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We consider boundary value problems for scalar differential equation 𝑥

+ 𝜆𝑓(𝑥) = 0, 𝑥(0) = 0, 𝑥(1) = 0, where 𝑓(𝑥) is a

seventh-degree polynomial and 𝜆 is a parameter.We use the phase planemethod combined with evaluations of time-map functions
and make conclusions on the number of positive solutions. Bifurcation diagrams are constructed and examples are considered
illustrating the bifurcation processes.

1. Introduction

Nonlinear boundary value problems for ordinary differential
equations still form rapidly developed branch of classical
analysis. The traditional issues like existence of solutions,
uniqueness, and continuous dependence on boundary data
are discussed in a number of classical and modern sources
[1, 2]. Less studied are complicated problems of the number
of solutions as well as of their dependence on parameters. Of
special value are results on existence of positive solutions due
to multiple applications. We mention here the works [3–7],
where two-point boundary value problems with parameters
were considered for the second-order ordinary differential
equations.The problem of finding multiple positive solutions
was treated in [8]. Nonlinearities of polynomial type were
considered in [9]. The time-map technique was applied for
investigation of similar problems in [10].

Our goal in this note is to demonstrate how elementary
phase plane analysis combined with evaluations of time-
map functions can provide the researchers with significant
information on the number and properties of solutions. We
have chosen problem

𝑥

+ 𝜆𝑓 (𝑥) = 0,

𝑥 (0) = 0,

𝑥 (1) = 0,

(1)

where 𝑓(𝑥) is a seventh-degree polynomial. Our technique
is based on a phase plane analysis. To find positive solutions
we will use the first zero function (the so called time-map
function). By the first zero function we mean the mapping
𝛾 → 𝑡

1
(𝛾), where 𝑡

1
(𝛾) is the first zero on the right of a

solution of the Cauchy problem

𝑥 (0) = 0,

𝑥


(0) = 𝛾.

(2)

The paper [11] discusses the cases of 𝑓(𝑥) being third-
and fifth-degree polynomials. It was observed that problem
(1) may have, respectively, three or five positive solutions. We
focus on the case of 𝑓(𝑥) being seventh-degree polynomial.

In Section 2, we provide basic facts about first zero func-
tions. In Section 3,we formulate proposition about number of
positive solutions for the Dirichlet boundary value problem.
The example in Section 4 provides the detailed description of
the respective time-map functions, solutions, and bifurcation
diagrams. In the final section, we summarize the results and
make conclusions.

2. Basic Facts about Time-Map Function

Consider differential equation

𝑥

+ 𝑓 (𝑥) = 0. (3)
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If 𝑥(𝑡, 𝛾) is a solution of (3) with the initial conditions

𝑥 (0) = 0,

𝑥


(0) = 𝛾,

(4)

then we denote by 𝑡
1
(𝛾) the first zero function (time-map) for

Cauchy problem (3), (4).
Consider the problem with a parameter

𝑋

+ 𝜆𝑓 (𝑋) = 0,

𝑋 (0) = 0,

𝑋


(0) = 𝛼

(5)

and denote the first zero function 𝑈(𝛼, 𝜆).
The relation between these two time-map functions was

established previously [11, 12]:

𝑈 (𝛼, 𝜆) =

1

√𝜆

𝑡
1
(

𝛼

√𝜆

) . (6)

If 𝑥(𝑡; 𝛾) is a solution of the Cauchy problem (3), (4), then

𝑋 (𝑡; 𝛼) = 𝑥(√𝜆𝑡;

𝛼

√𝜆

) (7)

solves the initial value problem (5). For details consult [12].

3. Nonlinearity with Seventh-Degree
Polynomial

In the sequel, we consider the problemwith𝑓(𝑥) the seventh-
degree polynomial as follows:

𝑥

= 𝜆𝑓 (𝑥) , 𝜆 > 0, (8)

where

𝑓 (𝑥) = (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 − 𝑐) (𝑥 − 𝑑) (𝑥 − 𝑒) (𝑥 − 𝑔)

⋅ (𝑥 − ℎ) , 0 < 𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 < 𝑔 < ℎ

(9)

with the Dirichlet conditions

𝑥 (0) = 0,

𝑥 (1) = 0.

(10)

Let function 𝐹(𝑥) be the primitive function of 𝑓(𝑥)

𝐹 (𝑥) = ∫

𝑥

0

𝑓 (𝑠) 𝑑𝑠 (11)

and let the conditions

𝐹 (𝑎) < 𝐹 (𝑐) < 𝐹 (𝑒) < 𝐹 (ℎ) (12)

be fulfilled.
Let us consider phase plane for (8). The value of the first

zero function at 𝛼 is the time needed to move from a point
(0, 𝛼) to the first intersection point with the 𝑋-axis. Denote
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Figure 1: The phase portrait of (14).

by 𝑋(𝑡, 𝛼) a solution of the Cauchy problem (5). A set of
(𝜆, 𝛼) such that (𝜆, 𝑋(𝑡, 𝛼)) solves the Dirichlet problem (8),
(10) will be called a solution curve. All such (𝜆, 𝛼) satisfy the
equality

𝑈 (𝛼, 𝜆) = 1. (13)

The phase portrait for (8) has 7 critical points; 3 of them
are the points of type “center” and 4 are points of type
“saddle”: (𝑎, 0), (𝑐, 0), (𝑒, 0), and (ℎ, 0).

Consider equation

𝑥

= 𝑓 (𝑥) = (𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 − 𝑐) (𝑥 − 𝑑) (𝑥 − 𝑒)

⋅ (𝑥 − 𝑔) (𝑥 − ℎ) .

(14)

Suppose that 𝛾
1
, 𝛾
2
, 𝛾
3
, and 𝛾

4
are initial values such that

trajectories (𝑋(𝑡, 𝛾
𝑖
), 𝑋

(𝑡, 𝛾
𝑖
)) enter the saddle points (as in

Figure 1).
Part of the phase portrait for (14) has the form shown in

Figure 1.
We will look now for solutions of the Dirichlet problem

(14), (10) choosing the initial conditions in one of the four
intervals separately 𝛾 ∈ (0, 𝛾

1
), (𝛾
1
, 𝛾
2
), (𝛾
2
, 𝛾
3
), (𝛾
3
, 𝛾
4
).

We note that phase portraits of (8) and (14) are equivalent
(critical points are the same and trajectories are in one-to-
one correspondence due to formula (7)). If we change 𝜆 then
the initial values for trajectories entering saddle points change
also as 𝛼

𝑖
= √𝜆𝛾

𝑖
(𝑖 = 1, 2, 3, 4).

Proposition 1. For any 𝜆 > 0, there exists 𝛾 ∈ (0, 𝛾
1
(𝜆)) such

that 𝑇(𝛾) = 1, where 𝑇(𝛾) is the time-map function for (14).

Proof. Let𝑥(𝑡, 𝛾
1
) be a solutionwhich goes to the saddle point

at 𝑥 = 𝑎. Consider solutions 𝑥(𝑡, 𝛾) for 0 < 𝛾 < 𝛾
1
where 𝑇(𝛾)

is the time needed for a point to move along phase trajectory
from point (0, 𝛾) to point (0, −𝛾). 𝑇(𝛾) tends to zero as 𝛾 goes
to zero (since (0, 0) is not a critical point) and 𝑇(𝛾) tends to
+∞ as 𝛾 goes to 𝛾

1
. By continuity of 𝑇(𝛾) there exists 𝛾 ∈

(0, 𝛾
1
) such that 𝑇(𝛾) = 1.

Proposition 2. For the first zero function 𝑇(𝛾) of (14) in each
of the intervals (𝛾

1
, 𝛾
2
), (𝛾
2
, 𝛾
3
), and (𝛾

3
, 𝛾
4
) there exist 𝑇

𝑖min =

min
𝛾𝑖<𝛾<𝛾𝑖+1

𝑇(𝛾), 𝑖 = 1, 2, 3, respectively.
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Figure 2: The phase portrait of (15), 𝜆 = 0.0343.

Proof. Consider solutions 𝑥(𝑡, 𝛾) for 𝛾
1
< 𝛾 < 𝛾

2
where 𝑇(𝛾)

is the time needed for a point to move along phase trajectory
from point (0, 𝛾) to point (0, −𝛾).Then 𝑇(𝛾) tends to +∞ as 𝛾
goes to 𝛾

1
and𝑇(𝛾) tends to+∞ as 𝛾 goes to 𝛾

2
. Function𝑇(𝛾)

is continuous since the right side of (14) is a polynomial and
there is continuous dependence of solutions on initial data.
Therefore, there is a minimum of 𝑇

1min in (𝛾
1
, 𝛾
2
) at some

𝛾
1min and, in this case also, the time function has a “U” shaped
graph, similarly to 𝑇

2min and 𝑇
3min.

Remark 3. Thegraph of the time-map function has U-shaped
segments and the number of positive solutions may be one,
two, or more solutions depending on whether the graph of
𝑇(𝛾) has one, two, or more intersections with the unity level
(the unity refers to the length of the interval).

Proposition 4. There exists Λ > 0 such that 𝜆 > Λ the
Dirichlet problem (8), (10) has at least seven solutions.

Proof. It follows from Propositions 1 and 2 and formula (6),
where 𝑡

1
(𝛼) is the time-map function for equation 𝑥


= 𝑓(𝑥)

and 𝑓(𝑥) is given in (9).

Remark 5. The relative positions of 𝑇
𝑖min, 𝑖 = 1, 2, 3, do not

change if 𝜆 tends to +∞. This follows from (6).

Remark 6. Precise number of solutions of problem (8), (10)
depends on convexity of time-map function 𝑈(𝛼, 𝜆) with
respect to 𝛼 and this can be checked using criteria for 𝜕𝑈/𝜕𝛼
and 𝜕
2
𝑈/𝜕𝛼
2 as in [13].

4. Examples

4.1. Example 1. Consider equation

𝑥

= 𝜆 (𝑥 − 1) (𝑥 − 2) (𝑥 − 4) (𝑥 − 5) (𝑥 − 9) (𝑥 − 10)

⋅ (𝑥 − 12) .

(15)
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Figure 3: Graphs of the function 𝑓(𝑥) and 𝐹(𝑥) (dashed).
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Figure 4: The bifurcation diagram for Example 1.

The phase portrait of (15) has 7 critical points; 3 of them are
points of type “center” and 4 are points of type “saddle”: (1, 0),
(4, 0), (9, 0), and (12, 0) (see Figure 2).

Then
𝑓 (𝑥) = (𝑥 − 1) (𝑥 − 2) (𝑥 − 4) (𝑥 − 5) (𝑥 − 9) (𝑥 − 10)

⋅ (𝑥 − 12) .

(16)

The condition

𝐹 (1) < 𝐹 (4) < 𝐹 (9) < 𝐹 (12) (17)

is fulfilled (see Figure 3). Next we bring all the time-maps
together and as a result get the bifurcation diagram in
Figure 4.

The graphs of 𝑈(𝛼, 𝜆) for seven values of 𝜆 are depicted
in Figures 5–18.

4.2. Example 2. Consider equation

𝑥

= 𝜆 (𝑥 − 1) (𝑥 − 2) (𝑥 − 5) (𝑥 − 6) (𝑥 − 8) (𝑥 − 10)

⋅ (𝑥 − 12) .

(18)
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Figure 5: The graph of the function 𝑈(𝛼, 0.01).
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Figure 6: The solution of problem (15), (10), 𝛼 ≈ 17.0132.
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Figure 7: The graph of the function 𝑈(𝛼, 0.01824).
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Figure 8: Two solutions of problem (15), (10), 𝛼 ≈ 22.9775, 𝛼 ≈

29.8788.
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Figure 9: The graph of the function 𝑈(𝛼, 0.02).
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Figure 10: Three solutions of problem (15), (10), 𝛼 ≈ 24.0606, 𝛼 ≈

29.4663, and 𝛼 ≈ 32.5832.
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Figure 11: The graph of the function 𝑈(𝛼, 0.02222).

The 012B phase portrait of (18) has 7 critical points; 3 of
them are the points of type “center” and 4 are points of type
“saddle”: (1, 0), (5, 0), (8, 0), and (12, 0). The structure of the
phase portrait for (18) is the same as that for (15).

Then

𝑓 (𝑥) = (𝑥 − 1) (𝑥 − 2) (𝑥 − 5) (𝑥 − 6) (𝑥 − 8) (𝑥 − 10)

⋅ (𝑥 − 12) .

(19)
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Figure 12: Four solutions of problem (15), (10), 𝛼 ≈ 25.3608, 𝛼 ≈

30.0365, 𝛼 ≈ 34.7552, and 𝛼 ≈ 41.4674.
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Figure 13: The graph of the function 𝑈(𝛼, 0.0241).
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Figure 14: Five solutions of problem (15), (10), 𝛼 ≈ 26.4119, 𝛼 ≈

30.6763, 𝛼 ≈ 36.3664, 𝛼 ≈ 40.8286, and 𝛼 ≈ 42.7074.

The condition for the saddle points

𝐹 (1) < 𝐹 (5) < 𝐹 (8) < 𝐹 (12) (20)

is fulfilled also.
If we look at the bifurcation diagram in Figure 19, we see

that there is no such value 𝜆 where at some 𝛼 the Dirichlet
problem (18), (10) has seven solution because the difference
between minimum values of the time-map function is large
enough.
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Figure 15: The graph of the function 𝑈(𝛼, 0.02711).
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Figure 16: Six solutions of problem (15), (10), 𝛼 ≈ 28.0128, 𝛼 ≈

28.4601, 𝛼 ≈ 31.8026, 𝛼 ≈ 38.7197, 𝛼 ≈ 42.1239, and 𝛼 ≈ 45.4026.
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Figure 17: The graph of the function 𝑈(𝛼, 0.0343).

5. Conclusions

For a polynomial of the type (9) but with arbitrary large
odd number of zeros 𝑘 in presence of the condition 𝐹(𝑎

1
) <

𝐹(𝑎
3
) < ⋅ ⋅ ⋅ < 𝐹(𝑎

𝑘
) (𝑎
𝑖
are the zeros) there always exists large

enough 𝜆 such that the respective boundary value problem
(1) has at least 𝑘 positive solutions.

If 𝜆 is not large then in presence of the condition 𝐹(𝑎
1
) <

𝐹(𝑎
3
) < ⋅ ⋅ ⋅ < 𝐹(𝑎

𝑘
) the number of solutions of the boundary

value problem (1) depends on the relative positions ofminima
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Figure 18: Seven solutions of problem (15), (10), 𝛼 ≈ 31.5093, 𝛼 ≈

31.6248, 𝛼 ≈ 32.3915, 𝛼 ≈ 34.6074, 𝛼 ≈ 43.6897, 𝛼 ≈ 45.7099, and
𝛼 ≈ 51.0893.
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Figure 19: The bifurcation diagram for Example 2.

of the first zero function (time-map) 𝑇(𝛾). These relative
positions may be regulated by the choice of parameters
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑘
.
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