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In this paper a variable-coefficient reaction-diffusion equation is studied. We classify the equation into three kinds by different
restraints imposed on the variable coefficient 𝑏(𝑥) in the process of solving the determining equations of Lie groups.Then, for each
kind, the conservation laws corresponding to the symmetries obtained are considered. Finally, some exact solutions are constructed.

1. Introduction

Conservation law is an important concept in physics. It
describes a quantity that is conserved; that is, the total
amount is the same before and after something occurs. In
mathematics, conservation lawprovides one of the basic prin-
ciples in formulating and investigating models. For instance,
sometimes, the existence of a large amount of conservation
laws of a partial differential equation (PDE) is a strong
indication of its integrability.

For an Euler-Lagrange equation, which arises out of a
variational principle, the remarkable Noether’s theorem [1]
constructed a one-to-one correspondence between a non-
trivial generalized variational symmetry of some functionals
and a nontrivial conservation law. By this correspondence,
one can establish conservation laws for an Euler-Lagrange
equation, as illustrated in [2], whereas for a system not
arising from a variational principle, such as a single evolution
equation, researchers have made various generalizations [3–
13] of Noether’s method to construct conservation laws.

Among these generalizations, after suggesting some con-
cepts, such as adjoint equation, strict self-adjointness, quasi-
self-adjointness, and nonlinear self-adjointness, Ibragimov
[3] derived a convenient formula to establish conservation
laws for the simultaneous system of the target equation
together with its adjoint equation. By this formula, one
can construct a conservation law for the combined system
through a formal Lagrangian L corresponding to any Lie

point, Lie-Bäcklund, or nonlocal symmetry. But L involves
a “nonphysical” variable V. If the equation considered is
(nonlinearly) self-adjoint, one can eliminate V via a certain
substitution to obtain the conservation law of the original
equation. However, if the equation does not have any self-
adjoint property, the conservation laws for it corresponding
to each symmetry can be considered as local conservation
laws of the simultaneous system but reflect the symmetry
property of the original equation.

Following Ibragimov, many researchers have been study-
ing this interesting area and there are a lot of works in the
literature, such as [14–19] and the references therein.

In this paper, we consider a variable-coefficient reaction-
diffusion equation [20]

𝐸 ≡ 𝑢
𝑡
− 𝑑𝑢
𝑥𝑥

− 𝑏 (𝑥) 𝑢 + 𝑢
2
= 0, (1)

where 𝑢 = 𝑢(𝑥, 𝑡) represents the population density, 𝑑 ( ̸= 0)

is a constant of the diffusion rate, and the variable-coefficient
𝑏(𝑥) describes the growth rate of the living being. As a
diffusive logistic equation, (1) describes the dynamics of a
population inhabiting a strongly hetergeneous environment.
The growth rate 𝑏(𝑥) is positive on favourable habitats and
negative on unfavorable ones. In [20], Cantrell and Cosner
determined how the spatial arrangement of favourable and
unfavourable habitats affects the population being modelled.
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In particular, 𝑏(𝑥) ≡ const. = 𝑏makes (1) in the form

𝑢
𝑡
= 𝑑𝑢
𝑥𝑥

+ 𝑅 (𝑢) , (2)

where 𝑅(𝑢) = 𝑏𝑢 − 𝑢
2, which is the nonlinear heat equation

[21] when 𝑑 = 1.
In [22], Ide and Okada designed numerical schemes that

preserve energy property and showed numerical experiments
for (1).

We start our work with solving the system of determining
equations to obtain the infinitesimal generator andmeantime
classifying (1) into three kinds. To determine the form of the
conservation law corresponding to any symmetry of every
kind, we then study the self-adjointness of (1). By the theorem
[23] on the order of conservation laws for a general class of
second-order evolution equations, which covers (1), we illus-
trate that the local conservation law of (1) does not exist.With
the aid of Ibragimov’s formula, we construct conservation
laws corresponding to every symmetry of each kind. Finally,
using the symmetry group obtained and another method, we
establish some exact solutions of the last two kinds of (1).

The contents of this paper are as follows. In Section 2,
we will give some preliminaries, namely, some definitions,
Ibragimov’s theorem, and a theorem on the order of local
conservation laws for a general class of second-order evo-
lution equations which covers (1). Next we subject (1) to
the effective computational procedure [2] for finding the Lie
point symmetries and study its self-adjointness in Section 3.
Section 4 is devoted to discussing the conservation laws of
(1). Some exact solutions of (1) are obtained in Section 5.
Finally, concluding remarks are given in Section 6.

2. Preliminaries

We assume that all functions are smooth, and the summation
over the repeated indices is understood.

2.1. Ibragimov’s Theory. In this subsection, we recall Ibrag-
imov’s procedure of constructing conservation laws corre-
sponding to the given symmetries of any system of PDEs,
provided that the number of equations in the system is equal
to the number of dependent variables.

For convenience, we consider a scalar evolution equation

𝐹 (𝑥, 𝑢, 𝑢
(1)
, . . . , 𝑢

(𝑠)
) = 0, (3)

with independent variables 𝑥 = (𝑥
1
, 𝑥
2
) (here denote 𝑥

1
=

𝑥, 𝑥
2

= 𝑡.) and a dependent variable 𝑢, where 𝑢
(1)

=

{𝑢
𝑖
}, 𝑢
(2)

= {𝑢
𝑖𝑗
}, . . . denote the sets of the partial derivatives

of the first, second, and so forth, orders, 𝑢
𝑖
= 𝜕𝑢/𝜕𝑥

𝑖, 𝑢
𝑖𝑗
=

𝜕
2
𝑢/𝜕𝑥
𝑖
𝜕𝑥
𝑗
, . . ..

Definition 1. The adjoint equation to (3) is

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0, (4)

with

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) =

𝛿 (V𝐹)
𝛿𝑢

, (5)

where V = V(𝑥1, 𝑥2) is a multiplier and

𝛿

𝛿𝑢
=

𝜕

𝜕𝑢
+

∞

∑

𝑠=1

(−1)
𝑠
𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

𝜕

𝜕𝑢
𝑖
1
⋅⋅⋅𝑖
𝑠

(6)

denotes the variational derivatives (the Euler-Lagrange oper-
ator) and

𝐷
𝑖
=

𝜕

𝜕𝑥𝑖
+ 𝑢
𝑖

𝜕

𝜕𝑢
+ 𝑢
𝑖𝑗

𝜕

𝜕𝑢
𝑗

+ ⋅ ⋅ ⋅ (7)

are the total differentiations.
We now extend (3) to a system

𝛿 (V𝐹)
𝛿V

= 𝐹 (𝑥, 𝑢, 𝑢
(1)
, . . . , 𝑢

(𝑠)
) = 0,

𝛿 (V𝐹)
𝛿𝑢

= 𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0.

(8)

In [3], Ibragimov proved that (8) inherits all symmetries of
(3) and, using Noether’s identity [13], obtained a formula of
conservation law corresponding to every symmetry of (3).

Theorem 2. Any Lie point, Lie-Bäcklund, or nonlocal symme-
try

𝑉 = 𝜉
𝑖
(𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑥𝑖
+ 𝜂 (𝑥, 𝑢, 𝑢

(1)
, . . .)

𝜕

𝜕𝑢
(9)

of (3) provides a conservation law 𝐷
𝑖
(𝐶
𝑖
) = 0 for (8). The

conserved vector is given by

𝐶
𝑖
= 𝜉
𝑖
L

+ 𝑤[
𝜕L

𝜕𝑢
𝑖

− 𝐷
𝑗
(
𝜕L

𝜕𝑢
𝑖𝑗

) + 𝐷
𝑗
𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) − ⋅ ⋅ ⋅ ]

+𝐷
𝑗
(𝑤) [

𝜕L

𝜕𝑢
𝑖𝑗

− 𝐷
𝑘
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘

) + 𝐷
𝑘
𝐷
𝑟
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘𝑟

) − ⋅ ⋅ ⋅ ]

+ 𝐷
𝑗
𝐷
𝑘
(𝑤) [

𝜕L

𝜕𝑢
𝑖𝑗𝑘

− 𝐷
𝑟
(

𝜕L

𝜕𝑢
𝑖𝑗𝑘𝑟

) + ⋅ ⋅ ⋅ ] + ⋅ ⋅ ⋅ ,

(10)

where 𝑤 andL are defined as follows:

𝑤 = 𝜂 − 𝜉
𝑗
𝑢
𝑗
, L = V𝐹 (𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑠)
) . (11)

For a second-order equation, (10) becomes

𝐶
𝑖
= 𝜉
𝑖
L + 𝑤[

𝜕L

𝜕𝑢
𝑖

− 𝐷
𝑗
(
𝜕L

𝜕𝑢
𝑖𝑗

)] + 𝐷
𝑗
(𝑤)

𝜕L

𝜕𝑢
𝑖𝑗

. (12)

According to Theorem 2, we know that every symmetry
of (3) can provide a conservation law. To express these
conservation laws one depends on not only the original
variables but the multiplier V.

Sometimes the multiplier V can be removed from the
conservation law provided that (3) has a property of self-
adjointness.
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Definition 3. Equation (3) is said to be self-adjoint if the
equation obtained from the adjoint equation (4) by the
substitutions V = 𝑢

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0 (13)

is identical with the original equation (3), in other words, if

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
)
󵄨󵄨󵄨󵄨V=𝑢

= 𝜙 (𝑥, 𝑢, 𝑢
(1)
, . . .) 𝐹 (𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑠)
) .

(14)

Definition 4. Equation (3) is said to be quasi-self-adjoint if
the equation obtained from the adjoint equation (4) by the
substitutions V = 𝜑(𝑢) with a certain function 𝜑(𝑢) such that
𝜑
󸀠
(𝑢) ̸= 0

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0 (15)

is identical with the original equation (3).

Definition 5. Equation (3) is said to be weak self-adjoint if
the equation obtained from the adjoint equation (4) by the
substitutions V = 𝜑(𝑥, 𝑢) with a certain function 𝜑(𝑥, 𝑢) such
that 𝜑

𝑢
̸= 0 and 𝜑

𝑥
̸= 0

𝐹
∗
(𝑥, 𝑢, V, 𝑢

(1)
, V
(1)
, . . . , 𝑢

(𝑠)
, V
(𝑠)
) = 0 (16)

is identical with the original equation (3).

Definition 6. Equation (3) is nonlinearly self-adjoint if there
exist functions V = 𝜑(𝑥, 𝑢) that solve the adjoint equation (4)
for all solutions 𝑢(𝑥) of (3) and satisfy the condition𝜑(𝑥, 𝑢) ̸=

0.

Remark 7. Thefirst three definitions were suggested by Ibrag-
imov in [3, 9, 24], respectively, the fourth was introduced
by Gandarias in [25], and few time later it was generalized
by Ibragimov in [13] in the form of Definition 6. So the
nonlinear self-adjointness can be seen the most general
concept; namely, the others are all its trivial cases.

2.2. A Theorem on the Order of Local Conservation Laws for
a General Class of Second-Order Evolution Equations. The
theorem on the order of local conservation laws for a more
general class of second-order evolution equations, which
covers (1), has been proved by Popovych in [23].

Theorem 8. Any local conservation law of any second-order
(1+1)-dimensional quasilinear evolution equation, whose form
is

𝑢
𝑡
= 𝑆 (𝑡, 𝑥, 𝑢, 𝑢

𝑥
) 𝑢
𝑥𝑥

+ 𝑅 (𝑡, 𝑥, 𝑢, 𝑢
𝑥
) , (17)

where 𝑆(𝑡, 𝑥, 𝑢, 𝑢
𝑥
) ̸= 0, has the first order and, moreover, there

exists its conserved vector with the density𝑇 depending at most
on 𝑡, 𝑥, and 𝑢 and the flux𝑋 depending at most on 𝑡, 𝑥, 𝑢, and
𝑢
𝑥
.

3. Lie Point Symmetries and Self-Adjointness

In this section, we present the most general Lie group of
point transformations, which leaves (1) invariant, and study
the self-adjointness of (1).

First of all, we consider a one-parameter Lie group of
infinitesimal transformation:

𝑥 󳨀→ 𝑥 + 𝜖𝜉 (𝑥, 𝑡, 𝑢) ,

𝑡 󳨀→ 𝑡 + 𝜖𝜏 (𝑥, 𝑡, 𝑢) ,

𝑢 󳨀→ 𝑢 + 𝜖𝜙 (𝑥, 𝑡, 𝑢) ,

(18)

with a small parameter 𝜖 ≪ 1.The vector field associatedwith
the above group of transformations can be written as

𝑉 = 𝜉 (𝑥, 𝑡, 𝑢)
𝜕

𝜕𝑥
+ 𝜏 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑡
+ 𝜙 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢
. (19)

Applying the second prolongation

pr(2)𝑉 = 𝑉 + 𝜙
𝑥 𝜕

𝜕𝑢
𝑥

+ 𝜙
𝑡 𝜕

𝜕𝑢
𝑡

+𝜙
𝑥𝑥 𝜕

𝜕𝑢
𝑥𝑥

+ 𝜙
𝑥𝑡 𝜕

𝜕𝑢
𝑥𝑡

+ 𝜙
𝑡𝑡 𝜕

𝜕𝑢
𝑡𝑡

(20)

to (1), we find that the coefficient functions 𝜉(𝑥, 𝑡, 𝑢), 𝜏(𝑥, 𝑡, 𝑢),
and 𝜙(𝑥, 𝑡, 𝑢)must satisfy the symmetry condition

𝜙
𝑡
− 𝑑𝜙
𝑥𝑥

− 𝑏
󸀠
(𝑥) 𝑢𝜉 (𝑥, 𝑡, 𝑢)

− 𝑏 (𝑥) 𝜙 (𝑥, 𝑡, 𝑢) + 2𝑢𝜙 (𝑥, 𝑡, 𝑢) = 0,

(21)

where 𝜙𝑡, 𝜙𝑥𝑥 are the coefficients in pr(2)𝑉 and

𝜙
𝑡
= 𝐷
𝑡
𝜙 (𝑥, 𝑡, 𝑢) − 𝑢

𝑥
𝐷
𝑡
𝜉 (𝑥, 𝑡, 𝑢) − 𝑢

𝑡
𝐷
𝑡
𝜏 (𝑥, 𝑡, 𝑢) ,

𝜙
𝑥𝑥

= 𝐷
2

𝑥
𝜙 (𝑥, 𝑡, 𝑢) − 𝑢

𝑥
𝐷
2

𝑥
𝜉 (𝑥, 𝑡, 𝑢) − 𝑢

𝑡
𝐷
2

𝑥
𝜏 (𝑥, 𝑡, 𝑢)

−2𝑢
𝑥𝑥
𝐷
𝑥
𝜉 (𝑥, 𝑡, 𝑢) − 2𝑢

𝑥𝑡
𝐷
𝑥
𝜏 (𝑥, 𝑡, 𝑢) ,

(22)

where𝐷
𝑥
,𝐷
𝑡
are the total derivatives with respect to 𝑥 and 𝑡,

respectively.
Substituting 𝜙𝑡, 𝜙𝑥𝑥 into the symmetry condition, replac-

ing 𝑢
𝑡
by 𝑑𝑢

𝑥𝑥
+ 𝑏(𝑥)𝑢 − 𝑢

2 whenever it occurs, and equating
the coefficients of the various monomials in the first- and
second-order partial derivatives of 𝑢, we obtain the following
system of determining equations:

𝜉
𝑢
= 0, (23)

𝜏
𝑢
= 0, (24)

𝜙
𝑢𝑢

= 0, (25)

𝜏
𝑥
= 0, (26)

−𝑑𝜏
𝑡
+ 2𝑑𝜉

𝑥
= 0, (27)

−𝜉
𝑡
− 2𝑑𝜙

𝑥𝑢
+ 𝑑𝜉
𝑥𝑥

= 0, (28)

(−𝑏 (𝑥) + 2𝑢) 𝜙 + 𝑢𝜉𝑏
󸀠
(𝑥) + (−𝑢

2
+ 𝑢𝑏 (𝑥)) 𝜙

𝑢

+ 𝜙
𝑡
+ (𝑢
2
− 𝑢𝑏 (𝑥)) 𝜏

𝑡
− 𝑑𝜙
𝑥𝑥

= 0.

(29)
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The solution of the Subsystem (23)–(27) can be easily
found to be

𝜏 (𝑥, 𝑡, 𝑢) = 𝜏 (𝑡) , (30)

𝜙 (𝑥, 𝑡, 𝑢) = 𝛽 (𝑥, 𝑡) 𝑢 + 𝛼 (𝑥, 𝑡) , (31)

𝜉 (𝑥, 𝑡, 𝑢) =
1

2
𝜏
󸀠
(𝑡) 𝑥 + 𝑝 (𝑡) , (32)

for certain functions 𝛼, 𝛽, and 𝑝.
By substituting 𝜏(𝑥, 𝑡, 𝑢), 𝜙(𝑥, 𝑡, 𝑢), and 𝜉(𝑥, 𝑡, 𝑢) obtained

in (28) and (29), respectively, we obtain

−𝜉
𝑡
(𝑥, 𝑡) − 2𝑑𝛽

𝑥
(𝑥, 𝑡) = 0, (33)

− 𝑏 (𝑥) (𝛽 (𝑥, 𝑡) 𝑢 + 𝛼 (𝑥, 𝑡))

− 𝑏
󸀠
(𝑥) 𝑢 (

1

2
𝜏
󸀠
(𝑡) 𝑥 + 𝑝 (𝑡)) + 𝑢𝑏 (𝑥) 𝛽 (𝑥, 𝑡)

− 𝑢𝑏 (𝑥) 𝜏
󸀠
(𝑡) + 𝑢

2
(𝛽 (𝑥, 𝑡) + 𝜏

󸀠
(𝑡))

+ 𝑢 (2𝛼 (𝑥, 𝑡) + 𝛽
𝑡
(𝑥, 𝑡) − 𝑑𝛽

𝑥𝑥
(𝑥, 𝑡))

+ 𝛼
𝑡
(𝑥, 𝑡) − 𝑑𝛼

𝑥𝑥
(𝑥, 𝑡) = 0.

(34)

As 𝑏(𝑥) is uncertain, we split (34) into two parts: the part
contains 𝑏(𝑥) and 𝑏

󸀠
(𝑥) and the remainder; that is,

− 𝑏 (𝑥) 𝛼 (𝑥, 𝑡) − 𝑏
󸀠
(𝑥) 𝑢 (

1

2
𝜏
󸀠
(𝑡) 𝑥 + 𝑝 (𝑡))

− 𝑢𝑏 (𝑥) 𝜏
󸀠
(𝑡) = 0,

(35)

𝑢
2
(𝛽 (𝑥, 𝑡) + 𝜏

󸀠
(𝑡))

+ 𝑢 (2𝛼 (𝑥, 𝑡) + 𝛽
𝑡
(𝑥, 𝑡) − 𝑑𝛽

𝑥𝑥
(𝑥, 𝑡))

+ 𝛼
𝑡
(𝑥, 𝑡) − 𝑑𝛼

𝑥𝑥
(𝑥, 𝑡) = 0.

(36)

We rearrange (35) as

𝑢 [−𝑏 (𝑥) 𝜏
󸀠
(𝑡) − 𝑏

󸀠
(𝑥) (

1

2
𝜏
󸀠
(𝑡) 𝑥 + 𝑝 (𝑡))] − 𝑏 (𝑥) 𝛼 (𝑥, 𝑡)

= 0.

(37)

Then it splits into

−𝑏 (𝑥) 𝜏
󸀠
(𝑡) − 𝑏

󸀠
(𝑥) (

1

2
𝜏
󸀠
(𝑡) 𝑥 + 𝑝 (𝑡)) = 0,

−𝑏 (𝑥) 𝛼 (𝑥, 𝑡) = 0,

(38)

Equation (36) splits into

𝛽 (𝑥, 𝑡) + 𝜏
󸀠
(𝑡) = 0, (39)

𝛼
𝑡
(𝑥, 𝑡) − 𝑑𝛼

𝑥𝑥
(𝑥, 𝑡) = 0, (40)

2𝛼 (𝑥, 𝑡) + 𝛽
𝑡
(𝑥, 𝑡) − 𝑑𝛽

𝑥𝑥
(𝑥, 𝑡) = 0. (41)

We obtain a simultaneous system Equation (33) and Equa-
tions (38)–(41). Equation (39) yields 𝛽(𝑥, 𝑡) = −𝜏

󸀠
(𝑡); then

𝛽
𝑥
(𝑥, 𝑡) = 𝛽

𝑥𝑥
(𝑥, 𝑡) = 0. Equation (41) yields 𝛼

𝑥
(𝑥, 𝑡) =

𝛼
𝑥𝑥
(𝑥, 𝑡) = 0. Then, by (40), 𝛼

𝑡
(𝑥, 𝑡) = 0, that is, 𝛼(𝑥, 𝑡) is

a constant. So (33) reduces to the form

−
1

2
𝜏
󸀠󸀠
(𝑡) 𝑥 − 𝑝

󸀠
(𝑡) = 0, (42)

whence 𝜏󸀠󸀠(𝑡) = 0, 𝑝󸀠(𝑡) = 0, and hence

𝜏 (𝑡) = 𝑐
1
𝑡 + 𝑐
2
, 𝑝 (𝑡) = 𝑐

3
, (43)

where 𝑐
𝑖
(𝑖 = 1, 2, 3) are arbitrary constants. Ultimately, we

arrive at 𝛼(𝑥, 𝑡) = 0 and the general solution of the system of
determining equations:

𝜏 (𝑥, 𝑡, 𝑢) = 𝑐
1
𝑡 + 𝑐
2
,

𝜉 (𝑥, 𝑡, 𝑢) =
1

2
𝑐
1
𝑥 + 𝑐
3
,

𝜙 (𝑥, 𝑡, 𝑢) = −𝑐
1
𝑢.

(44)

And, invoking (35), the restriction on the variable-coefficient
𝑏(𝑥) is

(
1

2
𝑐
1
𝑥 + 𝑐
3
) 𝑏
󸀠
(𝑥) + 𝑐

1
𝑏 (𝑥) = 0. (45)

According to 𝑐
𝑖
, we can classify (1) into the following three

kinds.

Case 1. When 𝑐
2
= 1, 𝑐

1
= 𝑐
3
= 0, 𝑏(𝑥) is free and (1) has the

infinitesimal generator

𝑉
1
= 𝜕
𝑡
. (46)

For (1) does not have any dependence on 𝑡, this is clear.

Case 2. When 𝑐
1
= 1, 𝑐

2
= 𝑐
3
= 0, the restriction on 𝑏(𝑥) is

(1/2)𝑥𝑏
󸀠
(𝑥) + 𝑏(𝑥) = 0; namely, 𝑏(𝑥) = 𝑐

4
/𝑥
2, where 𝑐

4
is an

integral constant, and the infinitesimal generator is

𝑉
2
=

1

2
𝑥𝜕
𝑥
+ 𝑡𝜕
𝑡
− 𝑢𝜕
𝑢
, (47)

where 𝜕
𝑡
, 𝜕
𝑥
, 𝜕
𝑢
denote 𝜕/𝜕𝑡, 𝜕/𝜕𝑥, 𝜕/𝜕𝑢, respectively. So we

conclude that the partial differential equation

𝑢
𝑡
− 𝑑𝑢
𝑥𝑥

−
𝑐
4

𝑥2
𝑢 + 𝑢
2
= 0 (48)

has the infinitesimal generators 𝑉
1
, 𝑉
2
. The commutation

table of the Lie algebra generated by the infinite symmetries
is

[⋅, ⋅] 𝑉
1

𝑉
2

𝑉
1

0 𝑉
1

𝑉
2

−𝑉
1

0.

(49)

Case 3. When 𝑐
3
= 1, 𝑐

1
= 𝑐
2
= 0, the restriction on 𝑏(𝑥) is

𝑏
󸀠
(𝑥) = 0; namely, 𝑏(𝑥) = const. = 𝑏, and the infinitesimal

generator is

𝑉
3
= 𝜕
𝑥
. (50)
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So we conclude that the partial differential equation

𝑢
𝑡
− 𝑑𝑢
𝑥𝑥

− 𝑏𝑢 + 𝑢
2
= 0 (51)

has the infinitesimal generators 𝑉
1
, 𝑉
3
. The commutation

table of the Lie algebra generated by the infinite symmetries
is

[⋅, ⋅] 𝑉
1

𝑉
3

𝑉
1

0 0

𝑉
3

0 0.

(52)

Now we study the self-adjoint property of (1).
The adjoint equation to (1) is

𝐸
∗
=

𝛿

𝛿𝑢
[V (𝑥, 𝑡) 𝐸]

= −V𝑏 (𝑥) + 2V𝑢 − V
𝑡
− 𝑑V
𝑥𝑥

= 0.

(53)

It is manifest that for 𝑑 ̸= 0, (1) is not strictly self-adjoint.
Setting V = ℎ(𝑢) in (53), we have

𝐸
∗
|V=ℎ(𝑢) = − ℎ (𝑢) 𝑏 (𝑥) + 2𝑢ℎ (𝑢)

− ℎ
󸀠
(𝑢) 𝑢
𝑡
− 𝑑ℎ
󸀠󸀠
(𝑢) 𝑢
2

𝑥
− 𝑑ℎ
󸀠
(𝑢) 𝑢
𝑥𝑥
.

(54)

Equation (14) yields

−𝐸
∗
|V=ℎ(𝑢) + 𝜆𝐸 = 𝑢

𝑡
(𝜆 + ℎ

󸀠
(𝑢)) + 𝑑𝑢

𝑥𝑥
(−𝜆 + ℎ

󸀠
(𝑢))

− 𝜆𝑢𝑏 (𝑥) + 𝜆𝑢
2
+ 𝑑ℎ
󸀠󸀠
(𝑢) 𝑢
2

𝑥

+ ℎ (𝑢) 𝑏 (𝑥) − 2𝑢ℎ (𝑢) = 0.

(55)

Noting the coefficients of𝑢
𝑡
and𝑢
𝑥𝑥
, we obtain that𝜆+ℎ󸀠(𝑢) =

0 and −𝜆 + ℎ
󸀠
(𝑢) = 0; that is 𝜆 = ℎ

󸀠
(𝑢) = 0; this means that

for 𝑑 ̸= 0, (1) is not quasi-self-adjoint.
Setting V = ℎ(𝑡, 𝑥, 𝑢), we study

𝐸
∗
|V=ℎ(𝑡,𝑥,𝑢) = 𝜆 (𝑡, 𝑥, 𝑢, 𝑢

(1)
, . . .) 𝐸, (56)

where

V
𝑡
= 𝐷
𝑡
[ℎ (𝑡, 𝑥, 𝑢)] = ℎ

𝑢
(𝑡, 𝑥, 𝑢) ⋅ 𝑢

𝑡
+ ℎ
𝑡
(𝑡, 𝑥, 𝑢) ,

V
𝑥
= 𝐷
𝑥
[ℎ (𝑡, 𝑥, 𝑢)] = ℎ

𝑢
(𝑡, 𝑥, 𝑢) ⋅ 𝑢

𝑥
+ ℎ
𝑥
(𝑡, 𝑥, 𝑢) ,

V
𝑥𝑥

= 𝐷
𝑥
(V
𝑥
) = ℎ
𝑢
(𝑡, 𝑥, 𝑢) ⋅ 𝑢

𝑥𝑥
+ ℎ
𝑢𝑢

(𝑡, 𝑥, 𝑢)

⋅ 𝑢
2

𝑥
+ 2ℎ
𝑥𝑢

(𝑡, 𝑥, 𝑢) ⋅ 𝑢
𝑥
+ ℎ
𝑥𝑥

(𝑡, 𝑥, 𝑢) .

(57)

The reckoning shows that

𝜆 = ℎ
𝑢
(𝑡, 𝑥, 𝑢) = 0, (58)

− ℎ (𝑡, 𝑥, 𝑢) 𝑏 (𝑥) + 2ℎ (𝑡, 𝑥, 𝑢) 𝑢

− ℎ
𝑡
(𝑡, 𝑥, 𝑢) − 𝑑ℎ

𝑥𝑥
(𝑡, 𝑥, 𝑢) = 0.

(59)

Equation (59) should be satisfied identically in 𝑡, 𝑥, and 𝑢.
Thereforewe nullify the coefficient of 𝑢 and obtain ℎ(𝑡, 𝑥, 𝑢) =
0. According toDefinition 6, we claim that for 𝑑 ̸= 0, (1) is not
nonlinearly self-adjoint.

Hence, for 𝑑 ̸= 0, (1) is neither quasi-self-adjoint nor
nonlinearly self-adjoint.

4. Conservation Laws

We apply Theorem 2 to (1) together with its adjoint equation
(53). With the help of its point symmetries, we can obtain
conserved vectors (𝐶

1
, 𝐶
2
), which satisfy the conservation

equation (𝐷
𝑡
𝐶
1
+ 𝐷
𝑥
𝐶
2
)|
𝐸=0,𝐸

∗
=0

= 0.
For Case 1 we have 𝑤 = −𝑢

𝑡
and (12) yields the

conservation law with

𝐶
1
= V [−𝑑𝑢

𝑥𝑥
− 𝑏 (𝑥) 𝑢 + 𝑢

2
] ,

𝐶
2
= − 𝑑𝑢

𝑡
V
𝑥
+ 𝑑V𝑢

𝑡𝑥
.

(60)

This vector involves an arbitrary solution V of the adjoint
equation (53) and hence provides an infinite number of
conservation laws. With the aid of Mathematica, we find

𝐷
𝑡
𝐶
1
+ 𝐷
𝑥
𝐶
2
= 𝑢
𝑡
[−𝑑V
𝑥𝑥

− V
𝑡
− 𝑏 (𝑥) V + 2𝑢V] . (61)

For Case 2, we find the conservation law provided by 𝑉
2
.

We have𝑤 = −𝑢−(1/2)𝑥𝑢
𝑥
−𝑡𝑢
𝑡
and (12) yields the nontrivial

conservation law with

𝐶
1
= V (𝑡𝑢2 − 𝑡

𝑐
4

𝑥2
𝑢 − 𝑢 −

1

2
𝑥𝑢
𝑥
− 𝑡𝑑𝑢
𝑥𝑥
) ,

𝐶
2
=

1

2
𝑥V (𝑢

𝑡
−

𝑐
4

𝑥2
𝑢 + 𝑢
2
)

− 𝑑V
𝑥
(𝑢 +

1

2
𝑥𝑢
𝑥
+ 𝑡𝑢
𝑡
) + 𝑑V (

3

2
𝑢
𝑥
+ 𝑡𝑢
𝑡𝑥
) .

(62)

This vector involves an arbitrary solution V of the adjoint
equation (53) and hence provides an infinite number of
conservation laws. With the aid of Mathematica, we find

𝐷
𝑡
𝐶
1
+ 𝐷
𝑥
𝐶
2

= (𝑢 +
1

2
𝑥𝑢
𝑥
+ 𝑡𝑢
𝑡
)(−𝑑V

𝑥𝑥
− V
𝑡
−

𝑐
4

𝑥2
V + 2𝑢V)

−
1

2
V (𝑢
𝑡
− 𝑑𝑢
𝑥𝑥

−
𝑐
4

𝑥2
𝑢 + 𝑢
2
) .

(63)

For Case 3, we find the conservation law provided by the
symmetry𝑉

3
. We have𝑤 = −𝑢

𝑥
and (12) yields the nontrivial

conservation law with

𝐶
1
= − 𝑢

𝑥
V,

𝐶
2
= V (𝑢

𝑡
− 𝑏𝑢 + 𝑢

2
) − 𝑑𝑢

𝑥
V
𝑥
.

(64)

This vector involves an arbitrary solution V of the adjoint
equation (53) and hence provides an infinite number of
conservation laws. With the aid of Mathematica, we find

𝐷
𝑡
𝐶
1
+ 𝐷
𝑥
𝐶
2
= 𝑢
𝑥
(−𝑑V
𝑥𝑥

− V
𝑡
− 𝑏V + 2𝑢V) . (65)

According to the definition of conservation law, we
say that we have obtained local conservation laws for the
simultaneous system of (1) and its adjoint equation (53);
however, they are nonlocal for the single equation (1). Then
we will illustrate that there is no local conservation law for
(1).
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In view of Theorem 8, for (1) we have the density 𝑇 =

𝑇(𝑡, 𝑥, 𝑢) and the flux 𝑋 = 𝑋(𝑡, 𝑥, 𝑢, 𝑢
𝑥
). We substitute the

expression of 𝑢
𝑡
deduced from (1) into

(𝐷
𝑡
𝑇 + 𝐷

𝑥
𝑋) |
(1)

= 0, (66)

and we obtain
𝑇
𝑡
+ 𝑇
𝑢
[𝑑𝑢
𝑥𝑥

+ 𝑢 (𝑏 (𝑥) − 𝑢)]

+ 𝑋
𝑥
+ 𝑋
𝑢
𝑢
𝑥
+ 𝑋
𝑢
𝑥

𝑢
𝑥𝑥

= 0.

(67)

The coefficient of 𝑢
𝑥𝑥

gives

𝑑𝑇
𝑢
(𝑡, 𝑥, 𝑢) + 𝑋

𝑢
𝑥

(𝑡, 𝑥, 𝑢, 𝑢
𝑥
) = 0; (68)

therefore

𝑋(𝑡, 𝑥, 𝑢, 𝑢
𝑥
) = −𝑑𝑇

𝑢
(𝑡, 𝑥, 𝑢) 𝑢

𝑥
+ 𝑋 (𝑡, 𝑥, 𝑢) . (69)

Taking into account (69) and splitting the rest of (67) with
respect to the powers of 𝑢

𝑥
, we obtain the system of PDEs on

the functions 𝑇(𝑡, 𝑥, 𝑢) and𝑋(𝑡, 𝑥, 𝑢)

𝑢
𝑥
: − 𝑑𝑇

𝑢𝑥
(𝑡, 𝑥, 𝑢) + 𝑋

𝑢
(𝑡, 𝑥, 𝑢) = 0, (70)

𝑢
2

𝑥
: − 𝑑𝑇

𝑢𝑢
(𝑡, 𝑥, 𝑢) = 0, (71)

1: 𝑇
𝑡
(𝑡, 𝑥, 𝑢) + 𝑇

𝑢
(𝑡, 𝑥, 𝑢) 𝑢 (𝑏 (𝑥) − 𝑢) + 𝑋

𝑥
(𝑡, 𝑥, 𝑢) = 0.

(72)

For 𝑑 ̸= 0, according to (71), we can assume

𝑇 (𝑡, 𝑥, 𝑢) = 𝜙 (𝑡, 𝑥) 𝑢 + 𝑇
0
(𝑡, 𝑥) ; (73)

then

𝑋
𝑢
(𝑡, 𝑥, 𝑢) = 𝑑𝜙

𝑥
(𝑡, 𝑥) , (74)

so we assume

𝑋 (𝑡, 𝑥, 𝑢) = 𝑑𝜙
𝑥
(𝑡, 𝑥) 𝑢 + 𝑋

0
(𝑡, 𝑥) . (75)

Now

𝑋(𝑡, 𝑥, 𝑢, 𝑢
𝑥
) = −𝑑𝜙 (𝑡, 𝑥) 𝑢

𝑥
+ 𝑑𝜙
𝑥
(𝑡, 𝑥) 𝑢 + 𝑋

0
(𝑡, 𝑥) .

(76)

Substitution of 𝑇(𝑡, 𝑥, 𝑢) and𝑋(𝑡, 𝑥, 𝑢, 𝑢
𝑥
) obtained into (72)

yields

𝜙
𝑡
(𝑡, 𝑥) 𝑢 + 𝑇

0

𝑡
(𝑡, 𝑥) + 𝜙 (𝑡, 𝑥) 𝑢 (𝑏 (𝑥) − 𝑢)

+ 𝑑𝜙
𝑥𝑥

(𝑡, 𝑥) 𝑢 + 𝑋
0

𝑥
(𝑡, 𝑥) = 0.

(77)

We can set 𝑇0(𝑡, 𝑥) = 𝑋
0
(𝑡, 𝑥) = 0 as they only contribute to

the trivial part of the conservation law. Taking into account
the remainder of the later expression and splitting it with
respect to the powers of 𝑢, we obtain the system of PDEs on
𝜙(𝑡, 𝑥)

𝑢: 𝜙
𝑡
(𝑡, 𝑥) + 𝑑𝜙

𝑥𝑥
(𝑡, 𝑥) + 𝑏 (𝑥) 𝜙 (𝑡, 𝑥) = 0,

𝑢
2: − 𝜙 (𝑡, 𝑥) = 0.

(78)

It is clear that the only solution of this system is 𝜙(𝑡, 𝑥) = 0. It
means that (1) does not have any local conservation law.

5. Some Exact Solutions

In this section, we will construct scale-invariant solution for
(48) and traveling wave solutions for (51).

5.1. Scale-Invariant Solution of (48). For (48), we consider

𝑉
2
=

1

2
𝑥𝜕
𝑥
+ 𝑡𝜕
𝑡
− 𝑢𝜕
𝑢
, (79)

which corresponds to the scaling group

(𝑥, 𝑡, 𝑢) 󳨃󳨀→ (𝜆
1/2

𝑥, 𝜆𝑡, 𝜆
−1
𝑢) , 𝜆 ∈ R

+
. (80)

On the half space {(𝑥, 𝑡, 𝑢), 𝑡 > 0}, global invariants of this
one-parameter group are provided by the functions

𝑦 = 𝑡
−(1/2)

𝑥, V = 𝑡𝑢; (81)

then

𝑢 = 𝑡
−1V,

𝑢
𝑥
= 𝑡
−1V
𝑦
,

𝑢
𝑥𝑥

= 𝑡
−2V
𝑦𝑦
,

𝑢
𝑡
= − 𝑡

−2
(V +

1

2
𝑦V
𝑦
) .

(82)

Substitutions into (48) yield

−𝑡
−2

(V +
1

2
𝑦V
𝑦
) = 𝑡
−2

(𝑑V
𝑦𝑦

+ 𝑐
4
𝑦
−2V + V2) . (83)

As guaranteed by the general theory, this equation is equiva-
lent to one in which the parametric variable 𝑡 does not occur;
namely,

𝑑V
𝑦𝑦

+
1

2
𝑦V
𝑦
+ V + 𝑐

4
𝑦
−2V − V2 = 0, (84)

which forms the reduced equation for the scale-invariant
solutions.

If we get a solution of this equation, we can construct a
scale-invariant solution of (48).

When we used the odeadvisor command of Maple for
classifying (84) according to standard text books, it returns
to [NONE]. The usual substitution

V󸀠 (𝑦) = 𝜙 (V) (85)

reduces (84) to the first-order equation

𝑑𝜙 (V) 𝜙󸀠 (V) +
1

2
𝑦𝜙 (V) + V + 𝑐

4
𝑦
−2V − V2 = 0. (86)

For (86) the odeadvisor command returns to [rational, [Abel,
2nd type, class A]]; that is, (86) is a class A of second kind of
Abel’s equation, whose general form is

(𝑦 (𝑥) + 𝑔 (𝑥)) 𝑦
󸀠
(𝑥) = 𝑓

2
(𝑥) 𝑦(𝑥)

2
+ 𝑓
1
(𝑥) 𝑦 (𝑥) , (87)

where𝑓
2
(𝑥), 𝑓

1
(𝑥) are arbitrary functions. According to [26],

there is as yet no general solution for this ordinary differential
equation.
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5.2. Traveling Wave Solutions of (51). Noting that (51), when
𝑑 = 1, is a special case of

𝜕𝑤

𝜕𝑡
=

𝜕
2
𝑤

𝜕𝑥2
+ 𝑎𝑤 + 𝑏

1
𝑤
𝑚
, (88)

with 𝑎 = 𝑏, 𝑏
1
= 1, 𝑚 = 2. So according to the formulae in

[27], one can obtain the traveling wave solutions

𝑢 (𝑥, 𝑡) = [𝛽 + 𝐶 exp (𝜆𝑡 ± 𝜇𝑥)]
−2

,

𝑢 (𝑥, 𝑡) = [−𝛽 + 𝐶 exp (𝜆𝑡 ± 𝜇𝑥)]
−2

,

(89)

where 𝜆 = −(5/6)𝑏, 𝜇 = √𝑏/6, and 𝛽 = √1/𝑏.

Remark 9. The solutions (89) have been verified by the
pdetest command of Maple.

If 𝑑 ̸= 1, for (51), we consider the translation group

(𝑥, 𝑡, 𝑢) 󳨃󳨀→ (𝑥 + 𝑐𝜖, 𝑡 + 𝜖, 𝑢) , 𝜖 ∈ R, (90)

generated by 𝜕
𝑡
+ 𝑐𝜕
𝑥
, in which 𝑐 is a fixed constant and

determines the speed of the waves. Global invariants of this
group are

𝑦 = 𝑥 − 𝑐𝑡, V = 𝑢, (91)

so that a group-invariant solution V = ℎ(𝑦) takes the familiar
form 𝑢 = ℎ(𝑥 − 𝑐𝑡) determining a wave of unchanging profile
moving at the constant velocity 𝑐. Solving for the derivatives
of 𝑢with respect to 𝑥 and 𝑡 in terms of those of Vwith respect
to 𝑦 we find

𝑢
𝑡
= −𝑐V

𝑦
, 𝑢

𝑥
= V
𝑦
, 𝑢

𝑥𝑥
= V
𝑦𝑦
. (92)

Substituting these expressions into (51), we find the reduced
ordinary differential equation for the traveling wave solution
to be

𝑑V
𝑦𝑦

+ 𝑐V
𝑦
+ 𝑏V − V2 = 0. (93)

This is a nonlinear, constant coefficient equation. If we get a
solution of this equation, we can construct a traveling wave
solution of (51).

This is clearly invariant that under the group of transla-
tions in the 𝑦-direction

(𝑦, V) 󳨃󳨀→ (𝑦 + 𝜖, V) , (94)

with infinitional generator 𝑉 = 𝜕
𝑦
. We can construct

canonical variables

𝜏 = 𝜏 (𝑦, V) , 𝑤 = 𝑤 (𝑦, V) , (95)

by solving the equations

𝜕𝜏

𝜕𝑦
= 0,

𝜕𝑤

𝜕𝑦
= 1, (96)

and we obtain

𝜏 (𝑦, V) = V, 𝑤 (𝑦, V) = 𝑦. (97)

Then

𝑑V
𝑑𝑦

=
1

𝑤
𝜏

,
𝑑
2V

𝑑𝑦2
= −

𝑤
𝜏𝜏

𝑤3
𝜏

, (98)

so (93) becomes

𝑑(−
𝑤
𝜏𝜏

𝑤3
𝜏

) + 𝑐
1

𝑤
𝜏

+ 𝑏𝜏 − 𝜏
2
= 0, (99)

which is a first-order equation for 𝑧 = 𝑤
𝜏
:

𝑑(−
𝑧
𝜏

𝑧3
) + 𝑐

1

𝑧
+ 𝑏𝜏 − 𝜏

2
= 0; (100)

that is

𝑑𝑧
𝜏
= (𝑏𝜏 − 𝜏

2
) 𝑧
3
+ 𝑐𝑧
2
. (101)

Setting 𝑧 = 1/𝜔, we obtain

𝜔
𝑑𝜔

𝑑𝜏
= −

1

𝑑
(𝑏𝜏 − 𝜏

2
) −

𝑐

𝑑
𝜔. (102)

With the aid of the substitution 𝜉 = −(𝑐/𝑑)𝜏, (102) becomes

𝜔
𝑑𝜔

𝑑𝜉
= 𝜔 + (−

𝑏𝑑

𝑐2
𝜉 −

𝑑
2

𝑐3
𝜉
2
) . (103)

When 𝑏𝑑/𝑐
2

= ±6/25, according to [28], one can get the
solution of (103) by the elliptic Weierstrase function. That is,
if 𝑏𝑑/𝑐2 = 6/25, the solution of (103) in the parametric form
is

𝜉 = 5𝑎𝑟
2
𝜑, 𝜔 = 𝑎𝑟

2
𝐸
1
, (104)

where 𝑎 = −(125𝑑
2
/6𝑐
3
), 𝑟 = ∫(𝑑𝜑/ ± √4𝜑3 − 1) − 𝑐

2
, 𝜑 is

the classical elliptic Weierstrase function 𝜑 = 𝜑(𝑟 + 𝑐
2
, 0, 1),

and 𝐸 = 𝑟√±(4𝜑3 − 1) + 2𝜑, where 𝑐
2
is a constant; if 𝑏𝑑/𝑐2 =

−6/25, the solution in the parametric form is

𝜉 = 5𝑎𝐸
2
, 𝜔 = 𝑎𝑟

2
𝐸
1
, (105)

with 𝐸
2
= 𝑟
2
𝜑 ∓ 1.

6. Concluding Remarks

Some exact solutions and a discussion on local conservation
laws for the variable-coefficient reaction-diffusion equation
were presented. Firstly, by solving the determining equations
in Lie symmetry analysis, we classified the equation into
three kinds. For every kind, we obtained the Lie symmetries.
Corresponding to these Lie point symmetries, we have
expressed the conservation laws, respectively. For (48), we
studied its scale-invariant solution by global invariants of
one-parameter group 𝑉

2
. Each solution of (84) leads to a

scale-invariant solution of (48). For (51), we have obtained
some exact solutions.



8 Abstract and Applied Analysis

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the referee for his/her valuable
comments and suggestions which have led to an improve-
ment of the presentation. This research is supported by the
NationalNatural Science Foundation ofChina (no. 11061016).

References

[1] E. Noether, “Invariante variationsprobleme, königliche
gesellschaft der wissenschaften zu Göttingen, Nachtichten,”
Mathematisch-Physikalische Klasse Heft, vol. 2, pp. 235–257,
1918.

[2] P. J. Olver, Applications of Lie Groups to Differential Equations,
vol. 107, Springer, New York, NY, USA, 1986.

[3] N. H. Ibragimov, “A new conservation theorem,” Journal of
Mathematical Analysis and Applications, vol. 333, no. 1, pp. 311–
328, 2007.

[4] A. H. Kara and F.M.Mahomed, “Relationship between symme-
tries and conservation laws,” International Journal ofTheoretical
Physics, vol. 39, no. 1, pp. 23–40, 2000.

[5] A. H. Kara and F.M.Mahomed, “Noether-type symmetries and
conservation laws via partial Lagrangians,” Nonlinear Dynam-
ics, vol. 45, no. 3-4, pp. 367–383, 2006.

[6] S. C. Anco andG. Bluman, “Direct construction of conservation
laws from field equations,” Physical Review Letters, vol. 78, no.
15, pp. 2869–2873, 1997.

[7] G. W. Bluman and S. C. Anco, Symmetry and Integration Meth-
ods for Differential Equations, vol. 154 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 2002.

[8] G. W. Bluman, Temuerchaolu, and S. C. Anco, “New con-
servation laws obtained directly from symmetry action on a
known conservation law,” Journal of Mathematical Analysis and
Applications, vol. 322, no. 1, pp. 233–250, 2006.

[9] N. H. Ibragimov, “Integrating factors, adjoint equations and
Lagrangians,” Journal of Mathematical Analysis and Applica-
tions, vol. 318, no. 2, pp. 742–757, 2006.

[10] B. Muatjetjeja and C. M. Khalique, “First integrals for a
generalized coupled Lane-Emden system,” Nonlinear Analysis:
Real World Applications, vol. 12, no. 2, pp. 1202–1212, 2011.

[11] H. Steudel, “Noether’s theorem and the conservation laws of the
Korteweg-de Vries equation,” Annalen der Physik, vol. 32, no. 6,
pp. 445–455, 1975.

[12] N. H. Ibragimov, “Nonlinear self-adjointness and conservation
laws,” Journal of Physics A: Mathematical and Theoretical, vol.
44, no. 43, Article ID 432002, 2011.

[13] N. H. Ibragimov, “Nonlinear self-adjointness in constructing
conservation laws,” Arch Mikrobiol, vol. 7-8, pp. 1–90, 2011.

[14] I. L. Freire, “Conservation laws for self-adjoint first-order
evolution equation,” Journal of Nonlinear Mathematical Physics,
vol. 18, no. 2, pp. 279–290, 2011.

[15] I. L. Freire, “New conservation laws for inviscid Burgers
equation,” Computational and Applied Mathematics, vol. 31, no.
3, pp. 559–567, 2012.

[16] N. H. Ibragimov, R. S. Khamitova, and A. Valenti, “Self-ad-
jointness of a generalized Camassa-Holm equation,” Applied
Mathematics and Computation, vol. 218, no. 6, pp. 2579–2583,
2011.

[17] R. Naz, F. M. Mahomed, and D. P. Mason, “Comparison of
different approaches to conservation laws for some partial
differential equations in fluid mechanics,” Applied Mathematics
and Computation, vol. 205, no. 1, pp. 212–230, 2008.

[18] R. Morris and A. H. Kara, “New conservation laws of some
third-order systems of pdes arising from higher-order multipli-
ers,” Applied Mathematics and Computation, vol. 217, no. 6, pp.
2639–2643, 2010.

[19] M. L. Gandarias and M. S. Bruzon, “Conservation laws for
a class of quasi self-adjoint third order equations,” Applied
Mathematics and Computation, vol. 219, no. 2, pp. 668–678,
2012.

[20] R. S. Cantrell and C. Cosner, “Diffusive logistic equations
with indefinite weights: population models in disrupted envi-
ronments,” Proceedings of the Royal Society of Edinburgh A
Mathematics, vol. 112, no. 3-4, pp. 293–318, 1989.

[21] P. A. Clarkson and E. L. Mansfield, “Symmetry reductions and
exact solutions of a class of nonlinear heat equations,” Physica
D. Nonlinear Phenomena, vol. 70, no. 3, pp. 250–288, 1994.

[22] T. Ide and M. Okada, “Numerical simulation for a nonlinear
partial differential equation with variable coefficients by means
of the discrete variational derivative method,” Journal of Com-
putational andAppliedMathematics, vol. 194, no. 2, pp. 425–459,
2006.

[23] R. Popovych, “Direct methods of construction of conservation
laws,” Physics AUC II, vol. 16, pp. 81–94, 2006.

[24] N. H. Ibragimov, “Quasi-self-adjoint differential equations,”
Archives of ALGA, vol. 4, pp. 55–60, 2007.

[25] M. L. Gandarias, “Weak self-adjoint differential equations,”
Journal of Physics A: Mathematical and Theoretical, vol. 44, no.
26, Article ID 262001, 2011.

[26] E. Kamke, Differentialgleichungen : Lösungsmethoden und
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