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We prove the existence and uniqueness of solution for fractional differential equations with Riemann-Liouville fractional integral
boundary conditions.The first existence and uniqueness result is based on Banach’s contraction principle.Moreover, other existence
results are also obtained by using the Krasnoselskii fixed point theorem. An example is given to illustrate the main results.

1. Introduction

Very recently, fractional differential equations have gained
much attention due to extensive applications of these equa-
tions in themathematical modelling of physical, engineering,
biological phenomena and viscoelasticity (see, e.g., [1, 2]).
There has been a significant development in fractional dif-
ferential equations. One can see the monographs of Kilbas
et al. [3], Miller and Ross [4], Lakshmikantham et al. [5], and
Podlubny [6]. In particular, Agarwal et al. [7] establish suffi-
cient conditions for the existence and uniqueness of solutions
for various classes of initial and boundary value problem for
fractional differential equations and inclusions involving the
Caputo fractional derivative in finite dimensional spaces.

Moreover, the theory of boundary value problems with
integral boundary conditions for ordinary differential equa-
tions arises in different areas of applied mathematics and
physics. For example, heat conduction, chemical engineer-
ing, underground water flow, thermoelasticity, population
dynamics [8], and cellular systems [9] can be reduced to the
nonlocal problems with integral boundary conditions. For
boundary value problems with integral boundary conditions
and comments on their importance, we refer the reader to the
papers [10–13] and so forth.

In this paper, we study the existence and unique-
ness of solution for fractional differential equations with

Riemann-Liouville fractional integral boundary conditions
of the following form:

𝐶
𝐷
𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ 𝐽 fl [0, 1] , 1 < 𝑞 ≤ 2,

𝛼1𝑥 (0) + 𝛽1𝐼
𝑝
𝑥 (𝑡)

󵄨󵄨󵄨󵄨𝑡=0
= 𝛾1,

𝛼
2
𝑥 (1) + 𝛽

2
𝐼
𝑝
𝑥 (𝑡)

󵄨󵄨󵄨󵄨𝑡=1
= 𝛾
2
,

0 < 𝑝 < 1,

(1)

where 𝐶𝐷𝑞 is the Caputo fractional derivative of order 𝑞, 𝐼𝑝
is the Riemann-Liouville fractional integral of order 𝑝, and
𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
(𝑖 = 1, 2) are real constants.

Moreover, 𝑓 : 𝐽 × 𝐸 → 𝐸 is a continuous function
satisfying some assumptions that will be specified later and
𝐸 is a Banach space with norm ‖ ⋅ ‖.

2. Preliminaries

We now gather some definitions and preliminary facts which
will be used throughout this paper. Denote by 𝐶(𝐽, 𝐸) the
Banach space of continuous functions 𝑥 : 𝐽 → 𝐸, with the
usual supremum norm

‖𝑥‖∞ = sup
𝑡∈𝐽

‖𝑥 (𝑡)‖ . (2)
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We need some basic definitions and properties [6, 14] of
fractional calculus which are used in this paper.

Definition 1. The Riemann-Liouville fractional integral of
order 𝑞 > 0 of the function ℎ ∈ 𝐿

1
([𝑎, 𝑏]) is defined as

𝐼
𝑞
ℎ (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

ℎ (𝑠)

(𝑡 − 𝑠)
1−𝑞

𝑑𝑠. (3)

Definition 2. For a function ℎ defined on the interval [𝑎, 𝑏],
the Caputo fractional order derivative of ℎ is defined by

𝐶
𝐷
𝑞
ℎ (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

0

ℎ
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝑞−𝑛+1

𝑑𝑠, (4)

where 𝑛 = [𝑞] + 1 and [𝑞] denotes the integer part of 𝑞.

From the definition of the Caputo derivative, the follow-
ing auxiliary results have been established in [3].

Lemma 3. Let 𝑞 > 0; then the differential equation 𝐶𝐷𝑞
𝑡
ℎ(𝑡) =

0 has solutions

ℎ (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑚−1
𝑡
𝑚−1

, (5)

for some 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑚 − 1.

Lemma 4. Let 𝑞 > 0; then

𝐼
𝑞𝐶
𝐷
𝑞

𝑡
ℎ (𝑡) = ℎ (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑚−1
𝑡
𝑚−1

, (6)

for some 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑚 − 1,𝑚 = −[−𝑞].

To study the boundary value problem (1), we first consider
the associated linear problem and obtain its solution.

Lemma 5. For a given 𝜎 ∈ 𝐶(𝐽, 𝐸), the unique mild solution
of the fractional boundary value problem,

𝐶
𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝜎 (𝑡) , 0 < 𝑞 < 1, 𝑡 ∈ 𝐽,

𝛼
1
𝑥 (0) + 𝛽

1
𝐼
𝑝
𝑥 (𝑡)

󵄨󵄨󵄨󵄨𝑡=0
= 𝛾
1
,

𝛼
2𝑥 (1) + 𝛽2𝐼

𝑝
𝑥 (𝑡)

󵄨󵄨󵄨󵄨𝑡=1
= 𝛾2,

0 < 𝑝 < 1,

(7)

satisfies the following integral equation:

𝑥 (𝑡) =
𝛾
1

𝛼
1

+ ]1𝑡 ((𝛾2 −
𝛾
1

]
2
𝛼
1

)

− ∫

1

0

(
𝛼
2

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

𝛽
2

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅ 𝜎 (𝑠) 𝑑𝑠) +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜎 (𝑠) 𝑑𝑠,

(8)

where

]1 =
Γ (𝑝 + 2)

𝛼2Γ (𝑝 + 2) + 𝛽2

,

]
2
=

Γ (𝑝 + 1)

𝛼
2
Γ (𝑝 + 1) + 𝛽

2

.

(9)

Proof. By Lemma 4, we reduce (7) to an equivalent integral
equation

𝑥 (𝑡) = 𝐼
𝑞
𝜎 (𝑡) − 𝑐

0
− 𝑐
1
𝑡

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜎 (𝑠) 𝑑𝑠 − 𝑐
0
− 𝑐
1
𝑡.

(10)

Then we have

𝐼
𝑝
𝑥 (𝑡) =

1

Γ (𝑝)
∫

𝑡

0

(𝑡 − 𝑠)
𝑝−1

𝑥 (𝑠) 𝑑𝑠 =
1

Γ (𝑝)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝑝−1

⋅ (
1

Γ (𝑞)
∫

𝑠

0

(𝑠 − 𝜏)
𝑞−1

𝜎 (𝜏) 𝑑𝜏 − 𝑐
0
− 𝑐
1
𝑠) 𝑑𝑠

=
1

Γ (𝑝) Γ (𝑞)
∫

𝑡

0

(∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑝−1

(𝑠 − 𝜏)
𝑞−1

𝑑𝑠)

⋅ 𝜎 (𝜏) 𝑑𝜏 −
𝑐
0
𝑡
𝑝

Γ (𝑝 + 1)
−

𝑐
1

Γ (𝑝)
∫

𝑡

0

(𝑡 − 𝑠)
𝑝−1

𝑠 𝑑𝑠

=
B (𝑝, 𝑞)

Γ (𝑝) Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝜏)
𝑝+𝑞−1

𝜎 (𝜏) 𝑑𝜏 −
𝑐
0
𝑡
𝑝

Γ (𝑝 + 1)

−
𝑐1

Γ (𝑝)
∫

𝑡

0

(𝑡 − 𝑠)
𝑝−1

𝑠 𝑑𝑠 =
1

Γ (𝑝 + 𝑞)

⋅ ∫

𝑡

0

(𝑡 − 𝜏)
𝑝+𝑞−1

𝜎 (𝜏) 𝑑𝜏 −
𝑐
0
𝑡
𝑝

Γ (𝑝 + 1)
−

𝑐1

Γ (𝑝)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝑝−1

𝑠 𝑑𝑠,

(11)

where the integral

∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑝−1

(𝑠 − 𝜏)
𝑞−1

𝑑𝑠

= (𝑡 − 𝜏)
𝑝+𝑞−1

∫

1

0

(1 − 𝑧)
𝑝−1

𝑧
𝑞−1

𝑑𝑧

= (𝑡 − 𝜏)
𝑝+𝑞−1 B (𝑝, 𝑞)

(12)

is evaluated with the help of the substitution 𝑠 = 𝜏 + 𝑧(𝑡 −

𝜏) and the definition of the beta function B(𝑝, 𝑞) = ∫
1

0
(𝑡 −

𝑠)
𝑝−1

𝑠
𝑞−1

𝑑𝑠 = Γ(𝑝)Γ(𝑞)/Γ(𝑝 + 𝑞).
Applying the boundary conditions in (7), we have

− 𝑐0𝛼1 + 𝛽1 × 0 = 𝛾1, which implies that 𝑐0 = −
𝛾
1

𝛼
1

, (13)

𝛼2 (∫

1

0

(1 − 𝑠)
𝑞−1

Γ (𝑞)
𝜎 (𝑠) 𝑑𝑠 − 𝑐0 − 𝑐1)

+ 𝛽
2
(∫

1

0

(1 − 𝑠)
𝑝+𝑞−1

Γ (𝑝 + 𝑞)
𝜎 (𝑠) 𝑑𝑠 − 𝑐

0 ∫

1

0

(1 − 𝑠)
𝑝−1

Γ (𝑝)
𝑑𝑠

− 𝑐
1 ∫

1

0

(1 − 𝑠)
𝑝−1

𝑠

Γ (𝑝)
𝑑𝑠) = 𝛾

2
.

(14)
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Using (13) in (14) together with (9), we obtain

𝑐
1 = ]1 ∫

1

0

(𝛼2

(1 − 𝑠)
𝑞−1

Γ (𝑞)
+ 𝛽2

(1 − 𝑠)
𝑝+𝑞−1

Γ (𝑝 + 𝑞)
)𝜎 (𝑠) 𝑑𝑠

− ]
1
(𝛾
2
−

𝛾
1

]2𝛼1
) .

(15)

Substituting the values of 𝑐
0 and 𝑐1 in (10), we get (8). This

completes the proof.

Lemma 6 (Arzelà-Ascoli, [15]). If a sequence {𝑥𝑛} in a
compact subset of𝑋 is uniformly bounded and equicontinuous,
then it has a uniformly convergent subsequence.

Lemma 7 (Krasnoselskii, [15]). Let Ω be a closed convex and
nonempty subset of a Banach space 𝑋. Let 𝐴 and 𝐵 be two
operators such that

(i) 𝐴𝑥 + 𝐵𝑦 ∈ Ω, wherever 𝑥, 𝑦 ∈ Ω;
(ii) 𝐴 is compact and continuous;
(iii) 𝐵 is a contraction mapping.

Then there exists 𝑧 ∈ Ω such that 𝑧 = 𝐴𝑧 + 𝐵𝑧.

3. Main Results

In view of Lemma 5, we define the operator 𝑇 : 𝐶(𝐽, 𝐸) →

𝐶(𝐽, 𝐸) as follows:

(𝑇𝑥) (𝑡) =
𝛾1

𝛼
1

+ ]
1
𝑡 [(𝛾
2
−

𝛾
1

]
2
𝛼
1

)

− ∫

1

0

(
𝛼2

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

𝛽
2

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠] +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(16)

For the forthcoming analysis we impose suitable conditions
on the functions involved in the boundary value problem (1).
Namely, we assume the following:
(H1) The function𝑓 : 𝐽×𝐸 → 𝐸 is continuous and satisfies

the following Lipschitz conditionwith constant 𝑘 > 0:
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝐸, 𝑡 ∈ 𝐽. (17)

(H2) Let𝑑 and 𝑟 be twononnegative real numbers such that
0 < 𝑑 < 1 and

𝑘(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) < 𝑑,

𝑀(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

≤ (1 − 𝑑) 𝑟,

(18)

where𝑀 fl sup
𝑡∈𝐽

|𝑓(𝑡, 0)|.

Our first result is based on Banach’s contraction principle.

Theorem 8. Assume that conditions (H1) and (H2) are satis-
fied.Then the boundary value problem (1) has a unique solution
in 𝐶(𝐽, 𝐸).

Proof. We need to prove that the operator 𝑇 has a fixed point
on the set 𝐵

𝑟
= {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑟}. For 𝑥 ∈ 𝐵

𝑟
, we have

‖(𝑇𝑥) (𝑡)‖ ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

)

+ ∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 0)

󵄩󵄩󵄩󵄩 𝑑𝑠] +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

󵄩󵄩󵄩󵄩 𝑑𝑠 +
1

Γ (𝑞)
∫

𝑡

0

(𝑡

− 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 0)

󵄩󵄩󵄩󵄩 𝑑𝑠 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) + 𝑘 ‖𝑥‖∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)𝑑𝑠

+𝑀∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)𝑑𝑠] +

𝑘 ‖𝑥‖

Γ (𝑞)
∫

𝑡

0

(𝑡

− 𝑠)
𝑞−1

𝑑𝑠 +
𝑀

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) + 𝑘(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) 𝑟 +𝑀(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)] +

𝑘𝑟

Γ (𝑞 + 1)
+

𝑀

Γ (𝑝 + 𝑞 + 1)

= 𝑘(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) 𝑟
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+𝑀(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨 (

󵄨󵄨󵄨󵄨𝛾2
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

.

(19)

Therefore,

‖𝑇𝑥‖ ≤ 𝑑𝑟 + (1 − 𝑑) 𝑟, (20)

which implies that 𝑇𝐵
𝑟
⊂ 𝐵
𝑟
. Hence, 𝑇maps 𝐵

𝑟
into itself.

Now, we will prove that𝑇 is a contractionmapping on 𝐵
𝑟
.

For 𝑥, 𝑦 ∈ 𝐵
𝑟
, we have

󵄩󵄩󵄩󵄩(𝑇𝑥) (𝑡) − (𝑇𝑦) (𝑡)
󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

⋅ ∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 +
1

Γ (𝑞)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑘(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(21)

Therefore,
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝑑
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 . (22)

Hence, the operator 𝑇 is a contraction. Then 𝑇 has a unique
fixed point which is a solution of the boundary value problem
(1).

The following result is based on the Krasnoselskii fixed
point theorem. To apply this theorem, we need the following
hypothesis:

(H3) There exist 𝜙(𝑡) ∈ 𝐿
1
(𝐽,R
+
) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) , ∀ (𝑡, 𝑥) ∈ 𝐽 × 𝐸. (23)

Theorem 9. Assume that conditions (H1) and (H3) are satis-
fied.Then the boundary value problem (1) has at least a solution
in 𝐶(𝐽, 𝐸), provided that

𝑙 fl 𝑘
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 (

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) < 1. (24)

Proof. Letting 𝜙∗ fl sup
𝑡∈𝐽

𝜙(𝑡), we fix

𝜌 ≥

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

)

+ (
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)𝜙
∗
.

(25)

On 𝐵
𝜌
= {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝜌}, we define the two operators 𝑅

and 𝑆 as follows:

(𝑅𝑥) (𝑡) =
𝛾
1

𝛼
1

+ ]
1
𝑡 [(𝛾
2
−

𝛾
1

]
2
𝛼
1

)

− ∫

1

0

(𝛼
2

(1 − 𝑠)
𝑞−1

Γ (𝑞)
+ 𝛽
2

(1 − 𝑠)
𝑝+𝑞−1

Γ (𝑝 + 𝑞)
)

⋅ 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠] , 𝑡 ∈ 𝐽,

(𝑆𝑥) (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(26)

For 𝑥, 𝑦 ∈ 𝐵
𝜌
, we have

󵄩󵄩󵄩󵄩𝑅𝑥 + 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

)

+ ∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠] +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

⋅
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) + ∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)𝜙 (𝑠) 𝑑𝑠] +

1

Γ (𝑞)
∫

𝑡

0

(𝑡

− 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

)

+ 𝜙
∗
∫

1

0

(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞)
(1 − 𝑠)

𝑞−1

+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞)
(1 − 𝑠)

𝑝+𝑞−1
)𝑑𝑠] + 𝜙

∗ 1

Γ (𝑞)
∫

𝑡

0

(𝑡

− 𝑠)
𝑞−1

𝑑𝑠 ≤

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 [(
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

)

+ 𝜙
∗
(

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)] +

𝜙
∗

Γ (𝑞 + 1)

=

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝛾2

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛾1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨]2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

) + (
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)

+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
)𝜙
∗
≤ 𝜌.

(27)

Hence, 𝑅𝑥 + 𝑆𝑦 ∈ 𝐵
𝜌
.
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On the other hand, from (H1) together with (24), it is easy
to see that

󵄩󵄩󵄩󵄩𝑅𝑥 − 𝑅𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (28)

and since 𝑙 < 1, then 𝑅 is a contraction mapping.
Moreover, continuity of 𝑓 implies that the operator 𝑆 is

continuous. Also, 𝑆 is uniformly bounded on 𝐵
𝜌 and

‖𝑆𝑥‖ ≤
𝜙
∗

Γ (𝑞 + 1)
. (29)

Now we prove the compactness of the operator 𝑆.
In view of (H1) we define 𝐿 fl sup

(𝑡,𝑥)∈𝐽×𝐵𝜌
𝑓(𝑡, 𝑥) and

consequently we have for 𝑡
1
, 𝑡
2
∈ 𝐽, 𝑡
1
< 𝑡
2
, and 𝑥 ∈ 𝐵

𝜌

󵄩󵄩󵄩󵄩(𝑆𝑥) (𝑡2) − (𝑆𝑥) (𝑡1)
󵄩󵄩󵄩󵄩 = sup
(𝑡,𝑥)∈𝐽×𝐵𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝑞)

⋅ ∫

𝑡2

0

[(𝑡
2
− 𝑠)
𝑞−1

− (𝑡
1
− 𝑠)
𝑞−1

] 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

+
1

Γ (𝑞)
∫

𝑡2

𝑡1

(𝑡
1
− 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐿

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑡
𝑞

2

− 𝑡
𝑞

1

󵄨󵄨󵄨󵄨 ,

(30)

which is independent of 𝑥 and tends to zero as 𝑡
2
− 𝑡
1
→ 0.

Thus, 𝑆 is equicontinuous. Hence, by the Arzelà-AscoliTheo-
rem (Lemma 6), 𝑆 is compact on𝐵𝜌.Thus, all the assumptions
of Lemma 7 are satisfied. So the conclusion of the Kras-
noselskii fixed point theorem implies that the boundary value
problem (1) has at least one solution on 𝐽. This completes the
proof of Theorem 9.

4. An Example

Consider the following fractional boundary value problem:

𝐶
𝐷
4/3

𝑡
𝑥 (𝑡) =

1

𝑒𝑡+2
(

|𝑥 (𝑡)|

|𝑥 (𝑡)| + 1
) ,

𝑡 ∈ [0, 1] ,

𝑥 (0) + 𝐼
1/3

𝑥 (𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

=
1

2
,

1

2
𝑥 (1) +

1

3
𝐼
1/3

𝑥 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1
= 2,

(31)

where 𝑞 = 4/3, 𝑝 = 1/3, 𝛼1 = 1, 𝛼2 = 1/2, 𝛽1 = 1, 𝛽2 = 1/3,
𝛾1 = 1/2, 𝛾2 = 2, and ]1 ≃ 1.282114, ]2 ≃ 1.145105.

Here, 𝑓 : [0, 1] ×R → R is given by

𝑓 (𝑡, 𝑥) =
1

𝑒𝑡+2
(

|𝑥|

|𝑥| + 1
) , ∀ (𝑡, 𝑥) ∈ [0, 1] ×R. (32)

Then we have

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄩󵄩󵄩󵄩 ≤

1

𝑒2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(33)

Therefore, (H1) is satisfied with 𝑘 = 1/𝑒
2
≃ 0.135335.

Moreover,

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑒𝑡+2
(

|𝑥|

|𝑥| + 1
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑒𝑡+2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

|𝑥|

|𝑥| + 1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑒𝑡+2
.

(34)

Therefore, 𝜙(𝑡) = 1/𝑒
𝑡+2, ∀𝑡 ∈ [0, 1], and 𝜙

∗
= 1/𝑒

2
≃

0.135335.
Also, we get𝑀 = sup

𝑡∈𝐽
|𝑓(𝑡, 0)| = 1/𝑒

2
≃ 0.135335.

Finally, simple calculations give

𝑘(
1 +

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨]1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) ≃ 0.224974 < 1,

𝑙 = 𝑘
󵄨󵄨󵄨󵄨]1

󵄨󵄨󵄨󵄨 (

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

Γ (𝑞 + 1)
+

󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨

Γ (𝑝 + 𝑞 + 1)
) ≃ 0.130704

< 1.

(35)

Clearly, all the assumptions ofTheorems 8 and 9 are satisfied.
So there exists at least one solution of the boundary value
problem (31) on [0, 1].

5. Conclusion

In this paper, we study the existence and uniqueness for frac-
tional order differential equations with Riemann-Liouville
integral boundary conditions (1) in Banach spaces. Existence
and uniqueness results of solutions are established by virtue
of fractional calculus, Banach’s contraction principle, and
the Krasnoselskii fixed point theorem. As applications, an
example is presented to illustrate the main results.
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