑚
(0, 𝑡𝑓) .

(18)

The expected result lim𝑟→∞‖𝑥
𝑟
(⋅) − 𝑥

𝑍
(⋅)‖C

𝑛
(0,𝑡
𝑓
) = 0 now

follows from the main result of [24, Theorem 3.3, p. 5]. The
proof is completed.

Theorem 6 provides an analytic basis for the constructive
approximations of the Zeno executions. This approximation
tools can not only be useful for a possible simplified anal-
ysis of the Zeno involved ASSs but also be used on the
systems modelling phase. Note that the real world engi-
neering processes do not present an exact Zeno behaviour.
On the other side the corresponding mathematical models
of some engineering interconnected systems may be Zeno
due to the associated formal abstraction. This situation
evidently implies a specific modelling conflict. The proposed
approximations of the Zeno dynamics in ASSs can help to
restore the adequateness of the abstract dynamicmodel under
consideration.

Assume that all the conditions of Theorem 6 are fulfilled.
Since 𝜌

𝑍
(⋅) is bounded and 𝜌

𝑟
(⋅) is weakly convergent, 𝜌𝑟(⋅) is

a uniformly integrable sequence.This is a simple consequence
of the celebrated Dunford-Pettis Theorem (see, e.g., [28]).
Therefore one can choose an (existing) subsequence V𝑟(⋅) ∈

L∞
𝑚

(0, 𝑡𝑓) of the approximating sequence 𝜌
𝑟
(⋅) such that

sup
V∈{V𝑟(⋅)}

∫
Ω

V (𝑡) 𝑑𝑡 < 𝜖, 𝜖 > 0 (19)
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Figure 1: Approximation of an element 𝛽
𝑍

[𝑡𝑖−1 ,𝑡𝑖)
(⋅) of a Zeno input

𝜌
𝑍
(⋅) by Fourier series.

for every measurable set Ω ⊂ [0, 𝑡𝑓] with measure mes{Ω} <

𝛿, 𝛿 = 𝛿(𝜖) > 0. For example, {V𝑟(⋅)} can be chosen as a
sequence of step-functions. A concrete approximation 𝜒

𝑟
(𝑡),

𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), 𝑡𝑖 ∈ 𝜏
𝑟, of elements 𝛽

𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(⋅) of a Zeno

input 𝜌𝑍(⋅) can be found from a suitable class of numerically
tractable approximations. In the context of Theorem 6 one
can consider, for example, the Fourier series:

𝜒
𝑟
(𝑡)

󵄨󵄨󵄨󵄨𝑡∈[𝑡
𝑖−1
,𝑡
𝑖
)
=

𝑟

∑
𝑙=1

2

𝑙𝜋
(cos

𝑙𝜋𝑡𝑖−1

𝑡𝑖
− cos 𝑙𝜋) sin 𝑙𝜋𝑡

𝑡𝑖
,

𝑡 ∈ [0, 𝑡𝑓] .

(20)

The Fourier series converges (as 𝑟 → ∞) in the sense
of L2(0, 𝑡𝑓)-norm to a characteristic function 𝛽[𝑡

𝑖−1
,𝑡
𝑖
)(⋅) of

the chosen time interval [𝑡𝑖−1, 𝑡𝑖). This fact is a simple
consequence of the Parseval equality (see, e.g., [27, 29]). The
given L2(0, 𝑡𝑓)-convergence implies L1(0, 𝑡𝑓)-convergence of
(20). Let us now assume that 𝜏𝑟 → 𝜏

𝑍 as 𝑟 → ∞ (the simple
point wise convergence).This construction implies L1(0, 𝑡𝑓)-
convergence of the sequence 𝜒

𝑟
(⋅) to 𝛽

𝑍
(⋅) (see Figure 1).

Evidently, the component 𝛽
𝑍
(⋅) of a Zeno input 𝜌

𝑍
(⋅)

takes its values in the set of vertices ver(𝑇𝑟) of the following
𝑟-simplex:

𝑇𝑟 fl {𝛽 ∈ R
𝑟
| 𝛽𝑖 ≥ 0,

𝑟

∑
𝑖=1

𝛽𝑖 = 1} . (21)

L1(0, 𝑡𝑓)-weakly convergent component 𝜒𝑟(⋅) of an approxi-
mating (Zeno input) sequence 𝜌

𝑟
(⋅) = 𝜒

𝑟
(⋅) × {V𝑟(⋅)} can also

be defined as a function that takes its values from the above
simplex 𝜒

𝑘
(𝑡) ∈ 𝑇𝑟. In that case 𝜒

𝑟
(⋅) possesses the additional

useful properties summarized in the following theorem.

Theorem 7. Assume that all the conditions of Theorem 6 are
satisfied. Let𝜒𝑟(⋅) beL1(0, 𝑡𝑓)-weakly convergent component of
the approximating sequence 𝜌

𝑟
(⋅) and let 𝜒𝑟(𝑡) ⊂ 𝑇𝑟 for almost

all 𝑡 ∈ [0, 𝑡𝑓]. Then 𝜒
𝑟
(⋅) also converges strongly to 𝛽

𝑍
(⋅).
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Proof. Since 𝑇𝑟 is a convex polyhedron, the tangent cone
to this simplex at every vertex is a pointed cone (does not
contain a complete line).Therefore, for an element 𝑒 ∈ ver(𝑇𝑟)
there exists a number 𝑐 > 0 and a unit vector 𝜗 ∈ R𝑟 such that
for all 𝑑 ∈ R𝑟 we have

‖𝑑 − 𝑒‖R𝑟 ≤ 𝑐 ⟨𝜗, 𝑑 − 𝑒⟩R𝑟 . (22)

By ‖ ⋅ ‖R𝑟 and ⟨⋅, ⋅⟩R𝑟 we denote here the norm and the
scalar product in R𝑟. The above estimation and L1(0, 𝑡𝑓)-
weak convergence of 𝜒𝑟(⋅) imply the following:

󵄩󵄩󵄩󵄩󵄩
𝜒
𝑟
(⋅) − 𝛽

𝑍
(⋅)

󵄩󵄩󵄩󵄩󵄩L1(0,𝑡
𝑓
)

≤ 𝑐∫
𝑡
𝑓

0

⟨𝜗 (𝑡) , 𝜒
𝑟
(𝑡) − 𝛽

𝑍
(𝑡)⟩

R𝑟
𝑑𝑡 ≤ 𝜖 (𝑟) ,

(23)

where lim𝑟→∞𝜖(𝑟) = 0. This completes the proof.

Evidently, Theorem 7 brings out the best choice of the
element 𝜒𝑟(⋅) of an approximating sequence 𝜌

𝑟
(⋅) associated

with a Zeno execution.

4. The Zeno-Type Dynamics
Determined by a Switching Manifold

Let us consider a smooth manifold

S fl {𝑦 ∈ R
n
| ℎ (𝑦) = 0} , (24)

with

𝑠 fl dim (S) < 𝑛. (25)

Here ℎ : R𝑛 → R𝑠, 𝑠 ∈ N, is a continuously differentiable
function. Following [30, 31] we call S an invariant manifold
associated with a dynamic system of the form

𝑦̇ (𝑡) = 𝜙 (𝑦 (𝑡)) , 𝑡 ∈ R+,

𝑦 (0) = 𝑦0

(26)

if 𝑦(𝑡) ∈ S for all 𝑡 ≥ 𝑡̂ ∈ R+. Here 𝜙(⋅) is an appropriate
smooth function. The next abstract result gives a general
invariance criterion.

Theorem 8. A smooth manifoldS is invariant for system (26)
iff 𝜙(𝑦) belongs to the tangent space TanS of S for all 𝑦 ∈ R𝑛.

The proof of Theorem 8 is based on the extended
Lyapunov-type technique (see [30] for details). Recall that the
tangent space TanS of S takes the form

TanS = {𝜁 ∈ R
𝑛
| 𝐷ℎ (𝑦) 𝜁 = 0} , (27)

where 𝐷ℎ(𝑦) denotes a derivative of ℎ(𝑦).
We now consider a specific case of ASSs such that the

switching times 𝑡𝑖, 𝑖 = 1, . . . , 𝑟, are determined by a smooth
manifold S:

𝜏
𝑟 fl {𝑡𝑖, 𝑖 = 1, . . . , 𝑟 | ℎ (𝑥

𝑟
(𝑡𝑖)) = 0} , (28)

where 𝑥(⋅) is a solution of (5). This modelling approach cor-
responds to some particular mathematical models of hybrid
control processes. We refer to [20] for relevant examples and
further formal details.

Theorem 9. Assume that all the conditions of Theorem 6 are
satisfied and the switching times of an ASS are determined by
(28), where S is a smooth manifold. Let ({𝑞𝑖}

𝑍
, 𝜏
𝑍
, 𝑥
𝑍
(⋅)) be a

Zeno execution generated by a Zeno input 𝜌
𝑍
(⋅). Let 𝜌

𝑟
(⋅) =

𝜒
𝑟
(⋅) × {V𝑟(⋅)} be an approximating sequence from Theorem 6.

Then there exist projected dynamic processes 𝑦(⋅) given by the
following initial value problem:

𝑦̇ (𝑡) =

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)

⋅ PrTanS [𝑎𝑞
𝑖

(𝑦 (⋅)) + 𝑏𝑞
𝑖

(𝑦 (⋅)) 𝑢̂ (⋅)] (𝑡) ,

𝑦 (0) = 𝑦0 ∈ S,

(29)

where 𝑢̂(⋅) ∈ U is a strong limit of a subsequence of {V𝑟(⋅)} and
PrTanS[𝑥] is a projection of a vector 𝑥 ∈ R𝑛 on the manifoldS.
Moreover, S is an invariant manifold for (29) and

lim
𝑡→𝑡
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑍
(𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩R𝑛
= 0. (30)

Proof. From the assumptions of Section 2 (smoothness of the
familiesA,B and boundedness of the admissible controls) it
follows that the trajectories 𝑥(⋅) of the ASS under considera-
tion have bounded derivatives for almost all 𝑡 ∈ [0, 𝑡𝑓]. This
fact and the basic Definition 4 imply

lim
𝑡→𝑡
𝑓

dist [𝑥𝑍 (𝑡) ,S] = 0, (31)

where dist[𝑥,S] denotes the Euclidean distance between a
vector 𝑥 ∈ R𝑛 and S. Consider L1(0, 𝑡𝑓) × L∞

𝑚
(0, 𝑡𝑓)-weakly

convergent sequence {𝜌
𝑟
(⋅)} of controls fromTheorem 6 such

that

lim
𝑟→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑟
(⋅) − 𝑥

𝑍
(⋅)

󵄩󵄩󵄩󵄩󵄩C
𝑛
(0,𝑡
𝑓
)
= 0, (32)

where {𝑥
𝑟
(⋅)} is a sequence of solutions to (5) generated by

{𝜌
𝑟
(⋅)}. From (31) and (32) we next deduce

lim
𝑟→∞

lim
𝑡→𝑡
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑟
(𝑡) − 𝑥

𝑍
(⋅)

󵄩󵄩󵄩󵄩󵄩R𝑛
= 0,

lim
𝑟→∞

lim
𝑡→𝑡
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑟
(𝑡) − PrTanS (𝑥

𝑟
(⋅)) (𝑡)

󵄩󵄩󵄩󵄩󵄩R𝑛
= 0.

(33)

Here PrTanS(⋅)(⋅) is a projection on the tangent space TanS.
Moreover, the above relations (33) imply

lim
𝑟→∞

lim
𝑡→𝑡
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑍
(𝑡) − PrTanS (𝑥

𝑟
(⋅)) (𝑡)

󵄩󵄩󵄩󵄩󵄩R𝑛
= 0. (34)

Since the mappings ‖ ⋅ ‖R𝑛 and PrTanS(⋅) are continuous, we
next obtain

lim
𝑡→𝑡
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑍
(𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩󵄩R𝑛
= 0, (35)
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where 𝑦(⋅) is C𝑛(0, 𝑡𝑓)-limit of PrTanS(⋅) if 𝑟 → ∞,

𝑦 (𝑡) fl lim
𝑟→∞

PrTanS (𝑥
𝑟
(⋅)) (𝑡) ∀𝑡 ∈ [0, 𝑡𝑓] . (36)

The continuity and linearity of the projection operator
PrTanS(⋅) on the subspace TanS imply

𝑦̇ (𝑡) = lim
𝑟→∞

PrTanS (𝑥̇
𝑟
(⋅)) (𝑡) (37)

for almost all 𝑡 ∈ [0, 𝑡𝑓]. The obtained relation can be
rewritten as follows:

𝑦̇ (𝑡) = lim
𝑟→∞

PrTanS [

𝑟

∑
𝑖=1

𝛽[𝑡
𝑖−1
,𝑡
𝑖
) (⋅)

⋅ (𝑎𝑞
𝑖

(𝑥
𝑟
(⋅)) + 𝑏𝑞

𝑖

(𝑥
𝑟
(⋅)) 𝑢 (⋅))] (𝑡)

=

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)

⋅ lim
𝑟→∞

PrTanS [(𝑎𝑞
𝑖

(𝑥
𝑟
(⋅)) + 𝑏𝑞

𝑖

(𝑥
𝑟
(⋅)) 𝑢 (⋅))] (𝑡)

=

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)

⋅ PrTanS [ lim
𝑟→∞

(𝑎𝑞
𝑖

(𝑥
𝑟
(⋅)) + 𝑏𝑞

𝑖

(𝑥
𝑟
(⋅)) 𝑢 (⋅))] (𝑡) .

(38)

The smoothness of the families A, B from Definition 1
implies the projected differential equation

𝑦̇ (𝑡)

=

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑎𝑞

𝑖

(𝑦 (⋅)) + 𝑏𝑞
𝑖

(𝑦 (⋅)) 𝑢̂ (⋅)] (𝑡)
(39)

determined on the tangent space TanS. We refer to [32]
for the necessary concepts and facts from the theory of
projected dynamic systems defined by ordinary differential
equations. Here 𝑢̂(⋅) ∈ U is L∞

𝑚
(0, 𝑡𝑓)-limit (strong limit)

of a subsequence of {V𝑟(⋅)}. Note that every L∞
𝑚

(0, 𝑡𝑓)-
weakly convergent sequence {V𝑟(⋅)} has a strongly convergent
subsequence. The inclusion 𝑢̂(⋅) ∈ U is a consequence of the
closeness of the setU of admissible controls. Using the basic
property (idempotency Pr2TanS = PrTanS) of the projection
operator, we finally obtain

PrTanS [𝑦̇ (⋅)] (𝑡) = 𝑦̇ (𝑡) (40)

and 𝑦̇(𝑡) ∈ TanS. By construction,S is an invariant manifold
for system (39). The proof is completed.

Note that Theorem 9 has a natural geometrical interpre-
tation. The Zeno trajectory related to a Zeno execution with
switching rules given by (28) converges to a smooth dynamic
process determined on S.

A specific case of the presented dynamic behaviour is
constituted by the celebrated sliding mode control. We refer

to [8, 31, 33, 34] for formal definitions and basic results. In
that specific case we have 𝑠 = dim(S) ≡ 𝑚 (the dimension
of S is equal to the dimension of the control vector) and
the approximating process 𝑦(⋅) can directly be generated by
a special control system via so-called “equivalent control”
𝑤eq(⋅) introduced in [34]. Note that we consider here the
case of invertible matrices from the given family B (see
Definition 1) associated with the given dynamic system (5)

𝑤eq (𝑦) fl −(∇ℎ (𝑦)

∞

∑
𝑖=1

𝛽
𝑧

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡) 𝑏𝑞

𝑖

(𝑦))

−1

× [∇ℎ (𝑦)

∞

∑
𝑖=1

𝛽
𝑧

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡) 𝑎𝑞

𝑖

(𝑦)] .

(41)

For the Zeno-like chattering behaviour in sliding mode
systems see also [33, 35].

Finally note that (29) constitutes in fact the projected
Zeno behaviour. We call the dynamic process 𝑦(⋅) from
Theorem 9 the projected Zeno dynamics. On the other side
the projected Zeno dynamics given by (29) constitutes a nat-
ural generalisation of the conventional sliding mode control
strategies from [34]. This generalization is characterised by
the condition 𝑠 = dim(S) ≤ 𝑛 that is more general in
comparison to the specific assumption 𝑠 = 𝑚 from the classic
sliding mode control theory.

5. Approximations of the Zeno Dynamics
Involving the Optimal Control Methodology

In this section we deal with a novel alternative represen-
tation and approximation approach to a Zeno behaviour
determined by a smooth manifold S as in Section 4. Let
us introduce the necessary additional notation: by 𝐹

𝑞
𝑖

𝑗
(𝑥),

𝑗 = 1, . . . , 𝑚, 𝑞𝑖 ∈ Q, we denote the vector-columns of the
matrix 𝑏𝑞

𝑖

(𝑥). Additionally we assume here that the rank of
span{𝐹𝑞𝑖

1
(𝑥), . . . , 𝐹

𝑞
𝑖

𝑚
(𝑥)} is equal to 𝑚 (the dimension of the

control vector). Consider a dynamic process

𝛿̇𝑦 (𝑡) =

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)

⋅ PrTanS [

[

[

[

𝜕𝑎𝑞
𝑖

𝜕𝑦
(𝑦 (𝑡)) +

𝑚

∑
𝑗=1

𝜕𝐹
𝑞
𝑖

𝑗

𝜕𝑦
(𝑦 (𝑡)) 𝑢̂

𝑗
(𝑡)]

]

⋅ 𝛿𝑦 (𝑡) + 𝑏𝑞
𝑖

(𝑦 (𝑡)) 𝛿𝑢 (𝑡)]

]

,

(42)

where 𝛿𝑦(0) = 0 and 𝑦(⋅), 𝑢̂(⋅) are determined byTheorem 9.
The dynamic process 𝛿𝑦(⋅) is in fact a linearisation of the
projected Zeno dynamics 𝑦(⋅). This linearisation is generated
by a bounded measurable control input 𝛿𝑢(⋅). Note that



Abstract and Applied Analysis 7

the linearity of the operator PrTanS (projection on a linear
subspace) implies

𝜕

𝜕𝑦
PrTanS (⋅) = PrTanS (

𝜕

𝜕𝑦
) ,

𝜕

𝜕𝑢
PrTanS (⋅) = PrTanS (

𝜕

𝜕𝑢
) .

(43)

Evidently, 𝑦(𝑡) + 𝛿𝑦(𝑡) ∈ S for almost all 𝑡 ∈ [0, 𝑡𝑓]. Let
Φ(⋅) be the fundamental matrix for (42). Our next result
contains an alternative Hamiltonian-based representation for
the original Zeno dynamics determined by a Zeno execution
({𝑞𝑖}
𝑍
, 𝜏
𝑍
𝑥
𝑍
(⋅)).

Theorem 10. Assume that all the conditions of Theorem 9 are
satisfied and

({𝑞𝑖}
𝑍
, 𝜏
𝑍
, 𝑥
𝑍
(⋅)) (44)

is a Zeno execution. Let 𝑦(⋅) be a projected Zeno dynamic
process given by (28).Then there exists an absolutely continuous
function (the “adjoint vector”)

𝑝 (⋅) , 𝑝 (𝑡) ∈ R
𝑛
\ {0} (45)

such that (𝑢̂(⋅), 𝑦(⋅), 𝑝(⋅)) are solutions a.e. on [0, 𝑡𝑓] of the
following Hamiltonian system:

𝑦̇ (𝑡) =
𝜕𝐻

𝜕𝑝
(𝑡, 𝑢̂ (𝑡) , 𝑦 (𝑡) , 𝑝 (𝑡)) ,

𝑝̇ (𝑡) = −
𝜕𝐻

𝜕𝑦
(𝑡, 𝑢̂ (𝑡) , 𝑦 (𝑡) , 𝑝 (𝑡)) ,

𝜕𝐻

𝜕𝑢
(𝑡, 𝑢̂ (𝑡) , 𝑦 (𝑡) , 𝑝 (𝑡)) = 0,

(46)

where

𝐻(𝑡, 𝑢, 𝑦, 𝑝)

fl ⟨𝑝,

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑎𝑞

𝑖

(𝑦) + 𝑏𝑞
𝑖

(𝑦) 𝑢]⟩
(47)

is the pseudo-Hamiltonian associated with the given ASS and
⟨⋅, ⋅⟩ denotes a scalar product in R𝑛.

Proof. Note that the first equation from (46) is a simple con-
sequence of the linear structure of the pseudo-Hamiltonian.
Let 𝛿𝑢(⋅) ∈ L∞

𝑚
(0, 𝑡𝑓) such that 𝑢̂(⋅) + 𝛿𝑢(⋅) ∈ U. Evidently,

the dimension of the linear space

{𝛿𝑦 (⋅) ∈ L
∞

𝑛
(0, 𝑡𝑓) | Φ (𝑡𝑓)∫

𝑡
𝑓

𝑇

Φ
−1

(𝑡)

×

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑏𝑞

𝑖

(𝑦 (𝑡)) 𝛿𝑢 (𝑡) 𝑑𝑡] , 𝛿𝑢 (⋅)

∈ L
∞

𝑚
(0, 𝑡𝑓)}

(48)

is equal to 𝑠 = dim(S) < 𝑛. Therefore, there exists a vector
𝜇 ∈ R𝑛, 𝜇 ̸= 0, such that

𝜇
𝑇
Φ(𝑡𝑓)Φ

−1
(𝑡)

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑏𝑞

𝑖

(𝑦 (𝑡))] = 0 (49)

for almost all 𝑡 ∈ [0, 𝑡𝑓]. We now introduce the function 𝑝(⋅)

by setting

𝑝
𝑇
(𝑡) fl 𝜇

𝑇
Φ(𝑡𝑓)Φ

−1
(𝑡) . (50)

The definition of 𝑝(⋅) implies that this function is a solution
to the adjoint system

𝑝̇ (𝑡) = −𝑝 (𝑡)

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)

⋅ PrTanS [

[

𝜕𝑎𝑞
𝑖

𝜕𝑦
(𝑦 (𝑡)) +

𝑚

∑
𝑗=1

𝜕𝐹
𝑞
𝑖

𝑗

𝜕𝑦
(𝑦 (𝑡)) 𝑢𝑦 (𝑡)

]

]

.

(51)

Moreover, it satisfies almost everywhere the equality

𝑝 (𝑡)

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑏𝑞

𝑖

(𝑦 (𝑡))] = 0. (52)

We get the second and the third equations from (28).

Theorem 10 gives a variational characterization of the
approximating dynamic process 𝑦(⋅). To put it another way,
a given Zeno execution ({𝑞𝑖}

𝑍
, 𝜏
𝑍
𝑥
𝑍
(⋅)) determined by a

smooth manifold S (discussed in Section 4) can be approx-
imated by the solution of the Hamiltonian-type system (46).
Moreover, the obtained condition (52) can be interpreted as a
generalized “equivalent control” 𝑢̂(⋅).

Evidently, relations (46) constitute a specific description
of the Zeno behaviour using the optimal control methodol-
ogy (see [30]). It is easy to see that conditions (46) are similar
to the generic formalism of the weak Pontryagin Maximum
Principle for the classic singular optimal control. A pair
(𝑢̂(⋅), 𝑦(⋅)) can be interpreted as an extremal pair associated
with an auxiliary optimal control problem involved system
(5). In that context one can consider, for example, a terminal
functional 𝜙(𝑦(𝑡𝑓)) such that

𝜕𝜙

𝜕𝑦
(𝑦 (𝑡𝑓)) = 𝑝

𝑇
(𝑡𝑓) = 𝜇

𝑇
∈ R
𝑛
, 𝜇 ̸= 0,

𝜇
𝑇
Φ(𝑡𝑓)Φ

−1
(𝑡)

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝑏𝑞

𝑖

(𝑦 (𝑡))] = 0.

(53)

Let us now discuss a concrete computational scheme for
an extremal control determined by (46). For a nonlinearly
ASS of type (5) the last equation from (46) implies the
condition

⟨𝑝(𝑡) ,

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS [𝐹

𝑞
𝑖

𝑗
(𝑦 (𝑡))]⟩ = 0

∀𝑗 = 1, . . . , 𝑚.

(54)
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Differentiating (54) with respect to 𝑡, we get the next equation

𝜉 (𝑦 (𝑡) , 𝑝 (𝑡)) + 𝑂 (𝑦 (𝑡) , 𝑝 (𝑡)) 𝑢̂ (𝑡) = 0, (55)

where 𝜉(𝑦, 𝑝) is the 𝑚-dimensional vector with components

𝜉𝑗 (𝑦, 𝑝)

fl ⟨𝑝,[

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS (𝐹

𝑞
𝑖

𝑗
) ,PrTanS (𝑎𝑞

𝑖

)]

⋅ (𝑦)⟩

(56)

and 𝑂(𝑦, 𝑝) is the 𝑚 × 𝑚 matrix with components

𝑂𝑙,𝑗 fl ⟨𝑝, [

∞

∑
𝑖=1

𝛽
𝑍

[𝑡
𝑖−1
,𝑡
𝑖
)
(𝑡)PrTanS (𝐹

𝑞
𝑖

𝑙
) ,PrTanS (𝐹

𝑞
𝑖

𝑗
)]

⋅ (𝑦)⟩ .

(57)

By [⋅, ⋅] we denote here the Lie brackets:

[𝑍1, 𝑍2] (𝜍) fl
𝜕𝑍1

𝜕𝜍
(𝜍) 𝑍2 (𝜍) −

𝜕𝑍2

𝜕𝜍
(𝜍) 𝑍1 (𝜍) . (58)

The constructive relation (55) characterizes an unknown con-
trol input 𝑢̂(⋅) for the projected Zeno dynamics determined
by (29). This control design is a direct consequence of the
proposed optimal control based description of the Zeno
behaviour in system (5).

6. Concluding Remarks

This contribution initiates theoretic investigations devoted
to the constructive approximations of the Zeno dynamics
in switched systems. The abstract idea and the proposed
(constructive) approximative approach are based on some
novel analytic techniques and also involve a specific appli-
cation of the optimal control methodology. For the control
systems under consideration we developed a relative simple
implementable approach that makes it possible to eliminate
the practically nonrealistic exact Zeno behaviour from con-
sideration and study a more realistic approximative non-
Zenomodel. Our approach can rather be interpreted as a part
of the “numerical analysis” of the general Zeno behaviour.

Moreover, we established a natural relation between the
Zeno dynamics in affine switched systems and the conven-
tional sliding mode control. This relationship is based on the
projected dynamics and involves a natural generalization of
the classic sliding mode control theory. On the other side,
the involvement of the optimal control techniques implies
the obtained variational description of the Zeno effect in
the affine switched systems. The Zeno executions can now
be characterized by solutions to the specific Hamiltonian
system that constitutes a necessary optimality condition
for a particular (auxiliary) optimal control problem. The
proposed variational representation of the Zeno phenomena

incorporates the standard Hamiltonian formalism and some
additional extremal conditions. This representation has a
theoretic and numeric potential to be applied to concrete
control design procedures for some classes of switched Zeno-
type systems.

The analytic results discussed in our contribution must
be extended by some concrete control applications.Moreover,
one can expect to obtain numerically tractable approximation
schemes and solution procedures for Zeno executions in
some concrete examples of switched systems. Finally let us
note that themainmathematical tools and techniques used in
our paper have a general analytic nature and can be applied to
wide classes of control problems associated with the general
types of hybrid and switched dynamic systems.
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