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In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (𝑑/𝑑𝑡)((1/2)
0
𝐷
−𝛽

𝑡
(𝑢

(𝑡)) +

(1/2)
𝑡
𝐷
−𝛽

𝑇
(𝑢(𝑡))) = 𝑓(𝑡, 𝑢(𝑡)), a.e. 𝑡 ∈ [0, 𝑇], and 𝑢 (0) = 𝑢 (𝑇) = 0, where

0
𝐷
−𝛽

𝑡
,
𝑡
𝐷
−𝛽

𝑇
are the left and right Riemann-Liouville

fractional integrals of order 0 ≤ 𝛽 < 1, respectively. We prove the existence of a ground state solution of the boundary value
problem.

1. Introduction

Fractional differential equations have played an important
role in many fields such as engineering, science, electrical
circuits, diffusion, and applied mathematics (see [1–4]).
In recent years, some authors have studied the fractional
differential equation by using differentmethods, such as fixed
point theorem, coincidence degree theory, and critical point
theory (see [5–22]).

By using the Mountain Pass theorem, Jiao and Zhou [17]
studied the existence of solutions for the following boundary
value problem:

𝑑

𝑑𝑡
(
1

2
0
𝐷
−𝛽

𝑡
(𝑢

(𝑡)) +

1

2
𝑡
𝐷
−𝛽

𝑇
(𝑢

(𝑡)))

+ ∇𝐹 (𝑡, 𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(1)

where 0 < 𝛽 < 1,
0
𝐷
−𝛽

𝑡
and
𝑡
𝐷
−𝛽

𝑇
are the left and right

Riemann-Liouville fractional integrals of order 𝛽, respec-

tively, 𝐹 : [0, 𝑇] × R𝑁 → R, and ∇𝐹(𝑡, 𝑥) is the gradient
of 𝐹 with respect to 𝑥.

By using a critical-points theorem established by G.
Bonanno, Bai [19] investigated the following fractional
boundary value problem:

𝑑

𝑑𝑡
(
1

2
0
𝐷
𝛼−1

𝑡
(
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡)) −

1

2
𝑡
𝐷
𝛼−1

𝑇
(
𝐶

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)))

+ 𝜆𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(2)

where 𝛼 ∈ (1/2, 1],
0
𝐷𝛼−1
𝑡

and
𝑡
𝐷𝛼−1
𝑇

are the left and
right Riemann-Liouville fractional integrals of order 1 − 𝛼,
and 𝐶
0
𝐷𝛼
𝑡
𝑢(𝑡) and 𝐶

𝑡
𝐷𝛼
𝑇
𝑢(𝑡) are the left and right Caputo

fractional derivatives of order 𝛼.
The authors in [18, 20–22] further studied the existence

and multiplicity of solutions for the related problems by
critical point theory.

We find that the method of Nehari manifold is seldom
used in the above boundary value problem. Inspired by the
results in [16–22], we would like to investigate the ground
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state solution for the following fractional boundary value
problem:

𝑑

𝑑𝑡
(
1

2
0
𝐷
−𝛽

𝑡
(𝑢

(𝑡)) +

1

2
𝑡
𝐷
−𝛽

𝑇
(𝑢

(𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) = 0,

(3)

where 0 < 𝛽 < 1,
0
𝐷
−𝛽

𝑡
and
𝑡
𝐷
−𝛽

𝑇
are the left and right

Riemann-Liouville fractional integrals of order 𝛽, respec-
tively. The technical tool is the method of Nehari manifold.
(see [23, 24]).

This paper is organized as follows. In Section 2, some
preliminaries on the fractional calculus are presented. In
Section 3, we set up the variational framework of problem (3)
and give some necessary lemmas. Finally, Section 4 presents
the main result and its proof.

2. Preliminaries on the Fractional Calculus

In this section, we will introduce some notations, definitions,
and preliminary facts on fractional calculus which are used
throughout this paper.

Definition 1 (left and right Riemann-Liouville fractional
integrals). Let 𝑓 be a function defined on [𝑎, 𝑏]. The left and
right Riemann-Liouville fractional integrals of order 𝛼 for
function 𝑓 denoted by

𝑎
𝐷−𝛼
𝑡
𝑓(𝑡) and

𝑡
𝐷−𝛼
𝑏
𝑓(𝑡) function,

respectively, are defined by

𝑎
𝐷
−𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

𝑡
𝐷
−𝛼

𝑏
𝑓 (𝑡) =

1

Γ (𝛼)
∫
𝑏

𝑡

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

(4)
provided that the right-hand side integral is pointwise
defined on [𝑎, 𝑏].

Definition 2 (left and right Riemann-Liouville fractional
derivatives). Let 𝑓 be a function defined by [𝑎, 𝑏]. The left
and right Riemann-Liouville fractional derivatives of order
𝛼 for function 𝑓 denoted by

𝑎
𝐷𝛼
𝑡
𝑓(𝑡) and

𝑡
𝐷𝛼
𝑏
𝑓(𝑡) function,

respectively, are defined by

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑑𝑛

𝑑𝑡𝑛
𝑎
𝐷
𝛼−𝑛

𝑡
𝑓 (𝑡)

=
1

Γ (𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫
𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡) = (−1)

𝑛 𝑑
𝑛

𝑑𝑡𝑛
𝑡
𝐷
𝛼−𝑛

𝑏
𝑓 (𝑡)

=
(−1)
𝑛

Γ (𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫
𝑏

𝑡

(𝑠 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

(5)

provided that the right-hand side integral is pointwise
defined on [𝑎, 𝑏].

Definition 3 (left and right Caputo fractional derivatives). If
𝛼 ∈ (𝑛 − 1, 𝑛) and 𝑓 ∈ 𝐴𝐶

𝑛([𝑎, 𝑏],R), then the left and
right Caputo fractional derivatives of order 𝛼 for function 𝑓
denoted by 𝐶

𝑎
𝐷𝛼
𝑡
𝑓(𝑡) and 𝐶

𝑡
𝐷𝛼
𝑏
𝑓(𝑡) function, respectively, are

defined by

𝐶

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) = 𝑎𝐷

𝛼−𝑛

𝑡

𝑑𝑛

𝑑𝑡𝑛
𝑓 (𝑡)

=
1

Γ (𝛼)
∫
𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)
(𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

𝐶

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡) = (−1)

𝑛

𝑡
𝐷
𝛼−𝑛

𝑏

𝑑𝑛

𝑑𝑡𝑛
𝑓 (𝑡)

=
(−1)
𝑛

Γ (𝛼)
∫
𝑏

𝑡

(𝑠 − 𝑡)
𝑛−𝛼−1

𝑓
(𝑛)
(𝑠) 𝑑𝑠,

𝑡 ∈ [𝑎, 𝑏] , 𝛼 > 0,

(6)

respectively, where 𝑡 ∈ [𝑎, 𝑏].

Lemma 4 (see [18]). The left and right Riemann-Liouville
fractional integral operators have the property of a semigroup;
that is,

∫
𝑏

𝑎

[
𝑎
𝐷
−𝛼

𝑡
𝑓 (𝑡)] 𝑔 (𝑡) 𝑑𝑡 = ∫

𝑏

𝑎

[
𝑡
𝐷
−𝛼

𝑏
𝑔 (𝑡)] 𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0,

(7)

provided that 𝑓 ∈ 𝐿𝑝([𝑎, 𝑏],R), 𝑔 ∈ 𝐿𝑞([𝑎, 𝑏],R) and 𝑝 ≥ 𝑞,
𝑞 ≥ 1, 1/𝑝 + 1/𝑞 ≤ 1 + 𝛼 or 𝑝 ̸= 1, 𝑞 ̸= 1, 1/𝑝 + 1/𝑞 = 1 + 𝛼.

Lemma 5 (see [18]). Assume that 𝑛 − 1 < 𝛼 < 𝑛 and 𝑓 ∈

𝐶
𝑛
[𝑎, 𝑏]. Then,

𝑎
𝐷
−𝛼

𝑡
(
𝐶

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡)) = 𝑓 (𝑡) −

𝑛−1

∑
𝑗=0

𝑓(𝑗) (𝑎)

𝑗!
(𝑡 − 𝑎)

𝑗
,

𝑡
𝐷
−𝛼

𝑏
(
𝐶

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡)) = 𝑓 (𝑡) −

𝑛−1

∑
𝑗=0

(−1)
𝑗
𝑓(𝑗) (𝑏)

𝑗!
(𝑏 − 𝑡)

𝑗
,

(8)

for 𝑡 ∈ [𝑎, 𝑏].

Lemma 6 (see [18]). Assume that 𝑛 − 1 < 𝛼 < 𝑛. Then,

𝐶

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) −

𝑛−1

∑
𝑗=0

𝑓
(𝑗)
(𝑎)

Γ (𝑗 − 𝛼 + 1)
(𝑡 − 𝑎)

𝑗−𝛼
,

𝑡 ∈ [𝑎, 𝑏] ,

𝐶

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡) =

𝑡
𝐷
𝛼

𝑏
𝑓 (𝑡) −

𝑛−1

∑
𝑗=0

𝑓(𝑗) (𝑏)

Γ (𝑗 − 𝛼 + 1)
(𝑏 − 𝑡)

𝑗−𝛼
,

𝑡 ∈ [𝑎, 𝑏] .

(9)
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3. A Variational Setting

To apply critical point theory for the existence of solutions
for boundary value problem (3), we shall state some basic
notations and results [18], which will be used in the proof of
our main results.

Throughout this paper, we denote 𝛼 = 1−𝛽/2 and assume
that the following conditions are satisfied.

(H1) 𝑓 ∈ 𝐶
1(R ×R).

(H2) 𝑓(𝑡, 0) = 0 = (𝜕𝑓/𝜕𝑠)(𝑡, 0) for every 𝑡 ∈ R.
(H3) There are constants 𝑎, 𝑏 > 0 and 2 < 𝑝 such that



𝜕𝑓

𝜕𝑠
(𝑡, 𝑠)


≤ 𝑎 + 𝑏|𝑠|

𝑝−2
, (10)

for every 𝑡 ∈ R and 𝑠 ∈ R.
(H4) There are constants 𝜇 > 2,𝑀 > 0 such that

0 < 𝜇𝐹 (𝑡, 𝑠) ≤ 𝑠𝑓 (𝑡, 𝑠) (11)

for all 𝑡 ∈ R and |𝑠| ≥ 𝑀. Here,

𝐹 (𝑡, 𝑠) = ∫
𝑠

0

𝑓 (𝑡, 𝑥) 𝑑𝑥. (12)

(H5) The map 𝑡 → 𝑡
−1
𝑠𝑓(𝑥, 𝑡𝑠) is increasing on (0, +∞),

for every 𝑥 ∈ R and 𝑠 ∈ R.

Now we construct appropriate function spaces. Denote
by 𝐶∞
0
([0, 𝑇],R) the set of all functions 𝑢 ∈ 𝐶∞

0
([0, 𝑇],R)

with 𝑢(0) = 𝑢(𝑇) = 0. The fractional derivative space 𝐸𝛼,𝑝
0

is defined by the closure of 𝐶∞
0
([0, 𝑇],R) with respect to the

norm

‖𝑢‖𝛼,𝑝 = (∫
𝑇

0

|𝑢 (𝑡)|
𝑝
𝑑𝑡 + ∫

𝑇

0


𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡)



𝑝

𝑑𝑡)

1/𝑝

, (13)

where 𝐶
0
𝐷𝛼
𝑡
is the 𝛼-order left Caputo fractional derivative.

Remark 7. If 𝑝 = 2, we define 𝐸𝛼 = 𝐸𝛼,2
0
, with respect to the

norm

‖𝑢‖ = (∫
𝑇

0

|𝑢 (𝑡)|
2
𝑑𝑡 + ∫

𝑇

0


𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡)



2

𝑑𝑡)

1/2

. (14)

The set 𝐸𝛼 is a reflexive and separable Hilbert space.

Remark 8. For any 𝑢 ∈ 𝐸
𝛼, noting the fact 𝑢(0) = 0, we have

0
𝐷𝛼
𝑡
𝑢(𝑡)=𝐶
0
𝐷𝛼
𝑡
𝑢(𝑡), 𝑡 ∈ [0, 𝑇].

Lemma 9 (see [17]). Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞. For all
𝑢 ∈ 𝐸
𝛼,𝑝

0
, one has

‖𝑢‖𝐿𝑝 ≤
𝑇𝛼

Γ (𝛼 + 1)


𝐶

0
𝐷
𝛼

𝑡
𝑢
𝐿𝑝

. (15)

Moreover, if 𝛼 > 1/𝑝 and 1/𝑝 + 1/𝑞 = 1, then

‖𝑢‖∞ ≤
𝑇𝛼−1/𝑝

Γ (𝛼) [(𝛼 − 1) 𝑞 + 1]
1/𝑞


𝐶

0
𝐷
𝛼

𝑡
𝑢
𝐿𝑝

. (16)

According to (15), we can consider 𝐸𝛼 with respect to the
equivalent norm

‖𝑢‖𝛼,𝑝 =

𝐶

0
𝐷
𝛼

𝑡
𝑢
𝐿𝑝

, ‖𝑢‖ =

𝐶

0
𝐷
𝛼

𝑡
𝑢
𝐿2

. (17)

Lemma 10 (see [17]). Let 0 < 𝛼 ≤ 1 and 1 < 𝑝 < ∞. Assume
that 𝛼 > 1/𝑝 and the sequence {𝑢

𝑘
} converges weakly to 𝑢 in

𝐸
𝛼,𝑝

0
; that is, 𝑢

𝑘
⇀ 𝑢. Then 𝑢

𝑘
→ 𝑢 in 𝐶([0, 𝑇],R); that is,

‖𝑢 − 𝑢
𝑘
‖
∞

→ 0 as 𝑘 → ∞.

Similar to the proof of [17, Proposition 4.1], we have the
following property.

Lemma 11. If 1/2 < 𝛼 ≤ 1, for any 𝑢 ∈ 𝐸𝛼, one has

|cos (𝜋𝛼)| ‖𝑢‖2 ≤ −∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝐶

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)) 𝑑𝑡

≤
1

|cos (𝜋𝛼)|
‖𝑢‖
2
.

(18)

To obtain a weak solution of boundary value problem
(3), we assume that 𝑢 is a sufficiently smooth solution of (3).
Multiplying (3) by an arbitrary V ∈ 𝐶∞

0
(0, 𝑇), we have

− ∫
𝑇

0

(
𝑑

𝑑𝑡
(
1

2
0
𝐷
−𝛽

𝑡
(𝑢

(𝑡)) +

1

2
𝑡
𝐷
−𝛽

𝑇
(𝑢

(𝑡))) , V (𝑡)) 𝑑𝑡

= ∫
𝑇

0

(𝑓 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡.

(19)
Observe that

−
1

2
∫
𝑇

0

(
𝑑

𝑑𝑡
(
0
𝐷
−𝛽

𝑡
𝑢

(𝑡) +
𝑡
𝐷
−𝛽

𝑇
𝑢

(𝑡)) , V (𝑡)) 𝑑𝑡

=
1

2
∫
𝑇

0

((
0
𝐷
−𝛽

𝑡
𝑢

(𝑡) , V (𝑡)) + (𝑡𝐷

−𝛽

𝑇
𝑢

(𝑡) , V (𝑡))) 𝑑𝑡

=
1

2
∫
𝑇

0

((
0
𝐷
−𝛽/2

𝑡
𝑢

(𝑡) , 𝑡𝐷

−𝛽/2

𝑇
V (𝑡))

+ (
𝑡
𝐷
−𝛽/2

𝑇
𝑢

(𝑡) ,
0
𝐷
−𝛽/2

𝑡
V (𝑡))) 𝑑𝑡.

(20)
As 𝑢(0) = 𝑢(𝑇) = V(0) = V(𝑇) = 0, we have

0
𝐷
−𝛽/2

𝑡
𝑢

(𝑡) =

0
𝐷
1−𝛽/2

𝑡
𝑢 (𝑡) ,

𝑡
𝐷
−𝛽/2

𝑇
𝑢

(𝑡) = −

𝑡
𝐷
1−𝛽/2

𝑇
𝑢 (𝑡) ,

0
𝐷
−𝛽/2

𝑡
V (𝑡) =

0
𝐷
1−𝛽/2

𝑡
V (𝑡) ,

𝑡
𝐷
−𝛽/2

𝑇
V (𝑡) = −

𝑡
𝐷
1−𝛽/2

𝑇
V (𝑡) .

(21)

Then (19) is equivalent to

∫
𝑇

0

−
1

2
[(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝑡
𝐷
𝛼

𝑇
V (𝑡)) + (

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡) ,

0
𝐷
𝛼

𝑡
V (𝑡))] 𝑑𝑡

= ∫
𝑇

0

(𝑓 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡.

(22)
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Since (22) is well defined for 𝑢, V ∈ 𝐸𝛼, the weak solution of
(3) can be defined as follows.

Definition 12. A weak solution of (3) is a function 𝑢 ∈ 𝐸𝛼

such that

∫
𝑇

0

−
1

2
[(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) , 𝑡𝐷

𝛼

𝑇
V (𝑡)) + (𝑡𝐷

𝛼

𝑇
𝑢 (𝑡) , 0𝐷

𝛼

𝑡
V (𝑡))] 𝑑𝑡

= ∫
𝑇

0

(𝑓 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡

(23)

for every V ∈ 𝐸𝛼.

We consider the functional 𝐼 : 𝐸𝛼 → R, defined by

𝐼 (𝑢) = ∫
𝑇

0

[−
1

2
(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)) − 𝐹 (𝑡, 𝑢 (𝑡))] 𝑑𝑡. (24)

FromTheorem 4.1 of [17], we can get that if 1/2 < 𝛼 ≤ 1, then
the functional 𝐼 is continuously differentiable on 𝐸𝛼. Since 𝐼
is continuously differentiable on 𝐸𝛼, then

⟨𝐼

(𝑢) , V⟩

= −∫
𝑇

0

1

2
[(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) , 𝑡𝐷

𝛼

𝑇
V (𝑡)) + (𝑡𝐷

𝛼

𝑇
𝑢 (𝑡) , 0𝐷

𝛼

𝑡
V (𝑡))] 𝑑𝑡

− ∫
𝑇

0

(𝑓 (𝑡, 𝑢 (𝑡)) , V (𝑡)) 𝑑𝑡

(25)

for 𝑢, V ∈ 𝐸𝛼. Hence, a critical point of 𝐼 is a weak solution of
problem (3).

4. Main Result

In order to study the solvability of boundary value problem
(3), we use the so-called Nehari method. Define

𝐼 (𝑢) = −
1

2
∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝐶

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

∀𝑢 ∈ 𝐸
𝛼
,

(26)

where 𝐹(𝑡, 𝑢) = ∫
𝑢

0
𝑓(𝑡, 𝑠)𝑑𝑠.

There is one-to-one correspondence between the critical
points of 𝐼 andweak solutions of boundary value problem (3).
Now, we define

N = {𝑢 ∈ 𝐸
𝛼
\ {0} | ⟨𝐼


(𝑢) , 𝑢⟩ = 0} . (27)

Then we know any nonzero critical point of 𝐼must be onN.
Define

𝐺 (𝑢) = ⟨𝐼

(𝑢) , 𝑢⟩ = −∫

𝑇

0

(
0
𝐷
𝛼

𝑡
𝑢 (𝑡) , 𝑡𝐷

𝛼

𝑇
𝑢 (𝑡)) 𝑑𝑡

− ∫
𝑇

0

(𝑓 (𝑡, 𝑢 (𝑡)) , 𝑢 (𝑡)) 𝑑𝑡.

(28)

Lemma 13. Assume the hypotheses (H
1
)–(H
5
) hold. If 𝑢 ∈ N

is a critical point of 𝐼|N, then 𝐼(𝑢) = 0.

Proof. For 𝑢 ∈ N, together with (H
5
),

⟨𝐺

(𝑢) , 𝑢⟩ = −∫

𝑇

0

2 (
0
𝐷
𝛼

𝑡
𝑢 (𝑡) , 𝑡𝐷

𝛼

𝑇
𝑢 (𝑡))

+
𝜕

𝜕𝑢
𝑓 (𝑡, 𝑢 (𝑡)) ⋅ 𝑢

2
(𝑡)

+ 𝑓 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) 𝑑𝑡

= ∫
𝑇

0

2𝑓 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) −
𝜕

𝜕𝑢
𝑓 (𝑡, 𝑢 (𝑡)) ⋅ 𝑢

2
(𝑡)

− 𝑓 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) 𝑑𝑡

= ∫
𝑇

0

𝑓 (𝑡, 𝑢 (𝑡)) 𝑢 (𝑡) −
𝜕

𝜕𝑢
𝑓 (𝑡, 𝑢 (𝑡)) ⋅ 𝑢

2
(𝑡) 𝑑𝑡

< 0.

(29)

If 𝑢 ∈ N is a critical point of 𝐼|N, there exists a Lagrange
multiplier 𝜆 ∈ R, such that 𝐼(𝑢) = 𝜆𝐺(𝑢). Then we have

⟨𝐼

(𝑢) , 𝑢⟩ = 𝜆 ⟨𝐺


(𝑢) , 𝑢⟩ = 0. (30)

By (29), ⟨𝐺(𝑢), 𝑢⟩ ̸= 0, and we have 𝜆 = 0. So we can get that
𝐼(𝑢) = 0. The proof is complete.

Lemma 14. Assume the hypotheses (H
1
)–(H
5
) hold. For any

𝑢 ∈ 𝐸𝛼 \ {0}, there is a unique 𝑦 = 𝑦(𝑢) such that 𝑦(𝑢)𝑢 ∈ N
and one has 𝐼(𝑦𝑢) = max

𝑦≥0
𝐼(𝑦𝑢) > 0.

Proof. First, we claim that there exist constants 𝛿 > 0, 𝜌 > 0

such that 𝐼(𝑢) > 0 for all 𝑢 ∈ 𝐵
𝜌
(0) \ {0} and 𝐼(𝑢) ≥ 𝛿 for all

𝑢 ∈ 𝜕𝐵
𝜌
(0). That is, 0 is a strict local minimizer of 𝐼. In fact,

by (H
3
) we can get that

∀𝜀 > 0, ∃𝐶
𝜀
> 0, |𝐹 (𝑡, 𝑢)| ≤

𝜀

2
|𝑢|
2
+ 𝐶
𝜀|𝑢|
𝑝
. (31)

Then together with Lemmas 9 and 11, we have

𝐼 (𝑢) = −
1

2
∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝐶

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)) 𝑑𝑡 − ∫

𝑇

0

𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥ −
1

2
∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢 (𝑡) ,

𝐶

𝑡
𝐷
𝛼

𝑇
𝑢 (𝑡)) 𝑑𝑡

−
𝜀

2
∫
𝑇

0

|𝑢|
2
𝑑𝑡 − 𝐶

𝜀
∫
𝑇

0

|𝑢|
𝑝
𝑑𝑡

≥
1

2
|cos (𝜋𝛼)| ‖𝑢‖2 − 𝜀

2
∫
𝑇

0

|𝑢|
2
𝑑𝑡 − 𝐶

𝜀
∫
𝑇

0

|𝑢|
𝑝
𝑑𝑡

≥ (
1

2
|cos (𝜋𝛼)| − 𝜀

2

𝑇2𝛼

Γ2 (𝛼 + 1)
) ‖𝑢‖
2

− 𝐶
𝜀
(

𝑇𝑝+𝛼−1/2

Γ (𝛼) [(𝛼 − 1) 2 + 1]
1/2

)

𝑝

‖𝑢‖
𝑝
.

(32)
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Choose 𝜀 such that (𝜀/2)(𝑇2𝛼/Γ2(𝛼 + 1)) = (1/4)| cos(𝜋𝛼)|;
then

𝐼 (𝑢) ≥
1

4
|cos (𝜋𝛼)| ‖𝑢‖2

− 𝐶
𝜀
(

𝑇𝑝+𝛼−1/2

Γ (𝛼) [(𝛼 − 1) 2 + 1]
1/2

)

𝑝

‖𝑢‖
𝑝

= ‖𝑢‖
2
(
1

4
|cos (𝜋𝛼)|

−𝐶
𝜀
(

𝑇𝑝+𝛼−1/2

Γ(𝛼)[(𝛼 − 1)2 + 1]
1/2

)

𝑝

‖𝑢‖
𝑝−2

) .

(33)

Choose 𝜌 > 0, such that 𝐶
𝜀
(𝑇𝑝+𝛼−1/2/Γ(𝛼)[(𝛼 − 1)2 + 1]

1/2
)
𝑝

𝜌𝑝−2 = (1/8)| cos(𝜋𝛼)|. Then we have 𝐼(𝑢) ≥ (1/8)| cos(𝜋𝛼)|
‖𝑢‖
2. Let 𝛿 = (1/8)| cos(𝜋𝛼)|‖𝑢‖2; then we get that there exist

constants 𝛿 > 0, 𝜌 > 0 such that 𝐼(𝑢) > 0 for all 𝑢 ∈ 𝐵
𝜌
(0)\{0}

and 𝐼(𝑢) ≥ 𝛿 for all 𝑢 ∈ 𝜕𝐵
𝜌
(0).

Next, we claim that 𝐼(𝑦𝑢) → −∞, as 𝑦 → ∞. In fact, by
(H
4
), there exists a constant 𝐴 > 0 such that 𝐹(𝑡, 𝑢) ≥ 𝐴|𝑢|𝜇

for |𝑢| ≥ 𝑀. On the other hand, we can easily get that there
exists a constant 𝐵 such that 𝐹(𝑡, 𝑢) ≥ 𝐵 for |𝑢| ≤ 𝑀. Then
together with Lemma 11, we have

𝐼 (𝑦𝑢) ≤
𝑦2

2 |cos (𝜋𝛼)|
‖𝑢‖
2
− 𝐴𝑦
𝜇
∫
𝑇

0

|𝑢|
𝜇
𝑑𝑡 − 𝐵. (34)

Since 𝜇 > 2, we can get that 𝐼(𝑦𝑢) → −∞, as 𝑦 → ∞.
Let 𝑔(𝑦) := 𝐼(𝑦𝑢) for 𝑦 > 0. From what we have proved,

there has at least one 𝑦
𝑢
= 𝑦(𝑢) > 0 such that

𝑔 (𝑦
𝑢
) = max
𝑦≥0

𝑔 (𝑦) = max
𝑦≥0

𝐼 (𝑦𝑢) = 𝐼 (𝑦
𝑢
𝑢) . (35)

We prove next 𝑔(𝑦) has a unique critical point for 𝑦 > 0.
Consider a critical point

𝑔

(𝑦) = ⟨𝐼


(𝑦𝑢) , 𝑢⟩

= −∫
𝑇

0

𝑦 (
0
𝐷
𝛼

𝑡
𝑢,
𝑡
𝐷
𝛼

𝑇
𝑢) 𝑑𝑡 − ∫

𝑇

0

𝑓 (𝑡, 𝑦𝑢) 𝑢 𝑑𝑡

= 0.

(36)

Then, together with (H
5
), we have

𝑔

(𝑦) = −∫

𝑇

0

(
0
𝐷
𝛼

𝑡
𝑢,
𝑡
𝐷
𝛼

𝑇
𝑢) 𝑑𝑡 − ∫

𝑇

0

𝜕𝑓 (𝑡, 𝑦𝑢)

𝜕 (𝑦𝑢)
𝑢
2
𝑑𝑡

= ∫
𝑇

0

𝑓 (𝑡, 𝑦𝑢) 𝑢

𝑦
𝑑𝑡 − ∫

𝑇

0

𝜕𝑓 (𝑡, 𝑦𝑢)

𝜕 (𝑦𝑢)
𝑢
2
𝑑𝑡

=
1

𝑦2
∫
𝑇

0

𝑓 (𝑡, 𝑦𝑢) 𝑦𝑢 𝑑𝑡 − ∫
𝑇

0

𝜕𝑓 (𝑡, 𝑦𝑢)

𝜕 (𝑦𝑢)
𝑢
2
𝑑𝑡

< 0.

(37)

So we know that if 𝑦 is a critical point of 𝑔, then it must be a
strict local maximum.This implies the uniqueness.

Finally, from

𝑔

(𝑦) = ⟨𝐼


(𝑦𝑢) , 𝑢⟩ =

1

𝑦
⟨𝐼

(𝑦𝑢) , 𝑦𝑢⟩ , (38)

we see 𝑦 is a critical point if 𝑦𝑢 ∈ N. Define 𝑚 = infN𝐼.
Then we can get that 𝑚 ≥ inf

𝜕𝐵𝜌(0)
𝐼 ≥ 𝛿 > 0. The proof is

complete.

Lemma 15. Assume the hypotheses (H
1
)–(H
5
) hold and 𝑚 =

infN𝐼. Then there exists 𝑢 ∈ N such that 𝐼(𝑢) = 𝑚.

Proof. We claim that both 𝐼 and𝐺 are weakly lower semicon-
tinuous. In fact, according to Lemma 10, if 𝑢

𝑘
⇀ 𝑢 in𝐸𝛼, then

𝑢
𝑘
→ 𝑢 in 𝐶([0, 𝑇],R). Therefore, 𝐹(𝑡, 𝑢

𝑘
(𝑡)) → 𝐹(𝑡, 𝑢(𝑡))

a.e. 𝑡 ∈ [0, 𝑇]. By the Lebesgue dominated convergence
theorem, we have ∫𝑇

0
𝐹(𝑡, 𝑢
𝑘
(𝑡)) 𝑑𝑡 → ∫

𝑇

0
𝐹(𝑡, 𝑢(𝑡)) 𝑑𝑡, which

means that the functional 𝑢 → ∫
𝑇

0
𝐹(𝑡, 𝑢(𝑡)) 𝑑𝑡 is weakly

continuous on 𝐸𝛼. Similarly 𝑢 → ∫
𝑇

0
𝑓(𝑡, 𝑢(𝑡))𝑢(𝑡) 𝑑𝑡 is

weakly continuous on 𝐸𝛼. Since 𝐸𝛼 is Hilbet space, together
with (17) and Lemma 11, we can easily get that −∫𝑇

0
(
𝐶

0
𝐷
𝛼

𝑡
𝑢(𝑡),

𝐶

𝑡
𝐷𝛼
𝑇
𝑢(𝑡)) 𝑑𝑡 is weakly lower semicontinuous on 𝐸𝛼. Then we

get that both 𝐼 and 𝐺 are weakly lower semicontinuous.
Since 𝜇𝐹(𝑡, 𝑢) − 𝑢𝑓(𝑡, 𝑢) is continuous for 𝑡 ∈ [0, 𝑇] and

|𝑥| ≤ 𝑀, there exists 𝐵 > 0, such that

𝐹 (𝑡, 𝑢) ≤
1

𝜇
𝑢𝑓 (𝑡, 𝑢) + 𝐵, 𝑡 ∈ [0, 𝑇] , |𝑥| ≤ 𝑀. (39)

Together with (H
4
), we get

𝐹 (𝑡, 𝑢) ≤
1

𝜇
𝑢𝑓 (𝑡, 𝑢) + 𝐵, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ R. (40)

Let {𝑢
𝑘
} ∈ N be a minimizing sequence; that is, 𝐼(𝑢

𝑘
) → 𝑚,

𝐼(𝑢
𝑘
) → 0 as 𝑘 → ∞. Then,

𝑚 + 𝑜 (1) = 𝐼 (𝑢
𝑘
)

= −
1

2
∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢
𝑘
(𝑡) ,
𝐶

𝑡
𝐷
𝛼

𝑇
𝑢
𝑘
(𝑡)) 𝑑𝑡

− ∫
𝑇

0

𝐹 (𝑡, 𝑢
𝑘
(𝑡)) 𝑑𝑡

≥ −
1

2
∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢
𝑘
(𝑡) ,
𝐶

𝑡
𝐷
𝛼

𝑇
𝑢
𝑘
(𝑡)) 𝑑𝑡

−
1

𝜇
∫
𝑇

0

𝑢
𝑘
𝑓 (𝑡, 𝑢

𝑘
) 𝑑𝑡 − 𝐵𝑇

= (
1

𝜇
−
1

2
)∫
𝑇

0

(
𝐶

0
𝐷
𝛼

𝑡
𝑢
𝑘
(𝑡) ,
𝐶

𝑡
𝐷
𝛼

𝑇
𝑢
𝑘
(𝑡)) 𝑑𝑡
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+
1

𝜇
⟨𝐼

(𝑢
𝑘
) , 𝑢
𝑘
⟩ − 𝐵𝑇

≥ (
1

2
−
1

𝜇
) |cos (𝜋𝛼)| 𝑢𝑘


2

−
1

𝜇


𝐼

(𝑢
𝑘
)

𝑢𝑘

 − 𝐵𝑇.

(41)

By 𝜇 > 2 and 𝐼(𝑢
𝑘
) → 0, we get that 𝑢

𝑘
is bounded in

𝐸. Since 𝐸𝛼 is a reflexive space, going to a subsequence if
necessary, we may assume that 𝑢

𝑘
⇀ 𝑢 in 𝐸𝛼. Then from

Lemma 10, 𝑢
𝑘
→ 𝑢 in 𝐶([0, 𝑇],R). Since 𝐺 is weakly lower

semicontinuous and {𝑢
𝑘
} ∈ N, we first have

𝐺 (𝑢) ≤ lim
𝑘→∞

𝐺 (𝑢
𝑘
) = 0. (42)

Then we have 𝑢 ̸= 0. In fact, if 𝑢 = 0, then 𝑢
𝑘

→ 0 in
𝐶([0, 𝑇],R). By 𝐺(𝑢

𝑘
) = 0, we get ‖𝑢

𝑘
‖ → 0. This is a

contradiction with {𝑢
𝑘
} ∈ N.

Then from Lemma 14, there exists a unique 𝑦 > 0

such that 𝑦𝑢 ∈ N. Together with 𝐼 which is weakly lower
semicontinuous, we have

𝑚 ≤ 𝐼 (𝑦𝑢) ≤ lim
𝑘→∞

𝐼 (𝑦𝑢
𝑘
)

≤ lim
𝑘→∞

𝐼 (𝑦𝑢
𝑘
)

≤ lim
𝑘→∞

𝐼 (𝑢
𝑘
) = 𝑚.

(43)

Then we get that 𝑚 is achieved at 𝑦𝑢 ∈ N. The proof is
complete.

Theorem 16. Assuming the hypotheses (H
1
)–(H
5
) hold,

boundary value problem (3) has a weak solution such that
𝐼(𝑢) = 𝑚; that is, boundary value problem (3) has a ground
state solution.

Proof. By the Lemmas 14 and 15, we can get that there exists
𝑢 ∈ N such that 𝐼(𝑢) = 𝑚 = infN𝐼. Then the 𝑢 is a critical
point of 𝐼|N. From Lemma 13 we have 𝐼(𝑢) = 0. So boundary
value problem (3) has a weak solution such that 𝐼(𝑢) = 𝑚.The
proof is complete.

5. Example

In this section, we give an example to illustrate our results.

Example 1. Consider the following BVP:

−
𝑑

𝑑𝑡
(
1

2
0
𝐷
−1/2

𝑡
+
1

2
𝑡
𝐷
−1/2

𝑇
) 𝑢

(𝑡) = 𝑢

3
, 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 0, 𝑢 (𝑇) = 0.

(44)

It is easy to verify all the conditions in Theorem 16, so BVP
(44) has a ground state solution.
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