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The object of this paper is to establish some nonlinear retarded inequalities on time scales which can be used as handy tools in the

theory of integral equations with time delays.

1. Introduction

Integral inequalities play an important role in the qualitative
analysis of differential and integral equations. The well-
known Gronwall inequality provides explicit bounds for
solutions of many differential and integral equations. On the
basis of various initiatives, this inequality has been extended
and applied to various contexts (see, e.g., [1-4]), including
many retarded ones (see, e.g., [5-9]).
Recently, Ye and Gao [7] obtained the following.

Theorem A. Let I = [t,,T) C R, a(t),b(t) € C(I,R"), ¢(t) €
C([IZ0 -1t ], R"), a(ty) = ¢(t,), and u(t) € C([t, —r,T),R")
wit

u(t)y<al(t)+ Jt (t-s)F b (s)u(s—r)ds, telt,T)

u() <), telty—rty),

@

where 3 > 0. Then, the following assertions hold.
(i) Suppose that 5 > 1/2. Then,

]1/2, tety+r,T),

u(t) <eéfw, @) +y, )
u(t)<a(t)+ Jt - b(s)p(s—r)ds, (2
to

te[tyty+7),

where K; = T(2f3 - e 2 /4P, C, = max{2,e”}, w,(t) =
Cie 2oa*(t), ¢, (t) = Cre 20 ¢*(t), and

¥ (1)

_ r K,b* () ¢y (s — r) s
to

t
- exp <J K1b2 (1) d‘r>
tot+r

+ J: wy (s—7) Klb2 (s) exp <JtK1b2 (1) dT) ds.

otr N

3)

If, in addition, a(t) and ¢(t) are nondecreasing C'-functions,

then
K t
u(t) < +/Cya(t) exp <t —ty+ 71 L b? (s) ds) ,

te(t,T).

(4)
(ii) Suppose that 0 < 3 < 1/2. Then,
u(t) <eéfw, ) +y, (t)]l/q, telty+rT),
u(t)y<al(t)+ Jt t - "b(s)p(s—r)ds, (5)
to

te[tyty+71),
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where K, = [T(1 - (1 — Bp))/p"PU PP ¢, =
max {277, 67}, w,(t) = Cye M0al(t), ¢,(t) = Cye Togi(t),
y(t) = 2’1_1ng_q’bq(t), and

t

7, (1) = j Y () (s—r)ds- exp (j v (@ dT>

(6)

0tT

+ f w, (s — 1)y (s) exp <th(f)df> ds.

otr N

If, in addition, a(t) and ¢(t) are nondecreasing C'-functions,
then

t
u(t) < C;/qa (t) exp (t —ty+ 1 J v (s) d5> ,
q ) ?)

te[t,T).
In this paper, we will further investigate functions u

satisfying the following more general inequalities:

ult) <al)+ r t - ()™ (s— 1) As,
to

te[teT)p ®

ut) <), telto-rty)yp

u(t) <af(t)
+ Jt (t —s)P! [b (s) ™™ (s) + ¢ (s) U™ (s - r)] As,
t

telteT)r

u) <), telty—rty)p

9)
where T is any time scale, u(t), a(t), b(t), c(t), and ¢(t) are

real-valued nonnegative rd-continuous functions defined on
T, m and » are positive constants, m > n,m > 1, (1/p) +

(1/m)=1,B>(p-1)/p,and [t,, T)y := [te, T) N T.
First, we make a preliminary definition.

Definition 1. We say that a function p : T — R is regressive
provided that
1+u(t)p(t) #0, VteT (10)

holds, where y(t) is graininess function; that is, u(t) := o(t) -
t. The set of all regressive and rd-continuous functions f :
T — R will be denoted by &.

2. Main Results
For convenience, we first cite the following lemma.
Lemma 2 (see [10]). Leta >0, p > g >0, p#0; then

P < Axcapieg | P; 9alr )

for any K > 0.
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Lemma 3. Let a(t) > 0, b(t) > 0, p(t) = nb(t)/m, -b €
RT={feR:1+ult)f(t) >0, forallt € T}, $(t) > 0is
rd-continuous on [ty — 1, tyly, andr > 0 and m > n > 0 are
real constants. If u(t) > 0 is rd-continuous and

u" () <a(t) + J;t b(s)u"(s—r)As, tel[t,T)p
0 (12)

u) <), telty—rty)p

then

u" (t) <a(t)+ Jt p(s)a(s—r) e, (s, t) As

+e_p,(ty+1.t) Jt0+r b(s)¢" (s—r)As  (13)

m-n

- (e,p (tg +1.t) - 1)

fort e [ty+r,T) and

" () <at)+ Jt b(s)d" (s—7)As (14)

0

fort € [ty,ty + 1)y
Furthermore, if a(t) and ¢(t) are nondecreasing with
a(ty) = ¢"(t,), then
W' (t) <c()ey (tet), te[teT)p (15)
where c(t) := a(t) + im —n)/n.

Proof. Letz(t) = '[: b(s)u" (s — r)As. Then, z(t,) = 0,u™(t) <
0

a(t)+z(t) and z(t) is positive, nondecreasing for t € [t,, T)y.

By Lemma 2, we get

2 =b®)u" t-r)<b@®) [a(t—r)+z(t—r)]"/m

m-n

<b(t) %(a(t—r)+z(t—r))+

m—nb(t)

m

<

bz )+ 2b®) alt—1) +
m

3=

m

)

n

=p®zc@)+pt)a(t—r)+
(16)

fort € [ty + r,T)y. Multiplying (16) by e_(,£, + 1) > 0, we
get

(z e, (t,ty + r))A <pa(t-rye, (ttg+71)
(17)

m-n
+

- pt)e, (ttg+71).
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Integrating both sides from t,, + r to t, we obtain

z(t)< e, (to+r.t)z(ty+7)

t
+e_,(ty+7.1) L pals—rye,(sto+r)As

m; " (e_P (to+7,t) - 1).
(18)
Fort € [ty ty + 1)1 Z201) < b(t)¢"(t — 1), so
z(t) < J-t b(s)¢" (s—71)As. 19)
Using (18) and (19), we get
z(t)<e, (tg +1,t) It0+r b(s)¢" (s—7)As
+ jt p(s)a(s—r) e_p (s,t) As (20)
Lt (e_P (to +1.t) — 1)

fort € [ty +71,T)y.

Noting that u™(¢) < a(t) + z(¢), inequalities (13) and (14)
follow.

Finally, if a(t) and ¢(t) are nondecreasing, then for t €
[to,to + 7)1, by (14), we have

W) <al)+ ¢ (E-r) J: b (s) As
' (21)

<af(t) <1 + J: b(s) As> <c(t)e, (tpt).

Ift € [ty +7,T)p, by (13),

W) <alt) e, (ty+rt)alt) JW b(s) As

to

t

+a(t)J

tot+r

p(s) e, (s,t) As

m
+

_ J: p(s) ep (s, t) As

n otr

Sc(t)+e,(tg+r.t)c(t) Jtow b(s)As (22)

t
+c(t) L p(s) e_, (s t) As

=c(t)e_,(to+11) (1 + Jt0+r b(s) As)

<c) ey (tgt).

The proof is complete. O

w

Theorem 4. Assume that u(t) satisfies condition (8), a(t)
0, K = 2" Y (pB - p + 1)(m/pn)P" '™, by(t) :
(n/m)Kb™(t), -Kb™ € R*; then

v

1/m

u) <éfw, @ +y, O], telt,+r T)y

u(t) <a(t)+ Jt t-9b(s) ¢ (s—r)As,  (23)

tetpty+7)p
2m—lam(t)efmt0’ ¢1 (t) = e*toerqS(t),
J’ti,w bi(Swi(s = rey, (s, )As + ey (fg +
rt) [ KOS (s = r)As + (m=m)/m)(ey, (tg + 7.5 = 1).

If, in addition, a(t) and ¢(t) are nondecreasing, and
a”(ty) = 217me(m7")t°e”r¢”(t0), then

where w,(t) =
and y,(t)

u(t) < efa(t) e (to )], teltyT)y  (24)

where a(t) := w,(t) + (m —n)/n

Proof. The second inequality in (23) is obvious. Next, we
will prove the first inequality in (23). For t € [t,, T)y, using
Holder’s inequality with indices p and m, we obtain from (8)

t
u() <a(t)+ J (t — )P e™™b (s) e ™M™ (s — 1) As

Lo

t 1/p
<a(t)+ (J (t - s)Pﬁ_PeP"s/mAs>
t

t 1/m
x(J b (s)e ™ u" (s—1) As> )

0

(25)

By Jensen’s inequality (Y7, x;)” < n” (3, x7), we get

u™ () < 2" (1)

m/
+2m1 t (t — s)PPPePsim p g !
t (26)

t
x J b (s)e ™ u" (s — 1) As.
to

For the first integral in (26), we have the estimate

t
J (t — s)PPPePmsim p
to
t-t,
_ j Tpﬁ—pepn(t—‘r)/mAT
0

t
< ePntim j LPB=p gmpnz/m p 27)
0

pB-p+1 t/
- ePnﬁm(pﬂ) r" " PP N
n 0

pB-p+1
<eP”t/'”<%> T(pB-p+1).



Hence,

U < 2" am (@) + 2" T (pB-p + 1)

m fm=1 et m -ns, n (28)
X(E) L)b (s)e "u"(s—r)As

and so
(u (1) eit)m

m pm-1
<2"N" (e ™ + 2" (pB - p+ 1) (ﬁ)

t
x J b" (s)e ™ u" (s —r) As.
t

0

(29)
Let v(t) := e "u(t); then we have
VI sw, (1) +K Jt b" (s)v' (s—r)As,
to (30)

t e [te,T)y.

For t € [t, — r,t,)y, we have e "u(t) < e”'¢(t) < e’e ™ ¢(t);
that is, v(¢) < ¢, (t). By Lemma 3, we get

V() < wy () + J: b (s)w, (s—r)ey (s,t) As

ey, (to+nt) J Ko™ (9) ¢ (s=r)as (D
to

m-n

(e_bl (tg +1.t) - 1).

Hence, the first inequality in (23) follows.
Finally, if a(¢) and ¢() are nondecreasing, and a™(t,) =
21 7melm=mlo g (¢ Ye'™ by Lemma 3, we have

1/m

u(t) <elat)e_gm (tot)] ", teltpT);.  (32)

The proof is complete. O

Lemma 5. Let a(t) > 0, b(t) > 0, c(t) > 0, p(t) := (nb(t)/m),
q(t) := (nc(t)/m), y(t) := a(t) + (m —n)/nand —p,—(p+c¢) €
R and let $(t) > 0 be rd-continuous on [t, — r,ty]y, where
r > 0andm > n > 0 are real constants. If u(t) > 0 is rd-
continuous and

u" () <al(t)+ Jt [b(s)u" (s) +c(s)u" (s—1)] As,

teftgT),,

u(t) <@t), telty—rty)p
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then

u™ (t)

<al(t)
t
[ OO aOE-nTe g s
e (prg) (ty+7.1)

to+r
X J't [P(5)y(s) +c(s)¢" (s—r)]e_,(sty+1)As

(34)
fort € [ty +1,T)y and
t
u" () <alt) + L [p(s)y(s)+c(s)¢" (s—1)] e_, (s,t) As
° (35)

fort € [ty,ty+ 1)y
Furthermore, if a(t) and ¢(t) are nondecreasing with
a(ty) = ¢"(t,), then

U™ (8) Sy () e_(pre (toot),  t €[t Ty (36)

Proof. Letz(t) = J:) [b(s)u"(s)+c(s)u”*(s—7)]As. Then, z(t,) =

0, u™(t) < a(t) + z(t), z(t) is positive and nondecreasing for
t € [ty, T)y. Further, we have

2O=bO O +cOU (t-71). (37)
Fort € [t,,t, + )y, using Lemma 2, we have

2O <b®)@t)+zE)"" +ct)¢" (t-7)

m-n

sb(t)[%(a(t)+z(t))+ +c()¢" (t-71)

m

<spOyO+p®z(@®) +c)¢"t-1),

(e, (t:1y) 2 (t))A <(p®y@® +c® ¢ t—r)e, (t.t).
(38)

Integrating both sides from t, to ¢, we obtain

t

z(t) < J [P()y(s)+c(s)¢" (s—r)]e_, (s,t)As.  (39)

to
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Fort e [ty +7,T)y,

LW <b)al)+z@)]""

te®)alt-r)+z(t-r)]m

sb(t)(%(a(t)+z(t))+ mr;”)

+c(t)<%(a(t—r)+z(t—r))+mr;”)

< (ﬁb(t) + ﬁc(t)) 2 ®)+ b a )
m m m

m m-n

c(t)
m

")+

+£c(t)a(t—r)+
m m

<(pM+q))z@@)+p@)y®) +qt)yt—r).
(40)

Hence, we get

(e-prgy (10 +7)2()"

<Py +q@)yt—1))e_pig (Lto+7).

(41)

Integrating both sides from ¢, + r to ¢, we obtain
Z(t) S e pug (Lo +1:1) 2 (g + 1)
+ 67(P+q) (tO +7, t)
t
X J- [p(s)y(s)+q(s)y(s—1)] €_(pig) (s,tg+7)As
to+r
< e_(P+q) (tO +7, t)

XLO [Py () +c(s)¢" (s—n)]e_, (sty+71)As

[ pOrO a0 ye-nle gy s
0 12)

Using u™(t) < a(t) + z(t), we get inequalities (34) and (35).
Finally, if a(t) and ¢(¢) are nondecreasing, then, by (35),

u™ (t) <y () (1 + L (p(s)+c(s)e,(st) As>

<y () <1 N L (p(5)+ () e_pre (5:1) As> (43)

=Yy (t) €_(p+c) (t0> t)

fort € [ty,t, + r)y. Furthermore, by (34),

u" () Y (O) +y (B) e_(pig (tg +71)

X J;:OH (p(s) +c(s) e, (s,ty+7)As

t
+y(®) L (P(8) +q(9)) e_(prq) (5:1) As
Sy () e_(pig (o +1.t)
tot+r
x <1 + J (P (s) +c(9)) e_(prey (s:tg +7) As)

=Y (1) €_(p+c) (tO’ t)
(44)
fort € [ty + r, T)y. The proof is complete. O

Theorem 6. Assume that u(t) satisfies condition (9), a(t) > 0,
K := 3" " Y (pB - p+ 1)(m/pn)P™ ", p(t) := nKb™(t)/m,
a(t) = Ke ™" (t), q(t) == (n/m)c,(t), —p,—(p + ¢,) € B".

If, in addition, a(t) and ¢(t) are nondecreasing, and
a”(ty) = 317me(m7")t°em¢”(t0), then

u® <[y O e pe (o))" teltyT)  (45)

where y(t) = 3™ a™(t)e™™ + (m — n)/n.

Proof. Fort € [t,, T)y, using Holder’s inequality with indices
p and m, we obtain from (9) that

u)<a(t)+ r (t — )P Le™™p (5) e ™M™ (s) As

to
t
+ J (t — )P Le™™c (s) e ™™™ (s — 1) As
to
t 1/p
<a(t)+ (J (t - s)pﬁfpepm/mAs>
to
t 1/m
X (J b" (s)e u" (s) As>
to

t 1/p
+ (I (t - s)Pﬁ_Pepm/mAs>
to

t 1/m
X (J " (s)e U (s 1) As)
t



(B-1+1/p)
Sa(t)+e”t/m<%> Fl/P(pﬁ—p+1)

t 1/m
X [(j b (s) e ™u" (s) As>
ty

t 1/m
+ <J- " (s)e ™ u" s—r)As> ]

By Jensens inequality (Y, x;)° < n” (Y1, x7), we get

(46)

u™ (t)

m—-1_m m—=1 nt{ M mp=1) m—1
<3 ad"(t)+3" e <E> " (pB-p+1)

t

X <J-: b" (s)e ™"u" (s) As + J

ty

c"(s)e ™ u (s—7) As) )
(47)
So,
(u (t) e_t)m
< 3" (1) e Mo
(mp-1)
m-1[ M m—1
+3 (E> " (pB-p+1)
t t
x <J b (s) e ™Fu" (s) As + J c"(s)e™u (s—7) As) .
to t
(48)
Let v(t) := e 'u(t), w,(t) := 3™ 'a™(t)e ™; we have
t
V() < w, () + J Kb™ (s)v" (s) As
‘ (49)
t
+ J Ke™c" (s)v' (s —1) As
t

0

fort e [t;,T)y. Fort e [t, — r,ty)y, we have eult) <
e fp(t) < eTe"P(t); that is, v(t) < ¢,(t). By Lemma 5, we
get

Pt e[t T),.  (50)

u(t) < et[y (t) e_(pre,) (to> t)]
The proof is complete. O
The following is a simple consequence of Theorem 4.

Corollary 7. Suppose thatm =n = 2,

ult) <alt)+ Jt t - (s)u(s—r)As,
to

teltyT), OV

u) <), telty—rty)p
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then

t
Kb (s) wy (s—r1)e_gp (s, 1) As

otr

u(t) <e [wl (t)+J
t

te g (tg+1.t)

totr 1/2
XJ Kb* (s) gbf (s—=1r)As| ,
to

telty+rT)p
u(t)<a(t)+ r t-5)"b(s)p(s—7)As,
to

t € [tgtg+1)ps
(52)

where K := T(2B — 1)e> - (1/4F7Y), w,(t) := 2d%(t)e ",
¢, (t) := e e P(2).

IfT = R, then the conclusion reduces to that of Theorem A
for B> 1/2.
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