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An abstract Hammerstein equation is an equation of the form 𝑢 + 𝐾𝐹𝑢 = 0. A new method is introduced to prove the existence
of a solution of this equation where 𝐾 and 𝐹 are nonlinear accretive (monotone) operators. The method does not involve the
complicated technique of factorizing a linear map via a Hilbert space and does not involve the use of deep variational techniques.

1. General Introduction

Let 𝐸 be a real normed space and let 𝑆 := {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}.
The space 𝐸 is said to have Gâteaux differentiable norm if the
limit

lim
𝑡→0

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑡𝑦

󵄩
󵄩
󵄩
󵄩
− ‖𝑥‖

𝑡

(1)

exists for all 𝑥, 𝑦 ∈ 𝑆; in this case 𝐸 is said to be smooth.
𝐸 is said to have uniformly Gâteaux differentiable norm if,
for each 𝑦 ∈ 𝑆, the limit is attained uniformly for 𝑥 ∈ 𝑆.
Further,𝐸 is said to be uniformly smooth if the limit is attained
uniformly for (𝑥, 𝑦) ∈ 𝑆 × 𝑆. Themodulus of smoothness of 𝐸,
𝜌
𝐸
: [0,∞) → [0,∞), is defined by

𝜌
𝐸
(𝜏)

:= sup{

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

− 1 : ‖𝑥‖ = 1,
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩
= 𝜏} ;

𝜏 > 0.

(2)

𝐸 is equivalently said to be smooth if 𝜌
𝐸
(𝜏) > 0 ∀𝜏 > 0. Let

𝑞 > 1;𝐸 is said to be 𝑞-uniformly smooth (or to have amodulus

of smoothness of power type 𝑞) if there exists 𝑐 > 0 such that
𝜌
𝐸
(𝜏) ≤ 𝑐𝜏

𝑞.
𝐿
𝑝
, 𝑙
𝑝
, and the Sobolev space 𝑊

𝑝

𝑚
, 1 < 𝑝 < ∞, are all

𝑞-uniformly smooth. In fact

𝐿
𝑝
or 𝑙
𝑝
or 𝑊
𝑝

𝑚
is

{

{

{

𝑝-uniformly smooth, 1 < 𝑝 ≤ 2,

2-uniformly smooth, 𝑝 ≥ 2.

(3)

Furthermore (see, e.g., [1]),

𝜌
𝐿𝑝

(𝜏)

= 𝜌
𝑙𝑝
(𝜏) = 𝜌

𝑊
𝑝

𝑚
(𝜏)

=

{
{
{

{
{
{

{

(1 + 𝜏
𝑝
)
1/𝑝

− 1 <

1

𝑝

𝜏
𝑝
, 1 < 𝑝 ≤ 2,

(𝑝 − 1)

2

𝜏
2
+ 𝑜 (𝜏

2
) <

𝑝 − 1

2

𝜏
2
, 𝑝 ≥ 2.

(4)

Let 𝐽
𝑞
denote the generalized duality mapping from 𝐸 to 2

𝐸
∗

defined by

𝐽
𝑞
(𝑥) := {𝑓 ∈ 𝐸

∗
: ⟨𝑥, 𝑓⟩ = ‖𝑥‖

𝑞
,
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
= ‖𝑥‖

𝑞−1
} , (5)
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where 𝐸
∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the

generalized duality pairing. It is well known (see, e.g., Xu
[2]) that 𝐽

𝑞
(𝑥) = ‖𝑥‖

𝑞−2
𝐽(𝑥) if 𝑥 ̸= 0 where 𝐽 denotes 𝐽

2

(called the normalized duality mapping). It is well known
that if 𝐸

∗ is strictly convex, 𝐽 is single-valued. For more
information and examples concerning (generalized) duality
mappings, one may see the book of Cioranescu [3] and its
review by Reich [4]. In the sequel, we will denote the single-
valued duality map by 𝑗.

A map 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is called accretive if, for all
𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that the
following inequality holds:

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0. (6)

If 𝑋 is a real Hilbert space, the map 𝐴 is called monotone. In
this case, 𝐴 satisfies the following condition:

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0. (7)

Themap𝐴 is called strongly accretive if there exists 𝑐 > 0 such
that, for all 𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗(𝑥 −𝑦) ∈ 𝐽(𝑥−𝑦), such
that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝑐
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

. (8)

A nonlinear integral equation of Hammerstein type (see,
e.g., Hammerstein [5]) has the form

𝑢 (𝑥) + ∫

Ω

𝑘 (𝑥, 𝑦) 𝑓 (𝑦, 𝑢 (𝑦)) 𝑑𝑦 = ℎ (𝑥) , (9)

where 𝑑𝑦 is a 𝜎-finite measure on Ω; the kernel 𝑘 is defined
on Ω × Ω, 𝑓 is a real-valued function defined on Ω × R and
is, in general, nonlinear, and ℎ is a function on Ω. Setting

𝐾V (⋅) := ∫

Ω

𝑘 (⋅, 𝑦) V (𝑦) 𝑑𝑦 on Ω (10)

and 𝐹𝑢(⋅) := 𝑓(⋅, 𝑢(⋅)) onΩ, then integral equation (9) can be
put in abstract operator form as follows:

𝑢 + 𝐾𝐹𝑢 = 0, (11)

where, without loss of generality, we have taken ℎ ≡ 0.
Interest in (9) stems mainly from the fact that several

problems that arise in differential equations, for instance,
elliptic boundary value problems whose linear parts possess
Green’s function, can, as a rule, be transformed into the form
of (9).

Furthermore, equations ofHammerstein type play crucial
role in the theory of optimal control systems, in automation,
and in network theory (see, e.g., Dolezale [6]).

Several existence theorems for the solution of (9) have
been proved by a host of distinguished mathematicians using
various techniques (see, e.g., Browder and Gupta [7, 8],
Chepanovich [9], and Petryshyn and Fitzpatrick [8]). In the
remaining part of this section, we highlight the techniques
used byBrowder andGupta [7] andPetryshyn andFitzpatrick
[8]. To do this, we first give definitions of some terms which
are required in the theorems.

In the sequel, the symbol “→ ” denotes strong conver-
gence while “⇀” denotes weak convergence.

Definition 1 (see, e.g., [7]). A mapping 𝐴 : 𝐷(𝐴) ⊂ 𝑋
∗

→ 𝑋

is said to be hemicontinuous if it is continuous from each line
segment of𝑋∗ to the weak topology of𝑋.That is, ∀𝑢 ∈ 𝐷(𝐴),
∀V ∈ 𝑋

∗, and (𝑡
𝑛
)
𝑛≥1

⊂ R+ such that 𝑡
𝑛

→ 0
+ and 𝑢 + 𝑡

𝑛
V ∈

𝐷(𝐴) for 𝑛 sufficiently large and we have 𝐴(𝑢 + 𝑡
𝑛
V) ⇀ 𝐴(𝑢).

Definition 2 (see, e.g., [7]). Let 𝐴 : 𝑋 → 𝑋
∗ be a

bounded monotone linear mapping. 𝐴 is said to be angle-
bounded with constant 𝑐 ≥ 0 if, for all 𝑢, V in 𝑋, |⟨𝐴𝑢, V⟩ −

⟨𝐴V, 𝑢⟩| ≤ 2𝑐{⟨𝐴𝑢, 𝑢⟩}
1/2

{⟨𝐴V, V⟩}1/2. (This is well defined
since ⟨𝐴𝑢, 𝑢⟩ ≥ 0 and ⟨𝐴V, V⟩ ≥ 0 by the linearity and
monotonicity of 𝐴.)

In [7] Browder and Gupta proved the following theorem.

Theorem 3 (Browder-Gupta [7]). Let 𝑋 be a real Banach
space and 𝑋

∗ its conjugate dual space. Let 𝐾 be a monotone
angle-bounded continuous linear mapping of 𝑋 into 𝑋

∗ with
constant of angle-boundedness 𝑐 ≥ 0. Let 𝐹 be a hemicontinu-
ous (possibly nonlinear) mapping of 𝑋∗ into 𝑋 such that, for a
given constant 𝑘 ≥ 0,

⟨V
1
− V
2
, 𝐹V
1
− 𝐹V
2
⟩ ≥ −𝑘

󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

𝑋
∗ (12)

for all V
1
and V

2
in 𝑋
∗. Suppose finally that there exists a

constant 𝑅 with 𝑘(1 + 𝑐
2
)𝑅 < 1 such that for 𝑢 in 𝑋

⟨𝐾𝑢, 𝑢⟩ ≤ 𝑅 ‖𝑢‖
2

𝑋
. (13)

Then, there exists exactly one solution𝑤 in𝑋
∗ of the nonlinear

equation

𝑤 + 𝐾𝐹𝑤 = 0. (14)

The main tool used by the authors in proving Theorem 3
is that of splitting the linear operator 𝐾 via a Hilbert space
and then applying a deep result of Minty [10]. Precisely, they
proved that if 𝑋 is a real Banach space, 𝑋∗ is its dual space,
and 𝐾 is a bounded linear mapping of 𝑋 into 𝑋

∗ which
is monotone and angle-bounded, then there exist a Hilbert
space 𝐻, a continuous linear mapping 𝑆 of 𝑋 into 𝐻 with
adjoint 𝑆

∗ injective, and a bounded skew-symmetric linear
mapping 𝐵 of 𝐻 into 𝐻 such that

𝐾 = 𝑆
∗
(𝐼 + 𝐵) 𝑆 (15)

(see Figure 1).
This factorization enabled the authors to transform the

problem into another problem in a Hilbert space such that
Hammerstein equation (11) has a solution if and only if the
new problem has a solution in a real Hilbert space. They set
𝑓 = (𝐼 + 𝐵)

−1
+ 𝐾𝐹𝐾

∗, 𝐷 := 𝐵(0, 1), the closed unit ball in
𝐻, and showed that 𝑓 is hemicontinuous and monotone and
satisfies ⟨𝑢, 𝑓(𝑢)⟩ ≥ 0 ∀𝑢 ∈ 𝐷.With these facts, they used the
following result ofMinty [10] to proveTheorem 3 (see [10] for
definitions of terms).

Theorem4 (Minty [10]). Let𝐷 ⊂ 𝑋 be bounded and surround
0; let 𝐶 ⊂ 𝑋 contain co(𝐷) and surround every point of co(𝐷)

densely. Let

𝑓 : 𝐶 󳨀→ 𝑋
∗ (16)
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Figure 1: Factorization of operator, 𝐾.

be monotone and hemicontinuous at every point of co(𝐷) and
suppose

𝑢 ∈ 𝐷 implies ⟨𝑢, 𝑓 (𝑢)⟩ ≥ 0. (17)

Then, there exists 𝑢 ∈ co(𝐷) such that 𝑓(𝑢) = 0.

Petryshyn and Fitzpatrick employed deep variational
techniques to prove the existence of a solution to (11). They
proved the following theorems.

Theorem 5 (Petryshyn-Fitzpatrick [8]). Let 𝑋 be a reflexive
Banach space and let 𝐾 be a linear, monotone, and symmetric
mapping of𝑋 into𝑋

∗. Suppose𝑓 is a weakly (sequential) lower
semicontinuous functional on 𝑋

∗ such that

𝑓 (𝑢) ≥ −

1

2

𝑎
1
‖𝑢‖
2
− 𝑎
2
‖𝑢‖
𝛿
− 𝑎
3
, (18)

where 𝑎
1
‖𝐾‖ < 1, 𝑎

2
> 0, 𝑎

3
> 0, and 0 < 𝛿 < 2. Suppose also

that 𝐹 : 𝑋
∗

→ 𝑋 is such that grad(𝑓) = 𝐹. Then,

𝑤 + 𝐾𝐹𝑤 = 0 (19)

has a solution in 𝑋
∗.

Theorem 6 (Petryshyn-Fitzpatrick [8]). Let 𝑋 be a reflexive
Banach space with 𝐾 : 𝑋 → 𝑋

∗ linear, monotone, and sym-
metric. Let 𝐹 : 𝑋

∗
→ 𝑋 be potential and have a Gâteaux

derivative which satisfies the inequality

𝐷𝐹 (𝑢, V, V) ≥ −𝑎 ‖V‖2 (V, 𝑢 ∈ 𝑋
∗
) (20)

and 𝐷𝑁(𝑡𝑢, V, V) is continuous in 𝑡 ∈ [0, 1] for u and v fixed,
where 𝑎‖𝐾‖ < 1. Then, (19) has a solution in 𝑋

∗.

In this paper, we introduce a new method, perhaps
simpler than methods used so far in the literature, of proving
existence of solutions of Hammerstein equation in certain
cases. To achieve this, we recast (11) into a fixed point problem
and use a technique recently introduced by Chidume and
Zegeye [11], some existence results of Deimling [12] for zeros
of accretive maps, and some surjectivity results of Brow-
der [13] for Lipschitz strongly accretive maps. No linearity
assumption is imposed on any of our maps.

2. Preliminaries

Let 𝑋 be a normed linear space and let 𝐾 be a convex subset
of 𝑋. For 𝑥 ∈ 𝑋, the inward set, 𝐼

𝑘
(𝑥), of 𝑥 relative to 𝐾, is

defined as follows:

𝐼
𝐾
(𝑥) = {𝑥 + 𝑐 (𝑢 − 𝑥) : 𝑐 ≥ 1, 𝑢 ∈ 𝐾} . (21)

A mapping 𝑇 : 𝐾 → 𝑋 is said to be inward if 𝑇𝑥 ∈ 𝐼
𝐾
(𝑥) for

each 𝑥 ∈ 𝐾 and weakly inward if 𝑇𝑥 belongs to the closure of
𝐼
𝐾
(𝑥) for each 𝑥 ∈ 𝐾.
A relationship between the weak inward condition and

the condition

lim
𝜆→0

+

dist (𝑥 − 𝜆𝐴𝑥,𝐷 (𝐴))

𝜆

= 0 ∀𝑥 ∈ 𝐷 (𝐴) (22)

for a map 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is given in Lemma 11. Further
relationship between condition (22), the weak inward condi-
tion, and Lemma 11 can be found in [14].

In the sequel, 𝑋 is a 𝑞-uniformly smooth real Banach
space, 𝑞 > 1, and 𝐸 := 𝑋 × 𝑋 with

‖[𝑢, V]‖
𝐸
= (‖𝑢‖

𝑞
+ ‖V‖𝑞)1/𝑞 ∀ [𝑢, V] ∈ 𝐸. (23)

If 𝑋(= 𝐻) is a real Hilbert space, we will denote 𝐸 by 𝐸
𝐻

:=

𝐻 × 𝐻.
If 𝐹 and 𝐾 are maps from 𝑋 to 𝑋 such that range of 𝐹 is

contained in domain of 𝐾, that is, 𝑅(𝐹) ⊆ 𝐷(𝐾), Chidume
and Zegeye [11] defined a map 𝐴 : 𝐸 → 𝐸 as follows:

𝐴 [𝑢, V] = [𝐹𝑢 − V, 𝐾V + 𝑢] (24)

for all 𝑢, V ∈ 𝑋 and observed that 𝐴[𝑢, V] = 0 if and only if

𝐹𝑢 − V = 0,

𝐾V + 𝑢 = 0,

(25)

so that 𝑢 solves (11). System (25) can be recast as a fixed point
problem as follows:

(

𝑢

V
) = (

0 −𝐾

𝐹 0

)(

𝑢

V
) . (26)

We will use the ideas of map 𝐴 on 𝐸.
In Lemmas 9 and 10, we use the following variant defini-

tion of accretive maps as given by Deimling [12].

Definition 7 (accretivemap in the sense ofDeimling [12]). Let
𝑋 be real Banach space. A map 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is said
to be accretive (in the sense of Deimling) if

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝑥 − 𝑦⟩
+
≥ 0 ∀𝑥, 𝑦 ∈ 𝐷 (𝐴) , (27)

where
⟨𝑥, 𝑦⟩

+
:= sup
𝑗(𝑦)∈𝐽(𝑦)

⟨𝑥, 𝑗 (𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (28)

It is evident that, in any real Banach space, an accretive
map is also accretive in the sense of Deimling. The converse
is true in any real Banach 𝑋 whose dual𝑋∗ is strictly convex
or whose normalized duality map is single-valued. This is
certainly the case when 𝑋 is 𝑞-uniformly smooth, 𝑞 > 1.
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Definition 8 (see, e.g., [15]). A bounded convex subset 𝐾 of
a Banach space 𝑋 is said to have normal structure if every
convex subset 𝐶 of𝐾 having more than one element contains
at least one nondiametral point; that is, there exists 𝑥

0
∈ 𝐶

such that

sup {

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
: 𝑥 ∈ 𝐶}

< sup {
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
: 𝑥, 𝑦 ∈ 𝐶} = 𝑑 (𝐶) .

(29)

The Banach space 𝑋 is said to have normal structure if every
bounded convex subset of 𝑋 has normal structure.

Lemma 9 (Deimling [12]). Let 𝑋 be a reflexive real Banach
space with normal structure and let 𝐷 be a closed convex
bounded subset of 𝑋. Let 𝐴 : 𝐷 → 𝑋 be a Lipschitz and
accretive map satisfying condition (22). Then, 0 ∈ 𝐴(𝐷).

Lemma 10 (Deimling [12]). Let 𝑋 be real Banach space and
let 𝐷 be a closed convex subset of 𝑋. Let 𝐴 : 𝐷 ⊂ 𝑋 → 𝑋

be an accretive continuous map such that ⟨𝐴𝑥, 𝑥⟩
+

≥ 0 for
all 𝑥 ∈ 𝑋 with ‖𝑥‖ ≥ 𝑅 for some 𝑅 > 0 or lim ‖𝐴𝑥‖ = ∞

as ‖𝑥‖ → ∞. Suppose 𝐴 satisfies condition (22) and suppose
that 𝐴(𝐷) is closed. Then, 0 ∈ 𝐴(𝐷).

Lemma 11 (Caristi [16]). Let𝐷 be a convex subset of a normed
linear space 𝑋 and let 𝐴 : 𝐷 → 𝑋 be a map. Then condition
(22) holds if and only if (𝐼 − 𝐴) is weakly inward and 𝐼 is the
identity map on 𝐷.

Remark 12. In view of Lemma 11, if𝐷 = 𝐻 in Lemma 10, then
condition (22) can be dropped.

Lemma 13 (Xu [2]). Let 𝑞 > 1 and 𝐸 a smooth real Banach
space. Then the following are equivalent.

(i) 𝐸 is 𝑞-uniformly smooth.
(ii) There exists a constant𝑑

𝑞
> 0 such that, for all𝑥, 𝑦 ∈ 𝐸,

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩

𝑞

≤ ‖𝑥‖
𝑞
+ 𝑞 ⟨𝑦, 𝑗

𝑞
(𝑥)⟩ + 𝑑

𝑞

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑞

. (30)

(iii) There exists a constant 𝑐
𝑞
> 0 such that for all 𝑥, 𝑦 ∈ 𝐸

and 𝜆 ∈ [0, 1]

󵄩
󵄩
󵄩
󵄩
(1 − 𝜆) 𝑥 + 𝜆𝑦

󵄩
󵄩
󵄩
󵄩

𝑞

≥ (1 − 𝜆) ‖𝑥‖
𝑞
+ 𝜆

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑞

− 𝑤
𝑞
(𝜆) 𝑐
𝑞

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

𝑞

,

(31)

where 𝑤
𝑞
(𝜆) := 𝜆

𝑞
(1 − 𝜆) + 𝜆(1 − 𝜆)

𝑞.

Fromnow on, 𝑐
𝑞
and 𝑑
𝑞
denote the constants appearing in

Lemma 13.

Lemma 14 (Chidume [15], p. 173). Let 𝑋 be a 𝑞-uniformly
smooth real Banach space. Let 𝐹,𝐾 : 𝑋 → 𝑋 be maps with 𝐹

surjective such that the following conditions hold:

(i) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐹),

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗
𝑞
(𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

𝑞

; (32)

(ii) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐾),

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗
𝑞
(𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

𝑞

; (33)

(iii) (1 + 𝑑
𝑞
)(1 + 𝑐

𝑞
) ≥ 2
𝑞
, min{𝛼, 𝛽} =: 𝛾 > ((1 + 𝑑

𝑞
)(1 +

𝑐
𝑞
) − 2
𝑞
)/𝑞(1 + 𝑐

𝑞
).

Let a map 𝐴 : 𝐸 → 𝐸 be defined by (24). Then, for each 𝑧
1
,

𝑧
2
∈ 𝐸,

⟨𝐴𝑧
1
− 𝐴𝑧
2
, 𝑗
𝑞
(𝑧
1
− 𝑧
2
)⟩

≥ [𝛾 − 𝑞
−1

((1 + 𝑑
𝑞
) −

2
𝑞

(1 + 𝑐
𝑞
)

)]
󵄩
󵄩
󵄩
󵄩
𝑧
1
− 𝑧
2

󵄩
󵄩
󵄩
󵄩

𝑞

.

(34)

Lemma 15. Let 𝐻 be a real Hilbert space. Let 𝐾 : 𝐷(𝐾) ⊂

𝐻 → 𝐻, 𝐹 : 𝐷(𝐹) ⊂ 𝐻 :→ 𝐻 be two monotone maps such
that 𝑅(𝐹) ⊂ 𝐷(𝐾). Then the map 𝐴 : 𝐷(𝐹) × 𝐷(𝐾) ⊂ 𝐸

𝐻
→

𝐸
𝐻 defined by (24) is monotone.

Proof. The proof follows from the lines of argument of the
proof of Lemma 14 (see Chidume and Zegeye [11]).

Lemma 16 (Chidume [15], p. 173). Let 𝑋 be a 𝑞-uniformly
smooth real Banach space and let 𝐾 : 𝐷(𝐾) ⊂ 𝑋 → 𝑋,
𝐹 : 𝐷(𝐹) ⊂ 𝑋 → 𝑋 be two Lipschitz maps such that
𝑅(𝐹) ⊂ 𝐷(𝐾). Let 𝐴 : 𝐷(𝐴) ⊂ 𝐸 be a map such that
𝐷(𝐹)×𝐷(𝐾) = 𝐷(𝐴) and defined by (24).Then,𝐴 is Lipschitz.

We need the following definition which was given by
Browder [17].

Definition 17 (Browder [17]). Let 𝑋 and 𝑌 be real Banach
spaces with 𝑌

∗ the conjugate space of 𝑌. Let 𝜙 be a mapping
of 𝑋 into 𝑌

∗ such that 𝜙(𝑋) is dense in 𝑌
∗ with

󵄩
󵄩
󵄩
󵄩
𝜙 (𝑥)

󵄩
󵄩
󵄩
󵄩𝑌
∗ = ‖𝑥‖ ,

𝜙 (𝜉𝑥) = 𝜉𝜙 (𝑥)

(35)

for all 𝑥 ∈ 𝑋, 𝜉 ≥ 0. The mapping 𝑓 : 𝑋 → 𝑌 is said to be
strongly 𝜙-accretive if there exists 𝑐 > 0 such that, for all 𝑥 and
𝑢 in 𝑋,

⟨𝑓 (𝑥) − 𝑓 (𝑢) , 𝜙 (𝑥 − 𝑢)⟩ ≥ 𝑐 ‖𝑥 − 𝑢‖
2
. (36)

It follows from this definition that if 𝑋 is a real Banach
space such that the normalized duality map 𝐽 is single-valued
and 𝐽(𝑋) is dense in 𝑋

∗ (e.g., when 𝑋 is a reflexive and
smooth real Banach space), then a strongly accretive map
𝐴 : 𝑋 → 𝑋 is 𝐽-strongly accretive.

Theorem 18 (Browder [13]). Let 𝑋 and 𝑌 be Banach spaces
with𝑌

∗ uniformly convex and suppose𝑓 : 𝑋 → 𝑌 is a strongly
𝜙-accretive mapping satisfying a Lipschitz condition on each
bounded subset of 𝑋. Then, 𝑓(𝑋) = 𝑌.

The following corollary follows fromTheorem 18.
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Corollary 19. Let 𝑋 be a real Banach space with uniformly
convex dual𝑋∗ and suppose𝑓 : 𝑋 → 𝑋 is a strongly accretive
Lipschitz mapping. Then, 𝑓(𝑋) = 𝑋.

3. Main Results

Let 𝑋 := 𝐿
𝑝
, 1 < 𝑝 < 2, and let 𝐸 := 𝑋 × 𝑋 with ‖𝑧‖

2

𝐸
:=

‖[𝑢, V]‖2
𝐸

= ‖𝑢‖
2

𝑋
+ ‖V‖2
𝐸
for arbitrary 𝑧 = [𝑢, V] ∈ 𝐸. For 𝐿

𝑝

spaces, 1 < 𝑝 < 2, the following estimate has been established
(see, e.g., Chidume [15], p. 183):

𝐴 (𝑢
1
, 𝑢
2
, V
1
, V
2
)

:= [⟨V
1
− V
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ + ⟨𝑢

1
− 𝑢
2
, 𝑗 (𝑢
2
− 𝑢
1
)⟩]

≤ 𝑝 (2 − 𝑝) (
󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

)

∀𝑢
1
, 𝑢
2
, V
1
, V
2
∈ 𝑋.

(37)

We begin with a proof of the following theorem for 𝐿
𝑝
spaces,

1 < 𝑝 < 2, which is new.

Theorem 20. Let 𝑋 = 𝐿
𝑝

(1 < 𝑝 < 2); let 𝐹,𝐾 : 𝑋 → 𝑋

be mappings such that 𝐷(𝐾) = 𝐹(𝑋) = 𝑋 and the following
conditions hold:

(a) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝑋,

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (38)

(b) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝑋,

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (39)

(c) 𝛾 := min{𝛼, 𝛽} with 𝛾 > 𝑝(2 − 𝑝).

Let𝐸 := 𝑋×𝑋 and define𝐴 : 𝐸 → 𝐸 by (24) for all [𝑢, V] ∈ 𝐸.
Then, for arbitrary 𝑧

1
, 𝑧
2
∈ 𝐸, the following inequality holds:

⟨𝐴𝑧
1
− 𝐴𝑧
2
, 𝑗
𝐸
(𝑧
1
− 𝑧
2
)⟩

≥ [𝛾 − 𝑝 (2 − 𝑝)]
󵄩
󵄩
󵄩
󵄩
𝑧
1
− 𝑧
2

󵄩
󵄩
󵄩
󵄩

2

.

(40)

Proof. We compute as follows:

⟨𝐴𝑧
1
− 𝐴𝑧
2
, 𝑗
𝐸
(𝑧
1
− 𝑧
2
)⟩

= ⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ − ⟨V

1
− V
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩

+ ⟨𝐾V
1
− 𝐾V
2
, 𝑗 (V
1
− V
2
)⟩

+ ⟨𝑢
1
− 𝑢
2
, 𝑗 (V
1
− V
2
)⟩

≥ 𝛼
󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

+ 𝛽
󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

− ⟨V
1
− V
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ + ⟨𝑢

1
− 𝑢
2
, 𝑗 (V
1
− V
2
)⟩

≥ 𝛾 (
󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

)

− [⟨V
1
− V
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ − ⟨𝑢

1
− 𝑢
2
, 𝑗 (V
1
− V
2
)⟩]

≥ 𝛾
󵄩
󵄩
󵄩
󵄩
𝑧
1
− 𝑧
2

󵄩
󵄩
󵄩
󵄩

2

− 𝐴 (𝑢
1
, 𝑢
2
, V
1
, V
2
)

≥ 𝛾
󵄩
󵄩
󵄩
󵄩
𝑧
1
− 𝑧
2

󵄩
󵄩
󵄩
󵄩

2

− 𝑝 (2 − 𝑝) (
󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

)

= (𝛾 − 𝑝 (2 − 𝑝))
󵄩
󵄩
󵄩
󵄩
𝑧
1
− 𝑧
2

󵄩
󵄩
󵄩
󵄩

2

∀𝑧
1
, 𝑧
2
∈ 𝐸,

(41)

completing proof of the theorem.

Remark 21. Observe that the condition 1 + √1 − 𝛾 < 𝑝 < 2

implies 𝛾 > 𝑝(2 − 𝑝).

We now prove the following existence theorems.

3.1. The Case of Hilbert Spaces

Theorem 22. Let 𝐻 be a real Hilbert space and let 𝐾 :

𝐷(𝐾) ⊂ 𝐻 → 𝐻, 𝐹 : 𝐷(𝐹) ⊂ 𝐻 → 𝐻 be two Lipschitz
monotone maps such that 𝐷(𝐹) and 𝐷(𝐾) are closed, convex,
and bounded and 𝑅(𝐹) ⊂ 𝐷(𝐾). Let 𝐴 : 𝐷(𝐴) ⊂ 𝐸

𝐻
→

𝐸
𝐻 be a map such that 𝐷(𝐹) × 𝐷(𝐾) =: 𝐷(𝐴) and 𝐴 is

defined by (24). Suppose that 𝐴 satisfies condition (22). Then,
Hammerstein equation (11) has a solution.

Proof. The fact that 𝐾 and 𝐹 are Lipschitz and monotone
implies that𝐴 is Lipschitz andmonotone (Lemmas 15 and 16).
Since the normalized duality map is the identity map in real
Hilbert spaces, monotonicity of 𝐴 is equivalent to accretivity
in the sense of Deimling. Also 𝐷(𝐴) is closed and convex
since 𝐷(𝐹) and 𝐷(𝐾) are. Therefore, by Lemma 9, 0 ∈ 𝐴(𝐷);
that is, there exists [𝑢, V] ∈ 𝐷 such that 𝐹𝑢 − V = 0 and
𝐾V + 𝑢 = 0. So 𝑢 solves (11). This completes the proof.

Theorem 23. Let𝐻 be a real Hilbert space and let𝐾 : 𝐷(𝐾) ⊂

𝐻 → 𝐻, 𝐹 : 𝐷(𝐹) ⊂ 𝐻 → 𝐻 be two continuous monotone
maps such that 𝐷(𝐹) and 𝐷(𝐾) are closed and convex and
𝑅(𝐹) ⊂ 𝐷(𝐾). Let 𝐴 : 𝐷(𝐴) ⊂ 𝐸

𝐻
→ 𝐸
𝐻 be a map such

that 𝐷(𝐹) × 𝐷(𝐾) =: 𝐷(𝐴) and 𝐴 is defined by (24). Suppose
that ⟨𝐴𝑤,𝑤⟩ ≥ 0 for all 𝑤 ∈ 𝐷(𝐴) with ‖𝑤‖ ≥ 𝑅 for some
𝑅 > 0 or lim ‖𝐴𝑤‖ = ∞ as ‖𝑤‖ → ∞ and suppose that 𝐴
satisfies condition (22). Suppose that 𝐴(𝐷(𝐴)) is closed. Then,
Hammerstein equation (11) has a solution.

Proof. The fact that 𝐾 and 𝐹 are monotone implies that 𝐴

is monotone (Lemma 15). The fact that 𝐷(𝐹) and 𝐷(𝐾) are
closed and convex implies that 𝐷(𝐴) is closed and convex.
Also since 𝐸

𝐻 is a real Hilbert space and the normalized
duality map of any real Hilbert space is the identity map, we
have ⟨𝐴𝑤,𝑤⟩

+
= ⟨𝐴𝑤,𝑤⟩ for all 𝑤 ∈ 𝐷(𝐴). Therefore, the

assumptions on 𝐴 and 𝐷(𝐴) together with Lemma 10 give
that 0 ∈ 𝐴(𝐷); that is, there exists [𝑢, V] ∈ 𝐷 such that
𝐹𝑢 − V = 0 and 𝐾V + 𝑢 = 0. So 𝑢 solves (11). This completes
the proof.

Corollary 24. Let 𝐻 be a real Hilbert space and let 𝐾, 𝐹 :

𝐻 → 𝐻 be two continuous monotone maps defined on 𝐻.
Let 𝐴 : 𝐸

𝐻
→ 𝐸
𝐻 be a map defined by (24). Suppose that
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⟨𝐴𝑤,𝑤⟩ ≥ 0 for all 𝑤 ∈ 𝐸
𝐻 with ‖𝑤‖ ≥ 𝑅 for some 𝑅 > 0 or

lim ‖𝐴𝑤‖ = ∞ as ‖𝑤‖ → ∞. Suppose that 𝐴(𝐸
𝐻
) is closed.

Then, Hammerstein equation (11) has a solution.

Proof. Since 𝐴 is defined on 𝐸
𝐻, it satisfies condition (22).

Therefore, the result follows fromTheorem 23.

3.2. The Case of 𝐿𝑝 Spaces, 1 < 𝑝 < ∞

Theorem 25. Let 𝐾 : 𝐷(𝐾) ⊂ 𝐿
𝑝

→ 𝐿
𝑝 and 𝐹 : 𝐷(𝐹) ⊂

𝐿
𝑝

→ 𝐿
𝑝 be two Lipschitz mappings satisfying the following

conditions:

(a) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐹),

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (42)

(b) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐾),

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

. (43)

Let 𝐷(𝐹) and 𝐷(𝐾) be closed, convex, and bounded such that
𝑅(𝐹) ⊂ 𝐷(𝐾). Let 𝐸 := 𝐿

𝑝
×𝐿
𝑝 and let𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸 be

amap such that𝐷(𝐹)×𝐷(𝐾) =: 𝐷(𝐴) and𝐴 is defined by (24).
Suppose that 𝐴 satisfies condition (22). Let 𝛾 := min{𝛼, 𝛽}. If
2 ≤ 𝑝 < 𝛾+√𝛾

2
+ 4 or 1+√1 − 𝛾 < 𝑝 ≤ 2, then Hammerstein

equation (11) has a solution.

Proof. The fact that 𝐾 and 𝐹 are Lipschitz implies that 𝐴 is
Lipschitz by Lemma 16. Also𝐷(𝐴) is closed and convex since
𝐷(𝐹) and 𝐷(𝐾) are.

Case 1 (2 ≤ 𝑝 < 𝛾 + √𝛾
2
+ 4). In this case 𝐿

𝑝 is 2-uniformly
smooth space and 𝑐

𝑞
= 𝑑
𝑞
= 𝑝 − 1 (see, e.g., [2]). Therefore,

(1 + 𝑐
𝑞
)(1 + 𝑑

𝑞
) = 𝑝
2
≥ 4 = 2

𝑞 and

𝛾 >

1

2𝑝

(𝑝
2
− 4) =

(1 + 𝑑
𝑞
) (1 + 𝑐

𝑞
) − 2
𝑞

𝑞 (1 + 𝑐
𝑞
)

(44)

for 2 ≤ 𝑝 < 𝛾 + √𝛾
2
+ 4. This implies by Lemma 14 that 𝐴 is

accretive. Therefore, 𝐴 is accretive in the sense of Deimling.
Hence, using Lemma 9, we have that 0 ∈ 𝐴(𝐷); that is, there
exists [𝑢, V] ∈ 𝐷 such that 𝐹𝑢 − V = 0 and 𝐾V + 𝑢 = 0. So 𝑢

solves (11).

Case 2 (1 + √1 − 𝛾 < 𝑝 ≤ 2). The condition 1 + √1 − 𝛾 <

𝑝 ≤ 2 implies that 𝛾 > 𝑝(2 − 𝑝). Hence, by Theorem 20, 𝐴 is
accretive. We conclude as in Case 1.This completes the proof.

Theorem 26. Let 𝐾 : 𝐷(𝐾) ⊂ 𝐿
𝑝

→ 𝐿
𝑝, 𝐹 : 𝐷(𝐹) ⊂

𝐿
𝑝

→ 𝐿
𝑝 be two continuous mappings satisfying the following

conditions:

(a) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐹),

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (45)

(b) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐾),

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

. (46)

Let 𝐷(𝐹) and 𝐷(𝐾) be closed and convex, such that 𝑅(𝐹) ⊂

𝐷(𝐾). Let 𝐸 := 𝐿
𝑝
× 𝐿
𝑝 and let 𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸 be a

mapping such that 𝐷(𝐹) × 𝐷(𝐾) =: 𝐷(𝐴) and 𝐴 is defined
by (24) for [𝑢, V] ∈ 𝐷(𝐴). Suppose that ⟨𝐴𝑤,𝑤⟩

+
≥ 0 for all

𝑤 ∈ 𝐷(𝐴) with ‖𝑤‖ ≥ 𝑅 for some 𝑅 > 0 or lim ‖𝐴𝑤‖ = ∞

as ‖𝑤‖ → ∞ and suppose 𝐴 satisfies condition (22). Let 𝛾 :=

min{𝛼, 𝛽}. If 2 ≤ 𝑝 < 𝛾 +√𝛾
2
+ 4 or 1 +√1 − 𝛾 < 𝑝 ≤ 2, then

Hammerstein equation (11) has a solution.

Proof. Evidently, continuity of𝐾 and𝐹 gives the continuity of
𝐴. Also 𝐷(𝐴) is closed and convex since 𝐷(𝐹) and 𝐷(𝐾) are.
The rest follows as in the proof ofTheorem 25.This completes
the proof.

Corollary 27. Let 𝐾 : 𝐷(𝐾) ⊂ 𝐿
𝑝

→ 𝐿
𝑝, 𝐹 : 𝐷(𝐹) ⊂

𝐿
𝑝

→ 𝐿
𝑝 be two continuous accretive mappings satisfying the

following conditions:

(a) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐹),

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (47)

(b) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐷(𝐾),

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

. (48)

Let 𝐷(𝐹) = 𝐿
𝑝

= 𝐷(𝐾). Let 𝐸 := 𝐿
𝑝
× 𝐿
𝑝 and let 𝐴 : 𝐸 →

𝐸 be a mapping defined by (24) [𝑢, V] ∈ 𝐷(𝐴). Suppose that
⟨𝐴𝑤,𝑤⟩

+
≥ 0 for all 𝑤 ∈ 𝐸 with ‖𝑤‖ ≥ 𝑅 for some 𝑅 > 0

or lim ‖𝐴𝑤‖ = ∞ as ‖𝑤‖ → ∞. Let 𝛾 := min{𝛼, 𝛽}. If 2 ≤

𝑝 < 𝛾 + √𝛾
2
+ 4 or 1 + √1 − 𝛾 < 𝑝 ≤ 2, then Hammerstein

equation (11) has a solution.

Proof. Since 𝐴 is defined on 𝐸, it satisfies condition (22) of
Theorem 26. Also 𝐷(𝐴) is closed and convex. Therefore, the
result follows fromTheorem 26.

3.3. The Case of Hilbert Spaces with Lipschitz Strongly
Monotone Mappings

Theorem 28. Let 𝐻 be a real Hilbert space and let 𝐾 : 𝐻 →

𝐻, 𝐹 : 𝐻 → 𝐻 be two Lipschitz strongly monotone mappings
with constants 𝛼, 𝛽, respectively. Let 𝐴 : 𝐸

𝐻
→ 𝐸

𝐻 be a
mapping defined by (24) for [𝑢, V] ∈ 𝐸

𝐻. Then, Hammerstein
equation (11) has a solution.

Proof. Using Lemma 16wehave that𝐴 is Lipschitz. Also since
every real Hilbert space is 𝑞-uniformly smooth with 𝑞 = 2,
𝑑
𝑞

= 𝑐
𝑞

= 1, we have that (1 + 𝑐
𝑞
)(1 + 𝑑

𝑞
) = 4 = 2

𝑞. Also
min{𝛼, 𝛽} > 0 = ((1 + 𝑐

𝑞
)(1 + 𝑑

𝑞
) − 2
𝑞
)/𝑞. Therefore, 𝐴 is

strongly monotone by Lemma 14. Since 𝐸
𝐻 is a real Hilbert

space and every real Hilbert space is uniformly convex, we
invoke Corollary 19 to obtain that 𝐴(𝐸

𝐻
) = 𝐸

𝐻. So there
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exists [𝑢, V] ∈ 𝐸
𝐻 such that 𝐴[𝑢, V] = 0; that is, 𝐹𝑢 − V =

0,𝐾V + 𝑢 = 0. Hence 𝑢 solves (11). This completes the
proof.

3.4. The Case of 𝐿
𝑝
Spaces, 1 < 𝑝 < ∞, with Lipschitz Strongly

Accretive Mappings

Theorem 29. Let 𝐾 : 𝐿
𝑝

→ 𝐿
𝑝
, 𝐹 : 𝐿

𝑝
→ 𝐿
𝑝
be two Lip-

schitz mappings satisfying the following conditions:

(a) there exists 𝛼 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐿
𝑝,

⟨𝐹𝑢
1
− 𝐹𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛼

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

; (49)

(b) there exists 𝛽 > 0 such that, for each 𝑢
1
, 𝑢
2
∈ 𝐿
𝑝,

⟨𝐾𝑢
1
− 𝐾𝑢
2
, 𝑗 (𝑢
1
− 𝑢
2
)⟩ ≥ 𝛽

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩

2

. (50)

Let 𝐸 := 𝐿
𝑝
× 𝐿
𝑝 and let 𝐴 : 𝐸 → 𝐸 be a mapping defined by

(24). Let 𝛾 := min{𝛼, 𝛽}. If 2 ≤ 𝑝 < 𝛾+√𝛾
2
+ 4 or 1+√1 − 𝛾 <

𝑝 ≤ 2, then, Hammerstein equation (11) has a solution.

Proof. Using Lemma 16 we have that 𝐴 is Lipschitz.

Case 1 (2 ≤ 𝑝 < 𝛾 + √𝛾
2
+ 4). In this case 𝐿

𝑝 is 2-uniformly
smooth space and 𝑐

𝑞
= 𝑑
𝑞
= 𝑝 − 1 (see, e.g., [2]). Therefore,

(1 + 𝑐
𝑞
)(1 + 𝑑

𝑞
) = 𝑝
2
≥ 4 = 2

𝑞 and

𝛾 >

1

2𝑝

(𝑝
2
− 4) =

(1 + 𝑑
𝑞
) (1 + 𝑐

𝑞
) − 2
𝑞

𝑞 (1 + 𝑐
𝑞
)

(51)

for 2 ≤ 𝑝 < 𝛾 + √𝛾
2
+ 4. This implies by Lemma 14 that 𝐴 is

strongly accretive. Since every 𝐿
𝑝
space, 2 ≤ 𝑝 < 𝛾 +√𝛾

2
+ 4,

is uniformly convex, by Corollary 19, 𝐴(𝐿
𝑝
) = 𝐿
𝑝
. Therefore

there exists [𝑢, V] ∈ 𝐷 such that𝐴[𝑢, V] = 0; that is, 𝐹𝑢−V = 0

and 𝐾V + 𝑢 = 0. So 𝑢 solves (11).

Case 2 (1 + √1 − 𝛾 < 𝑝 ≤ 2). The inequality 1 + √1 − 𝛾 <

𝑝 ≤ 2 implies that 𝛾 > 𝑝(2 − 𝑝). Hence by Theorem 20 𝐴

is strongly accretive. The result now follows as in Case 1 since
every 𝐿

𝑝
space, 1+√1 − 𝛾 < 𝑝 ≤ 2, is uniformly convex.This

completes the proof.
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