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This paper deals with the resource allocation problem aimed at maximizing users’ perception of quality in wireless channels with
time-varying capacity. First of all, we model the subjective quality-aware scheduling problem in the framework of Markovian
decision processes. Then, given that the obtaining of the optimal solution of this model is unachievable, we propose a simple
scheduling index rule with closed-form expression by using a methodology based on Whittle approach. Finally, we analyze the
performance of the achieved scheduling proposal in several relevant scenarios, concluding that it outperforms the most popular
existing resource allocation strategies.

1. Introduction

Undoubtedly, the use of mobile Internet applications has
notably increased over the last years, which has led to the
growth of the demand for wireless bandwidth. Hence, one of
the fundamental challenges that network providers nowadays
face is how to efficiently share radio resources among users’
traffic flows. In wireless links channel capacity evolves over
time due to the intrinsic degradations of this medium, which
has motivated the investigation of scheduling problems in
time-varying channels.

Traditional scheduling strategies for resource allocation
are oriented to objective quality parameters such as delay.
Nevertheless, considering the importance and the necessity of
network resource allocation for maximizing users’ subjective
quality of service or quality of experience (QoE) [1], QoE-
driven scheduling becomes essential for network providers.

Thus, motivated by the necessity of obtaining an imple-
mentable QoE-aware scheduler in wireless channels with
time-varying capacity, in this paper we aim at characterizing
in closed-form a novel channel-aware scheduler for the
problem of maximizing users’ perceived quality. We focus on
a scenario where traffic flows arrive and depart upon service
completion.

1.1. Background. Channel-aware or opportunistic schedulers
give priority to users in good channel conditions. Although
several channel-aware strategies exist in the literature, Max
Rate and Proportional Fair [2] among the most popular,
the achievement of the optimal solution for time-varying
scheduling optimization problems is rather difficult and
unknown. Without any doubt, most analyzed resource allo-
cation problems aim at minimizing the average delay of user
traffic flows [3–7].

The best contribution found in the field of optimizing
delay in a time-varying context is found in [6], which pro-
poses a simple index-based heuristic scheduler that performs
satisfactorily. In this work, the authors consider exponentially
distributed flow sizes and formulate the optimal scheduling
problem as a Markov decision process (MDP) [8]. Since this
model is PSPACE-hard [9], it does not allow obtaining a
tractable solution, and the authors use approximations for its
resolution. This way, using the theory of restless bandits [10]
and Whittle approach [11], the authors develop an index rule
called potential improvement (PI), which has the property
of being asymptotically optimal and fluid-optimality [12].
Nonetheless, analyzing the problem of minimizing mean
delay for generally distributed flow sizes in randomly time-
varying channels remains still open.
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Furthermore, even though a few QoE and channel-aware
scheduling proposals exist [13–15], no significant analytical
framework is provided for these heuristics. In fact, there is
no solution based on relevant mathematical methods such as
MDP for modelling and Whittle method for its resolution in
order to obtain a simple scheduling index rule.

On the other hand, it is worth mentioning the work
carried out in [16], which is pioneer in introducing QoE-
awareness in a MDP. Moreover, since the proposed model
is analytically unsolvable in general, they achieve an easy,
tractable, and well-performing QoE-aware index rule based
on Gittins approach [4] for constant channel capacity, which
they denominate Gittins MOS (GM). It is known that Gittins
proposed a method to obtain the so-called Gittins index
which originally minimized mean delay for constant channel
capacity. However, as concluded in [17], Gittins approach is
unsuitable for solving problems with time-varying channel.

1.2. Scope and Contributions. Since the stochastic and
dynamic resource allocation problem of subjective quality
maximization in channels with time-varying capacity is
analytically and computationally unfeasible for finding an
optimal solution, the main objective of this work is to design
a simple and tractable heuristic priority scheduling rule using
analytical tools that have had a great contribution in the
optimization area.

Thus, the main contribution of this paper is threefold.

(i) Firstly, we propose a QoE-aware MDP model in a
time-varying channel context.

(ii) Secondly, in order to achieve a tractable solution for
the aforementioned QoE and channel-aware model,
we focus on designing a simple heuristic index rule
using Whittle approach.

(iii) Thirdly, although for many years exponential flow
size distributions have been considered for traffic
modelling in order to simplify the resolution of
scheduling optimization problems, as a step forward,
in this work we take into account size distributions
that better capture the real world patterns.

The remainder of the paper is organized as follows. First
of all, we characterize the QoE-aware scheduling problem
for the time-varying channel context in Section 2. Then,
Section 3 describes the extension of the basic QoE-aware
MDP model to time-varying channels. In Section 4 we
achieve the Whittle index-based solution for the proposed
MDP, and its performance is evaluated in Section 5. Finally,
Section 6 gathers the main conclusions of this paper.

2. Problem Description

We analyze the problem of maximizing average QoE in time-
varying channels. Even though this study is applicable to any
time-varying channel context, we focus onwireless networks.
In particular, we centre on a wireless downlink data channel
in a single cell system. In this way, at the beginning of each
transmission time interval (TTI), the scheduler located in the

base station makes decisions in order to choose a user traffic
flow to transmit.

2.1. User. Each user 𝑘 in the system is uniquely associated
with the flow related to its requested content, with its QoE
characteristic and with its wireless channel. We use a generic
concept of flow, which refers to an amount of data that can
be displayed to (received by) the end user as a standalone
element.

We consider a system with a fixed number of users,
without arrivals of new users. This assumption simplifies the
mathematical model. However, being aware of the impact of
arrivals on the performance of scheduling, we will analyze
the performance of scheduling strategies in the presence of
arrivals.

2.1.1. Flow Size. Flows are characterized by their random size
𝑋, the total amount of bits to be transferred. Sizes are assumed
to be independently distributed with E[𝑋] < ∞, where
𝐹(𝑥) = P(𝑋 ≤ 𝑥), 𝑓(𝑥), and ℎ(𝑥) = 𝑓(𝑥)/(1 − 𝐹(𝑥)) are
the corresponding cumulative distribution function, density
function, and hazard rate, respectively.

We focus on the important class of size distributions
with a decreasing hazard rate, particularly we assume Pareto
distributed flow sizes. It is known that Internet traffic flow
sizes are properly modelled by means of Pareto distributions
[18], which better fit Internet flow sizes compared with
the simplistic exponential approach. We define the Pareto
distribution with shape parameter 𝛼 > 1 and scale parameter
𝛾 > 0 whose density function for all 𝑥 ≥ 0 is

𝑓 (𝑥) =
𝛾𝛼

(1 + 𝛾𝑥)
𝛼+1

. (1)

Note that, even though we use Pareto distributed flow
sizes, the results provided are valid for any size distribution
with a decreasing hazard rate.

2.1.2. QoE Characteristic. The time needed to transmit to
channel all the bits from a user flow has a direct impact on
user’s perceived quality. We consider that this delay is the
main cause of subjective quality distortion. Nowadays, most
of the Internet traffic is transported over TCP, which imple-
ments the packet recovery mechanisms to avoid application
level losses. In TCP-based services, the predominant source
of losses at the application is packets arriving later than their
playout time. Hence, it is generally useful to provide a delay-
driven QoE-awareness.

This way, we quantify QoE by a delay dependent Mean
Opinion Score (MOS) [19] utility function. User satisfaction
is evaluated in MOS scale of 1 (very poor quality) to 5
(excellent quality).

As shown in QoE studies [20], perceived quality is
maximum until a low delay value, 𝑑min. Then, from this delay
threshold, QoE degradation happens until a high delay value,
𝑑max. Above this delay threshold service is unaffordable,
resulting in a MOS value of 1. The values of these delay
thresholds depend on several factors [21], such as the flow
size, the service type, the network type and the user expertise.
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Figure 1: MOS versus delay.

We illustrate an example of the explained behavior in
Figure 1.

2.1.3. Channel Model. The channel quality associated to a
user 𝑘 evolves randomly and independently of its evolution
history. We assume that the channel can be in N :=

{1, 2, . . . , 𝑁
𝑘
} conditions. Therefore, user 𝑘 is in channel

condition 𝑛 with probability 𝑞
𝑘,𝑛
, having ∑

𝑛∈N 𝑞
𝑘,𝑛

= 1.
In channel state 𝑛, 𝑟

𝑘,𝑛
bits are transmitted to channel, and

transmission rates 𝑠
𝑘,𝑛

are 𝑠
𝑘,1
≤ 𝑠
𝑘,2
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑘,𝑁𝑘
.

2.2. Server. The objective of the scheduler is finding a policy
𝜋 that solves the following optimization problem:

max
𝜋

1

𝐾

𝐾

∑

𝑘=1

MOS
𝑘
(𝑑
𝑘
) . (2)

According to the already described aspects about the schedul-
ing problem, we consider a set of admissible policies, Π,
which fulfils the next properties.

(i) Delay dependency: the time that a flow remains in the
system, 𝑑, is known.

(ii) QoE-awareness: the delay-dependent MOS function
that characterizes user subjective quality is known.

(iii) Channel-awareness: channel quality indicator (CQI)
information sent from mobile users is used as user’s
instantaneous channel condition information.

(iv) Nonanticipation: similarly to most current IP sys-
tems, flow size is unknown. However, existent nonan-
ticipating size-based disciplines make use of flow
attained service [4, 7], the bits that have been trans-
ferred of a flow. Due to the memoryless property of
the exponential distributions, for these distributions,
the hazard rate is independent of attained service.
Nevertheless, the considered Pareto distributions
have a decreasing hazard rate with attained service
[22]; this is, completion probability, 𝜇

(𝑎,𝑛)
, is higher

for lower attained service values. This way, attained
service, 𝑎, is used as size information.

(v) Preemption: we assume that the server is preemptive,
that is, at every decision epoch, it is permitted to
suspend the service of a flow whose transmission is
unfinished.

(vi) Single service: only the transmission of a flow is
allowed in each TTI.

3. MDP Formulation

In this section we formulate the problem described in
Section 2 as a MDP. First, we provide the QoE-aware MDP
model of each user 𝑘. Then, we formulate the optimization
problem for the joint MDP model, which takes into account
all the users in the system.

3.1. MDP Model of a Job. The action space, B, of user 𝑘
is binary; action 0 means not serving, and if action 1 is
chosen 𝑟

𝑘,𝑛
bits from this user being in channel state 𝑛

are transmitted to channel. Besides, each user 𝑘 is defined
by tuple (S

𝑘
, (R𝑏
𝑘,𝑠
)
𝑏∈B

, (W𝑏
𝑘,𝑠
)
𝑏∈B

, (P𝑏
𝑘,𝑠
)
𝑏∈B

). These elements
are defined as follows.

(i) S
𝑘
= (A
𝑘
×D
𝑘
× {1, 2, . . . , 𝑁

𝑘
}) ∪ {[D

𝑘
+ 1]} ∪ {[∗]}

is the set of all 𝑠 states for a user 𝑘, which is classified
in three groups.

(a) Unfinished states: all the states in which flow
transmission is uncompleted belong to this
group. These states have three dimensions,
denoted as 𝑠 = (𝑎, 𝑑, 𝑛), with attained service
level 𝑎 ∈ A

𝑘
, delay level 𝑑 ∈ D

𝑘
, and

channel condition 𝑛 ∈ {1, 2, . . . , 𝑁
𝑘
} as com-

ponents. The attained services that correspond
to these attained service levels are multiples of
the first not null 𝑟

𝑘,𝑛
transmission rate, whereas

the delays that correspond to delay levels are
multiples of TTI.

(b) Reward states: these 𝑠 = [𝑑] states are reached
once flow transmission has finished, and in
these delay-dependent states the QoE-aware
reward is given. This way, aimed at maximizing
average MOS, a delay dependant QoE-aware
reward giving only happens once the whole
flow has been transmitted, since from sub-
jective quality perspective the MOS function
only makes sense once flow transmission is
completed (see [16] for more details).

(c) Final state: the chain of states ends in the
absorbing state 𝑠 = [∗].

(ii) R𝑏
𝑘
:= (𝑅

𝑏

𝑘,𝑠
)
𝑠∈S𝑘

, where 𝑅𝑏
𝑘,𝑠

is the expected one-slot
reward received for user 𝑘 at state 𝑠 if action 𝑏 is
decided at the beginning of a TTI,

𝑅
𝑏

𝑘,(𝑎,𝑑,𝑛)
= 0, 𝑅

𝑏

𝑘,[𝑑]
= M̂OS (𝑑 + 1) , 𝑅

𝑏

𝑘,[∗]
= 0,

(3)

where M̂OS(𝑑 + 1) is normalized MOS in the range
[0, 1].



4 Abstract and Applied Analysis

(iii) W𝑏
𝑘
:= (𝑊

𝑏

𝑘,𝑠
)
𝑠∈S𝑘

, where𝑊𝑏
𝑘,𝑠

is the expected one-slot
work done for user 𝑘 at state 𝑠 if action 𝑏 is decided at
the beginning of a TTI,

𝑊
0

𝑘,𝑠
= 0, 𝑊

1

𝑘,𝑠
= 1; (4)

(iv) P𝑏
𝑘
:= (𝑝
𝑏

𝑘
(𝑠, 𝑠
󸀠

))
𝑠,𝑠
󸀠
∈S𝑘

, where 𝑝𝑏
𝑘
(𝑠, 𝑠
󸀠

) is the probabil-
ity of user 𝑘 of moving from state 𝑠 to state 𝑠󸀠 if action
𝑏 is decided at the beginning of a TTI,

𝑝
0

𝑘
((𝑎, 𝑑, 𝑛) , (𝑎, 𝑑 + 1,𝑚)) = 𝑞

𝑘,𝑚
,

𝑝
1

𝑘
((𝑎, 𝑑, 𝑛) , (𝑎 + 𝑟

𝑛
, 𝑑 + 1,𝑚)) = 𝑞

𝑘,𝑚
⋅ (1 − 𝜇

𝑘,(𝑎,𝑛)
) ,

𝑝
1

𝑘
((𝑎, 𝑑, 𝑛) , [𝑑 + 1]) = 𝜇

𝑘,(𝑎,𝑛)
,

𝑝
0

𝑘
([𝑑] , [∗]) = 𝑝

0

𝑘
([∗] , [∗]) = 1,

(5)

where 𝜇
𝑘,(𝑎,𝑛)

= P(𝑎 < 𝑋
𝑘
≤ 𝑎 + 𝑟

𝑘,𝑛
| 𝑋
𝑘
>

𝑎). Observe that the probability of changing from
channel state 𝑛 to channel state𝑚 corresponds to the
steady-state probability 𝑞

𝑘,𝑚
due to the memoryless

property of channel evolution.

Thus, the dynamics of user 𝑘 is captured by state process
𝑠
𝑘
(𝑡) ∈ S

𝑘
and action process 𝑏

𝑘
(𝑡) ∈ B. Moreover, we

highlight that the proposedMDPmodel has restless property,
which admits evolution and rewards even if not chosen
for transmission due to the delay increase and the channel
stochastic evolution.

Figure 2 shows part of the per-user state diagram of the
new QoE-aware MDP model, which summarizes and relates
the aforedescribed components.

3.2. Optimization Problem. Besides, the optimization prob-
lem (2) associated with such MDP can be written as

max
𝜋∈Π

E
𝜋

0
[

∞

∑

𝑡=0

∑

𝑘∈K

𝛽
𝑡

𝑅
𝑏𝑘(𝑡)

𝑘,((𝑎𝑘(𝑡),𝑑𝑘(𝑡),𝑛𝑘(𝑡))∪[𝑑𝑘(𝑡)])
] ,

∑

𝑘∈K

𝑏
𝑘
(𝑡) = 1 ∀𝑡.

(6)

Note that we consider the undiscounted reward case, where
the discounted factor 𝛽 is 1, being reward deterioration in
time implicit in the delay-dependent MOS function.

Nonetheless, optimally solving problem (6) is unfeasible
in general. On the one hand, when channel capacity is
constant the impossibility of obtaining the exact QoE-aware
solution is revealed in [16], and hence, since the time-varying
channel model is more complex, the achievement of the
optimal solution is unviable in this case. On the other hand, it
is known that the allocation constraint causes intractability in
similar problems [11], and therefore, in our case having three-
dimensional states finding the optimal solution is extremely
difficult or even unachievable. In this way, once seeing
the impossibility of obtaining the optimal solution for the
considered problem in this work, we will focus on achieving
an approximate solution. For that purpose, in the next section
we will propose a heuristic based on Whittle method.

(a, d + 1, 1)

(a, d + 1,N)

...
...

...
...

q1

qN

(a, d, n)

𝜇(a,n)

q1(
1 −

𝜇 (a,n
)
)

q
N(1 − 𝜇

(a,n) )

[d + 1]

b = 1

b = 0 R = 0

(a + rn, d +

1,N)

(a + rn, d +

1, 1)

∗

R = M̂OS(d + 1)

Figure 2: A part of per-user state diagram.

4. QoE-Aware Index Rule Proposal Based on
Whittle Approach

In this part we provide aWhittle index rule type approximate
solution to problem (6) based on Whittle method. The
idea of Whittle [11] consists in achieving a function that
measures the dynamic service priority in order to obtain a
simple scheduling index rule. Whittle indices are computed
in isolated way for each user, and they measure the expected
efficiency of serving a user in each state.

Note that we are only interested in the indices of (𝑎, 𝑑, 𝑛)
states as once flow transmission is completed scheduling
makes no sense. Thereby, the optimization problem formu-
lated in (6) can be relaxed by requiring to serve a job per slot
on average as proposed in [11], which is further approached
by Lagrangian methods [23] and can be decomposed into a
single-job price-based parameterized optimization problem.
For a price or Lagrangiar parameter V, we will therefore study
the user-𝑘 subproblem:

max
𝜋𝑘∈Π

∞

∑

𝑡=0

E
𝜋

0
𝛽
𝑡

⋅ [𝑅
𝑏𝑘(𝑡)

𝑘,(𝑎𝑘(𝑡),𝑑𝑘(𝑡),𝑛𝑘(𝑡))
− V𝑊𝑏𝑘(𝑡)
𝑘,(𝑎𝑘(𝑡),𝑑𝑘(𝑡),𝑛𝑘(𝑡))

] .

(7)

The Lagrangiar parameter V can be interpreted as the per-slot
cost of serving.

Let us define serving set F ⊆ S
𝑘
, which prescribes to

serve a user 𝑘 if (𝑎, 𝑑, 𝑛) ∈ F, while not to serve this user if
(𝑎, 𝑑, 𝑛) ∉ F. We will refer to states (𝑎, 𝑑, 𝑛) ∈ F as active
and (𝑎, 𝑑, 𝑛) ∉ F as passive. This way, it is possible to rewrite
problem (7) as

max
F⊆𝑆𝑘

R
F
𝑘,(𝑎,𝑑,𝑛)

− VWF
𝑘,(𝑎,𝑑,𝑛)

, (8)

whereRF
(𝑎,𝑑,𝑛)

andWF
(𝑎,𝑑,𝑛)

are, respectively, the expected total
reward and expected total work in (𝑎, 𝑑, 𝑛) state.
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Conjecture 1. Problem (8) is indexable.

Due to the complexity of our model, proving the index-
ability of Problem (8) is not an easy task. In this way, we
assume Conjecture 1, and therefore, we suppose that for
each (𝑎, 𝑑, 𝑛) state of user 𝑘 the Whittle index exists. From
now on, we omit user label 𝑘. In spite of considering the
undiscounted case, the mathematical analysis is carried out
for the discounted case so as to avoid infinite values caused
by 1−𝛽 terms in denominators for 𝛽 = 1, and then, we obtain
the undiscounted index values in the limit 𝛽 → 1.

Following Whittle index definition in [10], we formally
write the Whittle index for Problem (8), V∗

(𝑎,𝑑,𝑛)
, as

V∗
(𝑎,𝑑,𝑛)

= VF
(𝑎,𝑑,𝑛)

=
R
⟨1,F⟩

(𝑎,𝑑,𝑛)
−R
⟨0,F⟩

(𝑎,𝑑,𝑛)

W
⟨1,F⟩

(𝑎,𝑑,𝑛)
−W
⟨0,F⟩

(𝑎,𝑑,𝑛)

. (9)

Whittle index, VF
(𝑎,𝑑,𝑛)

, represents the rate between
marginal reward and marginal work, where the marginal
reward (work) is the difference of the expected reward earned
(work required) by serving and not serving at the initial state
(𝑎, 𝑑, 𝑛) and employing policyF afterwards.

Lemma 2. For any state (𝑎, 𝑑, 𝑛) and under any policy F we
obtain

VF
(𝑎,𝑑,𝑛)

= (𝛽[(1 − 𝜇
(𝑎,𝑛)

) ∑

𝑚∈N

𝑞
𝑚
R

F

(𝑎+𝑟𝑛 ,𝑑+1,𝑚)
+ 𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) − ∑

𝑚∈N

𝑞
𝑚
R

F
(𝑎,𝑑+1,𝑚)

])

× (1 + 𝛽[(1 − 𝜇
(𝑎,𝑛)

) ∑

𝑚∈N

𝑞
𝑚
W

F

(𝑎+𝑟𝑛 ,𝑑+1,𝑚)

− ∑

𝑚∈N

𝑞
𝑚
W

F
(𝑎,𝑑+1,𝑚)

])

−1

.

(10)

Proof. From the definition of reward and work, respectively,
we have

R
F
(𝑎,𝑑,𝑛)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

R
⟨1,F⟩

(𝑎,𝑑,𝑛)
= 𝛽[(1 − 𝜇

(𝑎,𝑛)
) ∑

𝑚∈N

𝑞
𝑚
RF

(𝑎+𝑟𝑛 ,𝑑+1,𝑚)

+ 𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) ]

(𝑎, 𝑑, 𝑛) ∈ F

R
⟨0,F⟩

(𝑎,𝑑,𝑛)
= 𝛽 ∑

𝑚∈N

𝑞
𝑚
RF
(𝑎,𝑑+1,𝑚)

(𝑎, 𝑑, 𝑛) ∉ F,

(11)

(1)F
0
:= 0

(2) for 𝑖 = 1 → number of states do
(3) (𝑎, 𝑑, 𝑛)

𝑖
∈ argmax {VF𝑖−1

(𝑎,𝑑,𝑛)
: (𝑎, 𝑑, 𝑛) ∉ F

𝑖−1
}

(4) V∗
(𝑎,𝑑,𝑛)𝑖

= VF𝑖−1
(𝑎,𝑑,𝑛)𝑖

;F
𝑖
= F
𝑖−1
∪ {(𝑎, 𝑑, 𝑛)

𝑖
}

(5) end for

Algorithm 1:AG-algorithm for Problem (8).

W
F
(𝑎,𝑑,𝑛)

=

{{{{{

{{{{{

{

W
⟨1,F⟩

(𝑎,𝑑,𝑛)
= 1 + 𝛽 (1 − 𝜇

(𝑎,𝑛)
) ∑

𝑚∈N

𝑞
𝑚
WF
(𝑎+𝑟𝑛 ,𝑑+1,𝑚)

(𝑎, 𝑑, 𝑛) ∈ F

W
⟨0,F⟩

(𝑎,𝑑,𝑛)
= 𝛽 ∑

𝑚∈N

𝑞
𝑚
WF
(𝑎,𝑑+1,𝑚)

(𝑎, 𝑑, 𝑛) ∉ F.

(12)

By substituting the expressions (11) and (12) in formula
(9), we achieve a more complete VF

(𝑎,𝑑,𝑛)
(10) formulation.

Nevertheless, in order to obtain an analytically tractable
Whittle index expression for (10) in the state (𝑎, 𝑑, 𝑛), it is
necessary to determine the policyF of the future states that
have influence on the index computation of this state. As can
be observed from (10), (11), and (12) expressions, in these
future states the value of attained service is maintained or
increased, whereas delay grows over time. Since increasing
attained service decreases instant completion probability for
a Pareto distribution and increasing delay degrades QoE, it
would seem intuitively correct to suppose that future states
with the same or worse channel conditions are passive. In
such a way, we could say that in a state with the same or worse
channel condition being attained service and delay higher
that the Whittle index value is lower. However, for future
states with better channel conditions their passive or active
property is not trivial, because the improvement in channel
condition does not guarantee being a better state due to the
aforementioned behavior of the increasing attained service
and delay.Therefore, finding the active set of all the influential
states for Whittle index computation becomes a challenging
task.

In such situation, aimed at achieving the characteristics
of the optimal policy and the subsequent active set building
evolution we will use an algorithm called Adaptive-Greedy,
shortlyAG-algorithm (see [10] for a survey). This algorithm
computes Whittle indices numerically taking into account
optimal active sets. This way, we have implemented AG-
algorithm for our case study in order to verify the fundamen-
tal properties of the Whittle index for our problem, which
will be useful to determine the active set, and consequently,
a closed-form index expression. We provide the operation of
the applied algorithm in Algorithm 1.

We have performed several numerical experiments for
𝛽 = 1 case, in which we have reduced the state space of
both delay and channel states so as to do the execution of the
algorithm computationally and in time viably. We have only
considered two channel conditions and eleven levels of delay
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in the scenarios. In such a way, from experimental results we
conjecture the following fundamental properties.

(1) TheWhittle index value depends on attained service,
delay, and channel state. Moreover, as can be seen
in graphs from Figures 3 and 4, we can clearly
distinguish the ranges of MOS function; above the
upper delay threshold, the index value is null.

(2) For the same channel condition and the same
delay level, Whittle index values are decreasing with
attained service: V∗

(𝑎,𝑑,𝑚)
> V∗
(𝑎
󸀠
,𝑑,𝑚)

∀𝑎
󸀠

> 𝑎 (illus-
trated in Figures 3 and 4).

(3) For the same channel condition and the same attained
service level,Whittle index values are decreasing with
delay: V∗

(𝑎,𝑑,𝑚)
> V∗
(𝑎,𝑑+1,𝑚)

. (See Figures 3 and 4).
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(4) In a better channel condition, for the same attained
service level and the same delay level, the Whittle
index value is higher: V∗

(𝑎,𝑑,𝑚1)
> V∗
(𝑎,𝑑,𝑚2)

∀𝑚
1
> 𝑚
2
.

(Observe Figure 3).
(5) Opposite to the previous channel-aware work [6],

where Whittle indices in the best channel condition
are infinite having absolute priority in this channel
state, in our case being in the best channel condition
does not guarantee that the Whittle index value is
higher than in the rest of the channel conditions: it is
possible to fulfil V∗

(𝑎,𝑑,𝑚<𝑁)
> V∗
(𝑎
󸀠
,𝑑
󸀠
,𝑁)

. If we compare
the two graphs in Figure 3, it can be easily seen how
for several attained services and/or delayed values the
Whittle index values in the worst channel condition
are higher than in the best channel condition (taking
also into account nonnull values).

(6) Dependency on channel condition probabilities: hile
for channel condition 𝑁 the Whittle index value
remains invariant with channel state probability, for
the rest of channel conditions its value decreases as
long as channel state probabilities increase in better
channel conditions (shown in Figure 4).

Once we analyzed the properties of theWhittle index, we
set out to define the structure of the active set in order to
obtain an analytically and computationally tractable Whittle
index expression. In such a way, to derive a closed-form
characterization of the Whittle index of (𝑎, 𝑑, 𝑛) state, first of
all it is necessary to specify the activity of (𝑎, 𝑑 + 1,𝑚) and
(𝑎 + 𝑟

𝑛
, 𝑑 + 1,𝑚) states. As concluded from Whittle index

properties, it is known that (𝑎, 𝑑+1,𝑚 ≤ 𝑛)∪(𝑎+𝑟
𝑛
, 𝑑+1,𝑚 ≤

𝑛) states are passive. However, it is not trivial to specify above
which attained service level and/or delay level if (𝑎, 𝑑+1,𝑚 >

𝑛)∪ (𝑎+ 𝑟
𝑛
, 𝑑 + 1,𝑚 > 𝑛) states with better channel condition

are active or passive.
Nonetheless, in the best channel the active set is totally

specified since all the states that compute in the index are pas-
sive, because of nonexisting channel improvement and being
in the future attained service equal or higher and delay higher.
As shown in Proposition 3, for the best channel condition the
Whittle index has a closed-form expression, where the index
value is the multiplication between completion probability
and normalizedMOS function. Note that the obtainedWhit-
tle index expression in the best channel state is equivalent to
the GM index achieved for constant channel [16].

Proposition 3. The Whittle index for Problem (8) in the best
channel condition is given by

V∗
(𝑎,𝑑,𝑁)

= 𝜇
(𝑎,𝑁)

⋅ M̂OS (𝑑 + 1) . (13)

Proof. It is known that for V∗
(𝑎,𝑑,𝑁)

index computation that
F = 0. In this way, using (11) and (12): RF

(𝑎,𝑑+1,𝑚)
=

𝛽∑
𝑚∈N 𝑞

𝑚
RF
(𝑎,𝑑+2,𝑚)

;RF
(𝑎,𝑑+2,𝑚)

= 𝛽∑
𝑚∈N 𝑞

𝑚
RF
(𝑎,𝑑+3,𝑚)

; . . . ;

RF
(𝑎,𝑑>𝑑max ,𝑚)

= 0. Hence, analogolously, RF
(𝑎+𝑟𝑛 ,𝑑+1,𝑚)

= 0,
WF
(𝑎,𝑑+1,𝑚)

= 0, and WF
(𝑎+𝑟𝑛 ,𝑑+1,𝑚)

= 0. Substituting these
null terms in expression (10), and being 𝛽 = 1, we achieve
(13).

Besides, as stated before, obtaining a computationally
tractable Whittle index expression for any channel condition
is not possible. In such situation, in order to achieve a
tractable Whittle-based QoE-aware index rule for time-
varying channels, we propose a Whittle-based approximate
heuristic in the next subsection.

4.1. Approximate Whittle Index Proposal. In the following we
propose an approximate solution for the QoE-aware Whittle
index in a time-varying channel context (10).

First of all, we will determine the structure of the active
set. For the Whittle index computation of (𝑎, 𝑑, 𝑛) state, as
previously concluded, it is known that (𝑎, 𝑑 + 1,𝑚 ≤ 𝑛) ∪ (𝑎+

𝑟
𝑛
, 𝑑 + 1,𝑚 ≤ 𝑛) states are passive, but we need to define the

unknown activity of (𝑎, 𝑑 + 1,𝑚 > 𝑛) ∪ (𝑎 + 𝑟
𝑛
, 𝑑 + 1,𝑚 > 𝑛)

states. Thus, so as to determine if these states are active or
passive we apply the following two considerations.

(1) 𝜇 approximation:

𝜇
(𝑎,𝑚)

≈ 𝜇
(𝑎+𝑟𝑙 ,𝑚)

(14)

(2) MOS approximation:

MOS (𝑑) ≈ MOS (𝑑 + 1) . (15)

On the one hand, we assume that for any 𝑙 = 1, 2, . . . , 𝑁

value that 𝜇
(𝑎,𝑚)

≈ 𝜇
(𝑎+𝑟𝑙 ,𝑚)

(14). It is known that (𝑎, 𝑑,𝑚 >

𝑛) states are active, and being 𝜇
(𝑎,𝑚)

≈ 𝜇
(𝑎+𝑟𝑛 ,𝑚)

, we could
consider that (𝑎 + 𝑟

𝑛
, 𝑑, 𝑚 > 𝑛) states are active.

On the other hand, we assume MOS(𝑑) ≈ MOS(𝑑 + 1)
(15), since QoE degradation in a higher delay level is neg-
ligible in the millisecond scale that delay evolves. Taking
into account the approximation about MOS function, being
(𝑎, 𝑑,𝑚 > 𝑛) states active, we can suppose that (𝑎, 𝑑 + 1,𝑚 >

𝑛) states are also active. This way, combining approximations
(14) and (15), we consider that (𝑎 + 𝑟

𝑛
, 𝑑 + 1,𝑚 > 𝑛) states are

active.
Then, suppose that the aforementioned 𝜇 and

MOS approximations cause 𝑅
𝑎𝑑

= ∑
𝑚
𝑞
𝑚
𝑅
(𝑎,𝑑,𝑚)

≈

∑
𝑚
𝑞
𝑚
𝑅
(𝑎+𝑟𝑙 ,𝑑+1,𝑚)

and 𝑊
𝑎𝑑

= ∑
𝑚
𝑞
𝑚
𝑊
(𝑎,𝑑,𝑚)

≈

∑
𝑚
𝑞
𝑚
𝑊
(𝑎+𝑟𝑙 ,𝑑+1,𝑚)

. So, using these reward and work
approximations, the first simplified expression for the
Whittle index formulation (10) is

Ṽ∗
(𝑎,𝑑,𝑛)

=
𝛽𝜇
(𝑎,𝑛)

(M̂OS (𝑑 + 1) − 𝑅
𝑎𝑑
)

1 − 𝛽𝜇
(𝑎,𝑛)

𝑊
𝑎𝑑

. (16)

In such a way, applying the previous simplifications,
we obtain the Whittle index approximation presented
in Proposition 4, what we call attained service PI MOS
(ASPIM). The methodology to compute the closed-form
expression of this QoE-aware Whittle-based index is pre-
sented in the Appendix.

Proposition 4. The formulation of the ASPIM index is:

𝐴𝑆𝑃𝐼𝑀 = Ṽ∗
(𝑎,𝑑,𝑛)

= lim
𝛽→1

𝛽𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) (1 − 𝛽)
1 − 𝛽 + 𝛽∑

𝑚>𝑛
𝑞
𝑚
(𝜇
(𝑎,𝑚)

− 𝜇
(𝑎,𝑛)

)
.

(17)
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Table 1: CQIs and corresponding transmission rates (Mbps).

CQI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑠 0 4.2 6.72 8.4 11.256 16.8 21.84 25.2 26.88 33.6 44.68 50.4 53.76 67.2 75.8 80.64

If we analyze expression (17), we observe that this QoE-
aware and channel-aware Whittle-based ASPIM index is
implementable. This proposal depends on QoE, size, and
channel properties. Moreover, the obtained index for the
best channel condition is equal to the original Whittle index
(13), since the summation in the denominator becomes null.
However, as shown in (18), when channel state is not the best
the index value goes to zero:

ASPIM
𝑛 ̸=𝑁

= lim
𝛽→1

𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) (1 − 𝛽)
∑
𝑚>𝑛

𝑞
𝑚
(𝜇
(𝑎,𝑚)

− 𝜇
(𝑎,𝑛)

)
󳨀→ 0.

(18)

Hence, a user in its best channel state with nonnull
instantaneous normalized MOS function has priority over
a user which is not in its best channel condition. Thus, we
summarize the proposed QoE-aware Whittle-based ASPIM
index rule in Definition 5.

Definition 5. The ASPIM index rule consists of: at every
decision slot,

(i) serving the user in its best channel condition with
nonnull instantaneous normalized MOS function
with the highest value of 𝜇

(𝑎,𝑁)
⋅ M̂OS(𝑑 + 1);

(ii) if there is no user in its best channel condition with
nonnull instantaneous normalized MOS function,
serving the user with the highest value of (𝜇

(𝑎,𝑛)
⋅

M̂OS(𝑑 + 1))/∑
𝑚>𝑛

𝑞
𝑚
(𝜇
(𝑎,𝑚)

− 𝜇
(𝑎,𝑛)

) (using (18)
normalized by (1 − 𝛽)).

So, if channel condition is not the best, the index value
is the ratio of the multiplication between the actual service
completion and the instantaneous normalizedMOS function
respect to the expected potential improvement of the comple-
tion probability.

Therefore, in the context of time-varying channels aimed
at maximizing average MOS, we have proposed ASPIM
scheduling algorithm, which is a simple and tractable QoE-
aware, channel-aware, and size-based index rule. Neverthe-
less, in order to verify the correct behavior of this heuristic,
we analyze its performance in the subsequent section.

5. Performance Evaluation

In this section, we evaluate the performance of the proposed
ASPIM index rule (see proposal in Definition 5). To that end,
we compare the QoE performance of our heuristic with the
one achieved by well-known scheduling strategies in several
simulation scenarios. Below we provide a brief description of
the scheduling priority rules used in our experiments.

(i) Max rate (MR): this opportunistic policy consists in
serving the user with the best channel capacity.

(ii) Proportional fair (PF): this channel-aware disci-
pline serves the user with the highest ratio between
instantaneous transmission rate and current attained
throughput.

(iii) Cost and attained service dependant 𝜇 (𝑐AS𝜇):
although it might seem counter-intuitive, minimizing
mean delay does not result in maximizing average
MOS [24]. This way, in order to compare the per-
formance with delay-aware solutions, we propose to
adapt the classical 𝑐𝜇 rule aimed at minimizing mean
delay [25] to attained service.This adaptation consists
of serving the user with the highest value of 𝑐𝜇

(𝑎,𝑛)
,

being 𝑐 the waiting cost paid for every slot while flow
transmission is uncompleted.

(iv) GM [16]: thisQoE-aware pioneering index rule, origi-
nally proposed for constant channel capacity, chooses
the user with the highest value of 𝜇

(𝑎,𝑛)
⋅ M̂OS(𝑑 + 1).

In case of ties, we use random tie-breaking rule.
Concerning traffic flows in the system, we use the Pareto

size distribution given in (1) in simulations, whose 𝛼 and 𝛾
parameters determine mean flow size. We consider typical
mean sizes used in wireless networks: 0.5Mb (small traffic:
a web page, email), 5Mb (medium traffic: a PDF document,
a picture, etc.), and 50Mb (MP3 audio, a group of pictures
from a video sequence, etc.). User traffic flows arrive to the
scheduler according to a Poisson process with 𝜆 rate.

Referring to network characteristics, we use transmis-
sion rates that depend on CQIs used in real wireless
networks, which are associated with 4G modulation and
coding schemes. We show the mapping between CQI values
and transmission rates in Table 1. The presented values are
adapted and extrapolated from [26] for a cell of 20MHz.

Moreover, we consider different network loads in order to
analyze the behavior of scheduling strategies under different
network conditions. Flow arrival rate determines network
load, 𝜌, where 𝜌 = 𝜆 ⋅ (E[𝑋]/𝑠

𝑁
). We consider seven network

states in this study: low load (𝜌 = 0.25, 0.375), medium load
(𝜌 = 0.5, 0.75), and high load (𝜌 = 0.85, 0.9, 0.95).

Regarding QoE aspects, as typically utilized in perceived
quality studies [27], we use a log-shaped MOS function for
QoE degradation, presented in (19). This way, employing the
MOS curve modelling provided in [21] as starting point and
taking into account the flow size, the network type and the
user expertise, we have suitably defined 𝑑min and 𝑑max delay
thresholds used in simulations, and consequently 𝑐

1
and 𝑐
2

MOS coefficients. Consider

MOS = 𝑐
1
− 𝑐
2
⋅ log (𝑑) . (19)

We have implemented the whole network environment
for the scheduling of network resources in MATLAB. In
relation to the performed experiments, for each scenario,
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Table 2: Parameter set in the experimental scenarios.

Scenario MOS Size Channel 𝑐

1 𝑑min = 0.5 s, 𝑑max = 10 s 𝛼 = 1.5, 𝛾 = 4 ⋅ 10−7 CQI = {3, 5} 1
𝑐
1
= 4.07, 𝑐

2
= 1.33 E[𝑋] = 5Mbit 𝑞

2
= 0.5

2 𝑑min = 0.4 s, 𝑑max = 0.6 s 𝛼 = 1.5, 𝛾 = 4 ⋅ 10−7 CQI = {3, 5} 1
𝑐
1
= −4.03, 𝑐

2
= 9.86 E[𝑋] = 5Mbit 𝑞

2
= 0.5

3 𝑑min = 0.5 s, 𝑑max = 10 s 𝛼 = 1.5, 𝛾 = 4 ⋅ 10−7 CQI = {3, 9} 1
𝑐
1
= 4.07, 𝑐

2
= 1.33 E[𝑋] = 5Mbit 𝑞

2
= 0.5

4 𝑑min = 0.05 s, 𝑑max = 1 s 𝛼 = 1.5, 𝛾 = 4 ⋅ 10−6 CQI = {3, 5} 1
𝑐
1
= 1, 𝑐
2
= 1.33 E[𝑋] = 0.5Mbit 𝑞

2
= 0.5

5

𝑑min1 = 0.5 s, 𝑑max1 = 5 s 𝛼
1
= 1.5, 𝛾

1
= 4 ⋅ 10

−7

see Table 3 {5, 1}
𝑐
11
= 3.79, 𝑐

21
= 1.73 E[𝑋

1
] = 5Mbit

𝑑min2 = 5 s, 𝑑max2 = 30 s 𝛼
2
= 1.5, 𝛾

2
= 4 ⋅ 10

−8

𝑐
12
= 8.59, 𝑐

22
= 2.23 E[𝑋

2
] = 50Mbit

Table 3: Channel state probabilities in Scenario 5.

CQI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑞 0.28 0.12 0.09 0.08 0.08 0.08 0.07 0.06 0.05 0.04 0.03 0.01 0.009 0.0005 0.0003 0.0002

for each combination of scheduling discipline and network
load, we have carried out a set of 10 rounds of 10000 s
length simulations. These rounds differ in the randomly
pregenerated traces (input vector) of sizes and arrivals. Thus,
not only the overall average MOS values will be provided but
we will also include their 95% confidence intervals.

Besides, in order to guarantee that the obtained perfor-
mance results are generally valid, we will analyze different
simulation scenarios. We have chosen five relevant settings,
which differ inQoE, size, channel, or/and cost characteristics.
The parameters of these scenarios are summarized in Table 2.
Note that in the first four scenarios, we restrict ourselves to
the case of two channel conditions so as to get fundamental
performance results.

We have carefully selected the scenarios used in simula-
tions. First of all, we define a setting (Scenario 1) in which the
values of all the parameters are typical or standard; the values
of these parameters introduce low error in the approxima-
tions considered for our ASPIM scheduler proposal. Then,
in order to evaluate worst performance cases for ASPIM,
we have chosen three scenarios (Scenario 2, Scenario 3, and
Scenario 4) in which the error of the approximation used for
ASPIM is high due to a different factor (gradient ofMOS, rate
and size, resp.).

Apart from that, it is worthmentioning that for obtaining
the ASPIM index rule that we have considered an isolated
MDP model per user. Hence, the achieved solution is based
on a unique user type or single class. However, it would be
interesting to examine the proposal when there are different
types of users, which is analyzed in Scenario 5. Furthermore,
this last setting resembles a real 4G wireless network. Note
that, even though this technology allows the simultaneous
transmission of multiple flows per TTI, we assume that a
single flow transmits in each TTI.
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Figure 5: E[MOS] for the basic scenario.

Next we describe the results we have achieved in the
aforementioned scenarios.

5.1. Scenario 1: Basic Case. In this first family of simulations
we consider a basic or typical scenario, which takes into
account the equiprobable channel case and medium-sized
self-similar flows. Figure 5 shows averageMOS results for this
setting employing different scheduling policies and network
loads.Themain conclusion achieved from these results is that
ASPIM outperforms the rest of disciplines, which is better
than the QoE-aware GM rule proposed for constant channel
capacity. Moreover, contrary to the other policies, it holds
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Figure 6: Statistics in Scenario 1: delay PDF (a), MOS PDF (b), and MOS CCDF (c).

averageMOSvalues in the same level for all𝜌. Referring to the
traditional channel-aware disciplines, both PF and MR give
bad behavior comparing to the rest of scheduling strategies.

In order to justify the previous performance results we
now analyze delay andMOS statistics for the highest network
load considered. In such a way, as regarded in Figure 6(a) for
the Probability Density Function (PDF) of delay, we highlight
the probabilitymass or peak that appears for some scheduling
disciplines before the low delay threshold (0.5 s). The height
and weight of a peak belonging to a policy have direct impact
on its average MOS. ASPIM discipline shows the highest
and the widest peak among the presented ones, followed
by GM but with a notable difference. Therefore, our novel
QoE-aware policy seems to try to finish the transmission
of most of the flows before 𝑑min, which is reflected in the
aforementioned peaks. Note that the cAS𝜇 rule aimed at
minimizing delay behaves in different manner, which shows
more fairness among delays in the range shown compared to
the QoE-aware ones.

What is previously concluded about delay statistics has
a direct reflection on QoE statistics. This way, as can be
seen in the PDF of MOS presented in Figure 6(b), if the
objective is to maximize average QoE it is important, on
the one hand, to be the height and the weight of the peaks
around the maximum MOS high, and on the other hand, to
be the value around the minimum MOS low. ASPIM fulfils
these positive properties, and consequently, it is the best
in average QoE terms. Besides, if we analyze the Comple-
mentary Cumulative Distribution Function (CCDF) of MOS
provided in Figure 6(c), we observe that ASPIM gives the
highest probability of being MOS value higher. Considering,
for example, a QoE satisfaction threshold, satisth, of MOS =
4, in this point ASPIM improves GM a 10%, whereas the
deterioration of MR and PF is higher than a 50%.

5.2. Scenario 2: High Demanding Users Case. This scenario
reflects the case of users with low tolerance to delay, in
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Figure 7: E[MOS] for abrupt MOS scenario.

which theMOS function in theQoE degradation range shows
a great slope. Thus, in this setting the error of the MOS
approximation (15) is high since the gradient of MOS among
consecutive delay levels becomes significant. In Figure 7
we compare the results of this second scenario and the
basic scenario. From the illustrated graph we could say that
our QoE-aware proposal adapts to any MOS function. This
is, whereas for the rest of disciplines (excluding GM) the
negative effects due to the abrupt degradation of the QoE
utility function are appreciable, ASPIMmanages to avoid this,
adapting to any MOS function.

5.3. Scenario 3: Higher Error Case due to Rate. During the
simplification process carried out for obtaining the ASPIM
index rule in Section 4.1, the 𝜇 approximation used (see (14))
introduces a rate dependant error. Note that increasing the
rate in the good channel state makes bigger the error of the 𝜇
approximation used. Therefore, we will analyze the obtained
performance for our new QoE-aware proposal under this
higher error due to rate. In the previous scenarios we have
assumed that the transmission rate in the good channel
condition is twice the rate in the bad channel state. In this
setting we consider that the transmission rate in the good
channel is four times the transmission rate in the bad channel.
This way, according to the QoE results presented in Figure 8,
in spite of a higher error caused by rate, ASPIM is superior to
the rest of policies.

5.4. Scenario 4: High Error Case due to Size. Besides, it is
known that for a distribution with a decreasing hazard rate
such as Pareto that the gradient of completion probability
increases as long as the mean size decreases, which makes
the error of the 𝜇 approximation (14) for the ASPIM rule
achievement bigger. In this way, in this scenario we verify
that ASPIM gives satisfactory behavior under a more notable
error due to size, where we consider a mean size ten times
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Figure 8: E[MOS] under higher error due to rate.
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Figure 9: E[MOS] under high error due to size.

lower. We conclude from Figure 9 that even under a high
error caused by size that ASPIM shows good performance,
being the best alternative.

5.5. Scenario 5: A Real Network Case. This last scenario
reflects a real 4G wireless network context, but with the
simplification that a single user transmits in each TTI. To that
end, we use CQI traces obtained from a system-level radio
access simulator [28], considering users moving at 5 km/h
in the cell. For this setting with dynamic users, we define
channel propagation by the Extended Pedestrian Amodel. As
in current 4G networks, we consider 16 channel conditions.
The state probabilities of these channel states are collected
in Table 3, which are decreasing with the improvement of
channel quality. In this scenario we consider two classes of
users, which differ in size, QoE and cost. The mean size



12 Abstract and Applied Analysis

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

E
[M

O
S]

𝜌

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

E
[M

O
S]

ASPIM
MR
PF

cAS𝜇
GM

𝜌

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

E
[M

O
S]

ASPIM
MR
PF

cAS𝜇
GM

𝜌

(c)

Figure 10: E[MOS] for 4G scenario: aggregate (a), class 1 (b), class 2 (c).

in class 2 is ten times bigger than in class 1, and we give
priority to the small-sized class by having bigger cost andQoE
requirement.

Under this mixture of classes and realistic channel mod-
els, in Figure 10(a) we observe that scheduling strategies
show the same tendency as in the previous scenarios. It is
remarkable that the difference between ASPIM and GM is
bigger, especially for high 𝜌 values. Moreover, under the
highest network load ASPIM achieves MOS values above
QoE satisfaction threshold (MOS = 4). Furthermore, average
MOS values forMR and PF dramatically decrease comparing
with the previous settings.

Concerning class behaviour, we show per-class results
in Figures 10(b) and 10(c). As can be concluded from
the presented results, QoE-aware policies guarantee fairness
among classes, and ASPIM is the best choice also inside class.
Aside from that, for the cost dependant cAS𝜇 discipline the
deterioration of the class with no priority is significant.

6. Conclusions

This paper goes into detail about obtaining a scheduling
algorithmaimed atmaximizing users’ perception of quality in
channels with time-varying capacity. Furthermore, this work
considers traffic flowswith nonexponential size distributions,
contrary to previous approaches that assume memoryless
distributions.

As first contribution, we provide a MDP-based model
for the scheduling problem presented. This model combines
QoE-awareness, size-awareness and channel-awareness.Nev-
ertheless, since this model can not be solved either analyt-
ically or computationally, from the proposed MDP model
we derive a simple, tractable and implementable well-
performing scheduling index rule by applying amethodology
based on Whittle approach.

The proposed scheduling solution still combines QoE-,
size- and channel-awareness. Our scheduling proposal gives
priority to users in their best channel condition that are
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out of the service unavoidable range. As verified from
simulation results, the proposed scheduling strategy shows
suitable subjective quality performance in a wide range of
scenarios, including the case of a simplified 4G network with
heterogeneous users.

Therefore, the results of this work present a relevant
mathematical basis for developing scheduling algorithms
aimed at maximizing QoE in current and future networks
with time-varying channel capacity. This way, the proposed
channel-aware ASPIM discipline will be useful for network
operators in order to guarantee to their customers service
satisfaction in time-varying wireless networks. Apart from
that, the approximations and simplifications used in Whittle
method are applicable to any area when the gradient of
system components is considerably small among consecutive
decision slots.

As future research, we will extend our work to amultiuser
approach, considering the simultaneous transmission ofmul-
tiple flows per TTI.

Appendix

Proof of Proposition 4

LemmaA.1. Suppose that states (𝑎, 𝑑+1,𝑚 ≤ 𝑛)∪(𝑎+𝑟
𝑛
, 𝑑+

1,𝑚 ≤ 𝑛) are passive and that states (𝑎, 𝑑 + 1,𝑚 > 𝑛) ∪ (𝑎 +

𝑟
𝑛
, 𝑑 + 1,𝑚 > 𝑛) are active, and

Ṽ∗
(𝑎,𝑑,𝑛)

=
𝛽𝜇
(𝑎,𝑛)

( M̂OS (𝑑 + 1) − 𝑅
𝑎𝑑
)

1 − 𝛽𝜇
(𝑎,𝑛)

𝑊
𝑎𝑑

. (A.1)

Along with this, if we assume that 𝑅
𝑎𝑑

= ∑
𝑚
𝑞
𝑚
𝑅
(𝑎,𝑑,𝑚)

≈

∑
𝑚
𝑞
𝑚
𝑅
(𝑎+𝑟𝑙 ,𝑑+1,𝑚)

and 𝑊
𝑎𝑑

= ∑
𝑚
𝑞
𝑚
𝑊
(𝑎,𝑑,𝑚)

≈

∑
𝑚
𝑞
𝑚
𝑊
(𝑎+𝑟𝑙 ,𝑑+1,𝑚)

for any 𝑙 = 1, 2, . . . , 𝑁 value, for the
undiscounted case:

Ṽ∗
(𝑎,𝑑,𝑛)

= lim
𝛽→1

𝛽𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) (1 − 𝛽)
1 − 𝛽 + 𝛽∑

𝑚>𝑛
𝑞
𝑚
(𝜇
(𝑎,𝑚)

− 𝜇
(𝑎,𝑛)

)
. (A.2)

Proof. Referring to work elements, using (12):

𝑊
(𝑎,𝑑,𝑚≤𝑛)

= 𝛽∑

𝑚

𝑞
󸀠

𝑚
𝑊
(𝑎,𝑑+1,𝑚

󸀠
)
= 𝛽𝑊

𝑎𝑑
,

𝑊
(𝑎,𝑑,𝑚>𝑛)

= 1 + 𝛽 (1 − 𝜇
(𝑎,𝑚)

)∑

𝑚

𝑞
󸀠

𝑚
𝑊
(𝑎+𝑟𝑚 ,𝑑+1,𝑚

󸀠
)

= 1 + 𝛽 (1 − 𝜇
(𝑎,𝑚)

)𝑊
𝑎𝑑
.

(A.3)

And by (A.3) expressions,

𝑊
𝑎𝑑
= (1 − ∑

𝑚>𝑛

𝑞
𝑚
)𝛽𝑊

𝑎𝑑
+ ∑

𝑚>𝑛

𝑞
𝑚
(1 + 𝛽 (1 − 𝜇

(𝑎,𝑚)
)𝑊
𝑎𝑑
) .

(A.4)

This way, isolating𝑊
𝑎𝑑
,

𝑊
𝑎𝑑
=

∑
𝑚>𝑛

𝑞
𝑚

1 − 𝛽 + 𝛽∑
𝑚>𝑛

𝑞
𝑚
𝜇
(𝑎,𝑚)

. (A.5)

Analogously, for reward elements, using (11):

𝑅
(𝑎,𝑑,𝑚≤𝑛)

= 𝛽∑

𝑚

𝑞
󸀠

𝑚
𝑅
(𝑎,𝑑+1,𝑚

󸀠
)
= 𝛽𝑅
𝑎𝑑
,

𝑅
(𝑎,𝑑,𝑚>𝑛)

= 𝛽[(1 − 𝜇
(𝑎,𝑚)

)∑

𝑚

𝑞
󸀠

𝑚
𝑅
(𝑎+𝑟𝑚 ,𝑚

󸀠
)
+ 𝜇
(𝑎,𝑚)

⋅ M̂OS (𝑑 + 1)]

= 𝛽 [(1 − 𝜇
(𝑎,𝑚)

) 𝑅
𝑎𝑑
+ 𝜇
(𝑎,𝑚)

⋅ M̂OS (𝑑 + 1)] .
(A.6)

And thus, from (A.6),

𝑅
𝑎𝑑
= (1 − ∑

𝑚>𝑛

𝑞
𝑚
)𝛽𝑅
𝑎𝑑

+ ∑

𝑚>𝑛

𝑞
𝑚
(𝛽 [(1 − 𝜇

(𝑎,𝑚)
) 𝑅
𝑎𝑑
+ 𝜇
(𝑎,𝑚)

⋅ M̂OS (𝑑 + 1)]) .

(A.7)

Isolating 𝑅
𝑎𝑑
,

𝑅
𝑎𝑑
=
𝛽∑
𝑚>𝑛

𝑞
𝑚
𝜇
(𝑎,𝑚)

M̂OS (𝑑 + 1)
1 − 𝛽 + 𝛽∑

𝑚>𝑛
𝑞
𝑚
𝜇
(𝑎,𝑚)

. (A.8)

Substituting (A.5) and (A.8) in (A.1), and by simplifying,
we obtain

Ṽ∗
(𝑎,𝑑,𝑛)

= (𝛽𝜇
(𝑎,𝑛)

(M̂OS (𝑑 + 1)

−
𝛽∑
𝑚>𝑛

𝑞
𝑚
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𝑞
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𝜇
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)

−1
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𝑚>𝑛

𝑞
𝑚
𝜇
(𝑎,𝑚)

)

−𝛽∑

𝑚>𝑛

𝑞
𝑚
𝜇
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M̂OS (𝑑 + 1)))
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𝑚>𝑛

𝑞
𝑚
𝜇
(𝑎,𝑚)

− 𝛽𝜇
(𝑎,𝑛)

∑

𝑚>𝑛

𝑞
𝑚
)

−1

=
𝛽𝜇
(𝑎,𝑛)

⋅ M̂OS (𝑑 + 1) (1 − 𝛽)
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𝑚>𝑛
𝑞
𝑚
(𝜇
(𝑎,𝑚)

− 𝜇
(𝑎,𝑛)

)
.

(A.9)

And therefore, for the undiscounted case, the 𝛽 → 1

limit for expression (A.9) is (A.2).
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