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The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method
for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal
arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the
vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the
two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble.
For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which
allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on
the Eotvos number.

1. Introduction

Bubble motion is one of the most common gas-liquid flow
phenomena and plays an important role in many industrial
applications, such as cavitation in fluid machinery, nucleate
boiling in reactors, and condenser/evaporator. In medical
ultrasound imaging, small encapsulated bubbles called con-
trast agent are used to enhance the contrast. In thermal
inkjet printing, vapor bubbles are used as actuators. They
are occasionally used in the microfluidics applications as
actuators [1]. The motion of multiple bubbles under gravity
is complex due to bubble deformation, coalescence, and
breakup. Understanding the dynamic interaction between
bubbles is an important aspect of the design and operation
of many industrial applications.

A number of investigations of the bubblemotion in liquid
have been conducted in the past [2–5] due to its scientific
and engineering importance. Many numerical methods have
been established to simulate the motion of gas bubbles in
liquid, such as VOF (volume of fluid) [6] and level set
method [7]. In recent decades, the lattice Boltzmann method

(LBM) has proved to be a powerful numerical scheme for
the simulation of multiphase flow which is based on meso-
scopic particle dynamics. Its kinetic nature can provide
many of the advantages of molecular dynamics, such as
the introduction of repulsive interaction between particles
without any boundary conditions for the interface, which
makes it more useful than other more conventional methods
for numerical modeling of multiphase fluid systems [8].
Several kinds of lattice Boltzmann model for simulating
multiphase fluid have been established and applied to the
simulations of gas bubbles under gravity successfully. These
models include potential method proposed by Shan and
Chen [9], color method proposed by Rothman and Keller
[10], and free energy method proposed by Swift et al. [11]
and improved by Zheng et al. [12]. Recently, Huang et al.
[13] evaluated these models’ performance in modeling two-
dimensional immiscible two-phase flow in porous media on
the pore scale. The free energy method [12] was proved to
be a good tool for the study of two-phase flows with high
viscosity ratios and high density ratio. Takada et al. [8] used
the LBM which was based on the free energy model [11]
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to simulate single bubble and two bubbles rising under
gravity. Their results [8] of single bubble are consistent with
those determined by VOF method. They [8] also simulated
two bubbles rising in a circular tube full of stationary fluid.
It has been found [8] that the two bubbles approach due to
the wake formation and then coalesce into a single bubble
eventually. Sankaranarayanan et al. [14] simulated the rise
behavior of a single bubble in a periodic box by using an
implicit formulation of LBM under the conditions of 1 < Eo
(Eotvos number) < 10 and Re (Reynolds number) > 100.
The effect of volume fraction on the rise characteristics was
analyzed by changing the size of the box relative to that of
the bubble. Recently, Amaya-Bower and Lee [15] presented a
comprehensive study of the dynamics of a single bubble rising
under gravitational force by using lattice Boltzmann method
based on the Cahn-Hilliard diffuse interface approach. They
[15] analyzed the dependence of terminal bubble shape and
velocity on density ratio, viscosity ratio, surface tension,
interface thickness, and domain size. In particular, their
results [15] showed that the influence of viscosity ratio on the
terminal velocity and shape of the bubble is significant, while
the density ratio has little effect. Gupta and Kumar [16] used
the lattice Boltzmann method based on potential method [9]
to study the motion of multiple bubbles under gravity. Two
kinds of initial arrangement were considered which are in-
line arrangement and staggered arrangement in a vertical
orientation, respectively. Their results [16] showed that as the
Eotvos number increases, the uppermost bubble deforms the
most and the bubbles coalesce eventually due to the wake
behind the leading bubble. They [16] also showed the process
of bubble coalescence for staggered bubbles in channels, in
which lift forces come into play due to the presence of walls.
More recently, Yu et al. [17] presented an adaptive lattice
Boltzmannmethod to simulate the interaction between a pair
of bubbles with spherical or ellipsoidal shapes under gravity.
They observed both attractive and repulsive interactions
between bubbles which depend on the relative position and
the Reynolds number. They [17] also simulated a group of
14 bubbles and analyzed the effects of the bubble shape
and Reynolds number on the spatial distribution of the
bubbles.

As shown by Gupta and Kumar [16] and Yu et al. [17],
in comparison with the case of single bubble, the motion of
multiple bubbles under gravity could be muchmore complex
due to hydrodynamic interactions between bubbles. Besides,
the bubble coalescence and break-up could take place occa-
sionally which have great effect on the motion of multiple
bubbles. Furthermore, as far as we know, a detailed numerical
study of the influence of bubble collision and coalescence
on the rising velocity has not been undertaken. Thus, it is
important to focus on the fundamental understanding of the
bubble collision and coalescence when multiple bubbles are
rising under gravity. To fulfil this task, the LBM proposed
by Zheng et al. [12] is adopted in this work to study the rise
behavior of multiple bubbles which are initially placed in in-
line arrangement.The effects of Eotvos number which ranges
from 1 to 12 are taken into account.This studywill evaluate the
coalescence pattern and rising velocity of the bubbles which
not only depend on the computational parameters but also

depend on the initial arrangements. In addition, the terminal
velocity is comparedwith the result of single bubble under the
same conditions to illustrate the influence ofmultiple bubbles
motion.

2. Numerical Method

The discrete lattice Boltzmann equations under external
forces for the continuity and momentum equations are given
by
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The discrete lattice Boltzmann equations for the interface
capture equation are given by [12]
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where 𝑞 is a constant coefficient, which is determined by
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Figure 1: The verification of (a) the Laplace law and (b) the interface profile.

The macroscopic variable, that is, the order parameter 𝜙, is
given by

𝜙 = ∑

𝑖

𝑔
𝑖
. (8)

According to Zheng et al. [12], the chemical potential is com-
puted using
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the liquid phase and the gas phase, respectively. 𝐴 and 𝜅 are
parameters related to the thickness of the interface layer 𝑊
and the surface tension coefficient 𝜎, which are expressed as
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The parameter Γ is used to control themobility. By Chapman-
Enskog analysis, theNavier-Stokes equations and an interface
evolution equation can be obtained by (1) and (6)
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where 𝜃
𝑀
is the mobility, given by 𝜃

𝑀
= 𝑞(𝜏
𝜙
− 0.5)Δ𝑥Γ. The

viscosity is 𝜇 = (𝜏
𝑛
− 0.5)𝑛/3.

3. Validation

Three cases are carried out to validate the present computa-
tional code.The first is the Laplace law, which is given (for the
two-dimensional case) by

Δ𝑝 =
𝜎

𝑅
, (14)

where Δ𝑝 is the pressure jump across the interface and 𝑅 is
the bubble radius. In this work, the Laplace law is validated by
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Figure 2: The contour of order parameter for different Eotvos numbers. The other parameters are 𝜌
𝐿
= 1.42, 𝜌

𝐺
= 0.58, and 𝜎 = 0.00521.
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Figure 3: Time evolution of the rising velocity of two bubbles for
Eo = 1.

calculating the pressure jumpwhile varying the bubble radius
from 𝑅 = 10 to 𝑅 = 80. Other parameters are fixed at 𝜌

𝐿
=

1000,𝜌
𝐺
= 1,𝜎 = 2, and Γ = 400.The interface layer thickness

is set to be 𝑊 = 4 for 𝑅 < 20 and 𝑊 = 5 for 𝑅 ≥ 20. The
relaxation times are 𝜏

𝑛
= 0.875 and 𝜏

𝜙
= 0.7. The results are

shown in Figure 1(a), which shows good agreement between
the numerical results and the analytical solution of (14).

The second validation case is the profile along the normal
direction of the interface, which can be written as [12]

𝜙 = 𝜙
∗ tanh(2

√(𝑥 − 𝑥
0
)
2
+ (𝑦 − 𝑦

0
)
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where 𝑥
0
and 𝑦

0
are the coordinates of the center of the

bubble. Figure 1(b) shows the order parameter along the 𝑥-
axis from the center point of the gas bubble. Three density
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Figure 4: Time evolution of the rising velocity of two bubbles for
different Eo.

ratio levels are taken into account; that is, 𝜌
𝐿
= 1000, 500,

and 100. The mobility coefficient and the surface tension
coefficient are taken to be Γ = 100 and 𝜎 = 2 for 𝜌

𝐿
=

1000 and 500, and Γ = 50 and 𝜎 = 0.5 for 𝜌
𝐿
= 100.

The bubble radius is fixed at 𝑅 = 20 and the interface layer
thickness is 𝑊 = 5. The other parameters are the same as
in the first case above. The numerical results agree well with
the corresponding analytical solution of (15), as shown in
Figure 1(b). In all cases, the order parameter 𝜙 captures the
interface between the two phases accurately.

Finally, a single bubble rising under gravity is simulated
to compare with previous results. The bubble velocity is
computed through

V
𝑏
=
∑
𝑥
𝜙u

∑
𝑥
𝜙

(𝜙 < 0) . (16)
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Figure 5: The contour of order parameter of four bubbles for Eo = 2.

In fact the result obtained by (16) is an averaged velocity of
all bubbles. The parameters are taken the same as those used
by Takada et al. [8] and Zheng et al. [12] which are 𝜌

𝐿
= 1.42,

𝜌
𝐺
= 0.58, and 𝜎 = 0.00521. Besides, the Eotvos number is

introduced

Eo =
4𝑔 (𝜌
𝐻
− 𝜌
𝐿
) 𝑅
2

𝜎
. (17)

Comparisons of the terminal rising velocity for different
Eotvos numbers are shown in Table 1. It is observed that the
present results agree with the results obtained by Takada et al.
[8] (VOF method) and by Zheng et al. [12] (LBM method).
The shapes of the rising bubble under gravity for different
Eotvos numbers are also shown in Figure 2. It is observed
that as the Eotvos number increases, the deformation of the
bubble is becomingmore andmore remarkable.This is due to
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Table 1: Comparison of terminal velocity of a bubble rising under
buoyancy.

Zheng et al. [12]
LBM

Takada et al., [8]
VOF

Present
LBM

Eo = 5 8.02 × 10−3 8.28 × 10−3 8.35 × 10−3

Eo = 10 1.44 × 10−2 1.43 × 10−2 1.55 × 10−2

Eo = 20 2.14 × 10−2 2.15 × 10−2 2.25 × 10−2

Eo = 40 3.20 × 10−2 3.08 × 10−2 3.11 × 10−2

the fact that the influence of the surface tension force which
is to resist the deformation of the bubble is insignificant when
the Eotvos number is large. In terms of the shapes of bubble,
the present results agree with the results obtained by Takada
et al. [8] (VOF method).

4. Results and Discussion

In this section multiple bubbles motion for both horizontal
arrangement and vertical arrangement is investigated in
detail. The parameters are fixed at 𝜌

𝐿
= 2.6, 𝜌

𝐺
= 1, 𝜎 =

0.01, 𝑊 = 4.5, 𝑅 = 20, and Γ = 0.5. The computational
domain is 250 × 1500 and stationary walls are applied for all
boundaries.

Figure 3 shows the time evolution of the rising velocity
of two bubbles for Eo = 1. The two bubbles are initially
placed in a vertical orientation. The initial bubble distance
is 2.5𝑅. As shown in the figure, after an initial period of
evolution the velocity becomes constant which indicates
that the merged bubble is rising at a constant velocity
due to the balance between buoyancy and drag forces. For
better understanding the contours of order parameter which
visualize the process of bubble collision and coalescence are
also shown in Figure 3. It is observed that an oscillation
occurs in the bubble velocity before reaching the steady
state. Obviously, this oscillation corresponds to the bubble
coalescence process. Furthermore, as shown in Figure 3 the
terminal velocity is smaller than the velocity before the two
bubbles collide and coalesce.

The effects of the Eotvos number on the evolution of
bubble velocity are shown in Figure 4. One can observe that
the bubble velocity as well as the magnitude of its oscillation
increases with the Eotvos number. Moreover, it has been
found that in all cases (1 ≤ Eo ≤ 12) the two bubbles
would collide and coalesce. The lower bubble always rises at
a higher speed than the upper one because it is located at
the wake behind the upper bubble. This leads to a smaller
drag force for the lower bubble. Since the relative velocity of
the bubbles is nonzero, the distance between the two bubbles
keeps decreasing with time. Eventually the bubbles come to
contact and merge and soon after form a larger bubble with
twice the volume as the initial bubble.

The motion of four bubbles under gravity is also studied
in this work. The initial distance between bubbles is 2.5𝑅.
Figure 5 shows the contours of order parameter for Eo = 2

at different time to display the entire evolution with time.
As shown in Figure 5(b), the two uppermost bubbles begin
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Figure 10:The terminal rising velocity for different Eotvos numbers.
The bubbles are placed in a vertical arrangement and the initial
distance is 2.5𝑅.

to coalesce firstly after some time. Then the newly merged
bubble and the bubble next to it begin to collide and coalesce
again, as shown in Figure 5(c). Finally, the coalescence pro-
cess occurs between the merged bubble and the bottommost
bubble, which leads to a spherical-cap shaped bubble with an
interface inside it, as shown in Figures 5(e) and 5(f). This is
due to high inertia at the time of coalescence, so the liquid is
unable to squeeze out completely in time through the narrow
gap between the two bubbles, thus getting trapped inside
the gas phase. As time goes on, the liquid “pops” out from
the top surface of the bubble, and the interface eventually

becomes a part of bubble boundary, as shown in Figures 5(g)
and 5(h). Similar phenomenon has also been reported by
Takada et al. [8] and Gupta and Kumar [16]. In the work of
Gupta and Kumar [16], the liquid “pops” out from the bottom
surface of the bubble instead. Figure 6 shows the time history
of velocity of the four bubbles. For better understanding of
the effects of the coalescence on the velocity, the marks of
“(a)–(h)” in Figure 6 are labelled which are corresponding to
the times of Figures 5(a)–5(h). It is observed that there are
several oscillations in the velocity before it becomes constant.
Obviously, the oscillations labelled by (b), (c), and (e) in
Figure 6 are caused by the bubble coalescence which takes
place three times during the rising process of the four bubbles.
The last oscillation labelled by (g) in Figure 6 is due to the
interface inside the bubble moving to the top surface.

Figures 7 and 8 show the time history of the rising velocity
of four bubbles for Eo = 5 and Eo = 8, respectively.
Similarly, the bubble coalescence is displayed by showing the
contours of order parameter at different times in the figures.
Obviously, the magnitude of oscillations in the velocity is
much larger than that of Eo = 1. It is also expected that
the deformation of the merged bubble is much enhanced
for larger Eotvos numbers. Furthermore, it can be observed
that in both cases the uppermost bubble has the maximum
shape deformation, due to the highest drag experienced by
this bubble. Furthermore, it has been found that in all cases
(1 ≤ Eo ≤ 12) the four bubbles merge into one bubble in
a similar manner. In other words, the sequence of bubble
coalescence among the four bubbles is similar to that of Eo =
1. The first bubble coalescence always takes place between
the two uppermost bubbles. And the last coalescence takes
place between themerged bubble and the bottommost bubble
at all time. Similar observation is obtained even for larger
initial bubble distances, as shown in Figure 9, which shows
the merging process of four bubbles separated by center to
center distance of 5𝑅 initially.

In order to present more insight into the rising process
of multiple bubbles under gravity, the terminal velocities of
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Figure 11: The contour of order parameter of four bubbles for Eo = 50.

two and four bubbles for different Eotvos numbers are shown
in Figure 10. For the purpose of comparison, the results of a
single bubble under the same conditions are also shown in
the figure. It is unexpected that for very low Eotvos numbers
such as Eo ≤ 3, the terminal velocities of two and four bubbles
are a little larger than those of a single bubble, as can be seen
in Figure 10.The reason is not clear. However, for high Eotvos
numbers such as Eo > 6 the terminal velocities are similar for
all cases, indicating that the influence of the wall boundaries
on the terminal velocity is insignificant.Moreover, the bubble
coalescence strongly affects the time evolution of bubble
velocity but has little influence on the terminal velocity.

In this work the motion of the bubbles which are initially
placed in a horizontal orientation is also studied. For the case
of two bubbles, the bubble coalescence does not happen at all
time for the Eotvos number that was concerned. Thereby the
present work primarily focuses on the cases of four bubbles
and eight bubbles.

Figure 11 shows the contours of order parameter of four
bubbles for Eo = 5. Because of wall boundaries the two
outermost bubbles are rising at a lower speed than that of the
middle bubbles, as shown in Figure 11(b).Then the outermost

bubbles are traveling into the wake left behind the middle
bubbles, as shown in Figures 11(c) and 11(d). Eventually, two
larger bubbles are formed due to the coalescence process
which takes place at the same time for the left and right pairs
of bubbles, respectively, as shown in Figures 11(e) and 11(f).
The effects of Eotvos number on the motion of four bubbles
are also investigated in this work. In all cases one can observe
the similar process of bubble evolution. There are always two
bubbles left eventually. For reason of space other results are
not shown here.

However, things could be a little more complex for the
cases of eight bubbles. Figure 12 shows the evolution of the
rising bubbles under gravity for Eo = 1. As shown in
Figures 12(b) and 12(c), firstly three pairs of bubbles are
colliding nearly at the same time. Then the merged bubble
in the middle is rising faster than other bubbles, as shown in
Figures 12(d) and 12(e). After a while this bubble is leading.
Meanwhile, the other twomerged bubbles are becoming close
enough to contact and coalesce again, as can be seen in
Figure 12(f). Obviously, this bubble is located at the wake
behind the leading one. Thereby after a period of trailing it
catches up with the leading bubble at last and of course they
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Figure 12: The contour of order parameter of eight bubbles for Eo = 1.

merge into a larger bubble again, as shown in Figure 12(h).
There are three bubbles left eventually in this case. However,
as Eotvos number increases the situation is different, such as
Eo = 5, as can be seen in Figure 13. At first only two pairs
of outermost bubbles coalesce at the same time when rising
under gravity, as shown in Figures 13(b) and 13(c). Due to
the wall boundaries the twomerged bubbles are behind other
bubbles for a long time, as shown in Figures 13(d)–13(f). It can
also be observed that before the coalescence takes place, the
bubbles which are in two columns are rising in an oscillatory
manner. Eventually, there are only two bubbles left after the
coalescence process, which is much different from the case of
Eo = 1.

It should be stated that numerical results have shown
that for larger Eotvos numbers (Eo ≤ 12) the evolution
is qualitatively similar to that of Eo = 5. However, a little
difference has been found, as can be seen in Figure 14. This
figure shows the rising pattern of eight bubbles for Eo = 12,
which is the largest Eotvos number taken in this work. After
the outermost bubbles coalescence they are not behind all
the other bubbles instead. They are traveling into the wake

left behind the uppermost bubbles, as can be observed from
Figures 14(d)–14(f), which is different from the case of Eo = 5

as shown in Figure 13. Eventually, two bubbles are formed
after the bubble coalescence process, which is similar to the
case of Eo = 5. However, as shown in Figure 14(h) there
exists an interface inside the merged bubble, indicating that
some liquid is trapped inside the bubble during the bubble
coalescence process. This phenomenon was not observed for
small Eotvos numbers.

Figure 15 shows the terminal velocities of four and eight
bubbles for different Eotvos numbers. For the case of eight
bubbles, only the results of totally two merged bubbles are
taken into account. For the purpose of comparing, the results
of one bubble and two bubbles under the same configuration
are shown in Figure 15 to indicate the effects of multiple
bubbles motion on the rising velocity. Surprisingly, for the
Eotvos number ranging from 1 to 12 (1 ≤ Eo ≤ 12) that
was simulated in this work the terminal velocity is similar for
the cases of two, four, and eight bubbles, indicating that the
influence of the bubble coalescence on the terminal velocity
is insignificant. However, these results are smaller than the
results of the case of one bubble, as shown in Figure 15. This
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Figure 13: The contours of order parameter of eight bubbles for Eo = 5.

is mostly due to the influence of wall boundaries and the
interactions between bubbles. Furthermore, as the Eotvos
number increases the difference of terminal velocity between
one bubble and multiple bubbles keeps increasing.

5. Conclusion

In this work the lattice Boltzmannmethod is used to simulate
the motion of multiple bubbles under gravity. Benchmark
studies have been conducted to validate the code. Roughly
speaking, two kinds of initial bubble arrangements are taken
into account in the simulations: vertical arrangement and
horizontal arrangement. In both cases the focus is on the
bubble coalescence pattern and the (averaged) rising velocity.
The effects of the Eotvos number are studied in detail.

For vertical arrangement, the bubbles always coalesce
in a similar manner for Eotvos number ranging from 1 to
12. The uppermost bubble deforms the most because of the
maximum drag. In addition, after the coalescence a larger
bubble is formed eventually. For more than two bubbles,
the first coalescence takes place between the uppermost

bubble and the bubble next to it at all time, and the last
coalescence always takes place between the merged bubble
and the bottommost bubble. The terminal velocity of two or
four bubbles is a little larger than that of one bubble under
the same conditions. The reason is not clear. However, the
terminal velocity is similar for all cases when the Eotvos
number is large.

Things are much different for the case of horizontal
arrangement. It has been shown that in the case of four bub-
bles the outermost bubbles always travel into the wake of the
middle bubbles, and the coalescence always takes place which
leads to two larger bubbles.The situation is more complex for
the case of eight bubbles. For very low Eotvos number the
bubble coalescence takes place five times and three bubbles
are left at last, which are one merged bubble and two initial
bubbles. However, as Eotvos number increases there are two
merged bubbles left resulting from the bubble coalescence
which takes place six times. Furthermore, it has also been
observed that the terminal velocity is similar for the cases of
two, four, and eight bubbles. Comparison is also been made
with the results of one bubble, indicating the presence of
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Figure 14: The contours of order parameter of eight bubbles for Eo = 12.
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Figure 15:The terminal rising velocity for different Eotvos numbers.
The bubbles are placed in a horizontal arrangement and the initial
distance is 2.5𝑅.

the well-known phenomenon of hindered rise for multiple
bubbles.
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