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General interpolation formulae for bivariate interpolation are established by introducingmultiple parameters, which are extensions
and improvements of those studied by Tan and Fang.The general interpolation formulae include general interpolation formulae of
symmetric branched continued fraction, general interpolation formulae of univariate and bivariate interpolation, univariate block
based blending rational interpolation, bivariate block based blending rational interpolation and their dual schemes, and some
interpolation form studied by many scholars in recent years. We discuss the interpolation theorem, algorithms, dual interpolation,
and special cases and give many kinds of interpolation scheme. Numerical examples are given to show the effectiveness of the
method.

1. Introduction

Newton interpolation and Thiele-type continued fractions
interpolation may be the favored linear interpolation and
nonlinear interpolation [1]. Symmetric branched continued
fraction is a bivariate continued fractions interpolation
scheme discussed by Cuyt and Verdonk [2, 3], Kučminskaja
[4], and Murphy and O’Donohoe [5]. In recent years, Kuch-
mins’ka and Vozna [6, 7], Pahirya [8], Zhao [9], and Wang
[10] studied some new kinds of symmetric blending rational
interpolation. Wang and Qian studied bivariate polynomial
interpolation and continued fractions interpolation over
ortho-triples [11]. Zhao and Tan studied block basedNewton-
like blending rational interpolation [12] and block based
Thiele-like blending rational interpolation [13]. The general
frames of interpolation problem have been widely studied.
Kahng showed the generalizations of univariate Newton’s
method and applied it to the approximation problems in 1967
[14]; Kahng described a class of interpolation functions and
showed the explicit method of osculatory interpolation with
a function in the class in 1969 [15]. In 1999, Tan and Fang
[1] studied several general frames for bivariate interpolation
which include many classical interpolation schemes; Tan also

discussed the more general interpolation grids [16]. Recently,
Tang and Zou [17] have improved and extended the general
frames studied by Tan and Fang by introducing multiple
parameters, so that the new frames can be used to deal
with the interpolation problems where inverse differences are
nonexistent or unattainable points occur.The general form of
block based bivariate blending rational interpolation with the
error estimation is established by introducing two parameters
[18]; four different block based interpolations are included.
Then an efficient algorithm for computing bivariate lacunary
rational interpolation is constructed based on block based
bivariate blending rational interpolation. One of authors
constructs the frames of symmetry interpolation [19] and
general structures of one and two variable interpolation
function without depending on the existence of divided
difference or inverse differences, and he also discusses the
block based osculatory interpolation in one variable case [20].

Our contribution in this paper is to obtain a new type
of general interpolation formulae for bivariate interpolation
by introducing multiple parameters, which includes general
interpolation formula of symmetric branched continued frac-
tion, general interpolation formulae of univariate and bivari-
ate interpolation, univariate block based blending rational
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interpolation, bivariate block based blending rational inter-
polation and their dual schemes, and some new interpolation
scheme studied by many scholars in recent years.The organi-
zation of the paper is as follows. In Section 2 we discuss the
interpolation theorem, algorithms, dual interpolation, and
special cases of general interpolation formulae of symmetric
interpolation. The interpolation theorem, algorithms, dual
interpolation, and special cases of the general interpolation
formulae of block based univariate and bivariate interpola-
tion are discussed in Section 3. Numerical examples are given
to show the effectiveness of the method in Section 4.

2. General Interpolation Formulae of
Symmetric Interpolation

Given a set of real points Π
𝑛,𝑚

= {(𝑥
𝑖
, 𝑦
𝑗
) | 𝑖 = 0, 1, . . . , 𝑛, 𝑗 =

0, 1, . . . , 𝑚} ⊂ [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ 𝑅
2 and a bivariate function

𝑓(𝑥, 𝑦) defined in a domain [𝑎, 𝑏] × [𝑐, 𝑑].

Notation 1. Let

𝑁 = max {𝑖 | (𝑥
𝑖
, 𝑦
𝑖
) ∈ Π
𝑛,𝑚
} . (1)

Now we construct a function

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝐴
0
(𝑥, 𝑦) + 𝑆

0
(𝑥, 𝑦)

× 𝑓
1
(𝐴
1
(𝑥, 𝑦) + 𝑆

1
(𝑥, 𝑦)

× 𝑓
2
(𝐴
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑆

𝑁−1
(𝑥, 𝑦)

×𝑓
𝑁
(𝐴
𝑁
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

(2)

by constructing different 𝐴
𝑖
(𝑥, 𝑦); then, 𝑄(𝑥, 𝑦) can be

changed into general frame of symmetric interpolation [19],
general frame of block based univariate interpolation [17, 20],
general frame of block based bivariate interpolation [17, 20],
and so on.

If we choose 𝐴
𝑖
(𝑥, 𝑦) as follows in formula (2):

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

𝑖,𝑖
(𝑎
𝑖,𝑖
(𝑥, 𝑦) + 𝑔

𝑖
(𝑥)

× 𝑓
𝑖+1,𝑖

(𝑎
𝑖+1,𝑖

(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔
𝑛−1

(𝑥)

× 𝑓
𝑛,𝑖
(𝑎
𝑛,𝑖
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))

+ ℎ
𝑖
(𝑦) 𝑓
𝑖,𝑖+1

(𝑎
𝑖,𝑖+1

(𝑥, 𝑦) + ⋅ ⋅ ⋅

+ ℎ
𝑚−1

(𝑦) 𝑓
𝑖,𝑚
(𝑎
𝑖,𝑚
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ) ,

(3)

where 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants,

𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, then 𝑄(𝑥, 𝑦) is a general

interpolation formula of symmetric interpolation.
We cite a theorem and one can prove (2), (3) are a general

interpolation formula of symmetric interpolation and satisfy
interpolation conditions.

Notation 2. Let

ℎ (𝐴) = {ℎ (𝑥) | 𝑥 ∈ 𝐴} ,

𝑅 (ℎ) : range of ℎ (𝑥) .
(4)

Theorem 1 (see [15]). Given a function 𝑦(𝑥) continuous in a
finite interval [𝑎, 𝑏] and 𝑛+1 points𝑥

𝑖
with 𝑎 ⩽ 𝑥

0
< 𝑥
1
< ⋅ ⋅ ⋅ <

𝑥
𝑛
⩽ 𝑏, there exists a unique set of parameters 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛

such that the interpolation function

𝑄 (𝑥) = 𝑓
0
(𝑎
0
+ 𝑔
0
(𝑥) 𝑓
1
(𝑎
1
+ ⋅ ⋅ ⋅ + 𝑔

𝑛−1
(𝑥) 𝑓
𝑛
(𝑎
𝑛
) , . . .)) ,

(5)

satisfying

𝑄 (𝑥
𝑖
) = 𝑦 (𝑥

𝑖
) , 𝑖 = 0, 1 . . . , 𝑛, (6)

and 𝑄(𝑥) is continuous if

(a) 𝑓
𝑖
is continuous and strictly monotone in (−∞, +∞)

and the range of 𝑓
𝑖
(𝑥) covers (−∞, +∞), 𝑖 =

1, 2, . . . , 𝑛;

(b) 𝑓
0
is continuous and its inverse function 𝑓−1

0
exists in

𝑅(𝑓
0
) and 𝑅(𝑓

0
) ⊃ 𝑦([𝑎, 𝑏]);

(c) the functions 𝑔
𝑗
(𝑥), 𝑗 = 0, 1, . . . , 𝑛 − 1, are continuous

in [𝑎, 𝑏] and

𝑔
𝑗
(𝑥) {

= 0, 𝑥 = 𝑥
𝑗
;

̸= 0, 𝑥 > 𝑥
𝑗
.

(7)

When the above conditions are satisfied, the parameters
are determined from the following equations in sequence:
𝑎
0
= 𝑓
−1

0
(𝑄(𝑥
0
)) is determined from 𝑄(𝑥

0
) = 𝑓

0
(𝑎
0
), 𝑎
1
=

𝑓
−1

1
((𝑓
−1

0
(𝑄(𝑥
1
)) − 𝑎
0
)/𝑔
0
(𝑥
1
)) is found from𝑄(𝑥

1
) = 𝑓
0
(𝑎
0
+

𝑔
0
(𝑥
1
)𝑓
1
(𝑎
1
)), and so on.

The conditions on the functions 𝑓
𝑖
, 𝑓
𝑖,𝑗
, 𝑔
𝑖
, ℎ
𝑖,𝑗

for the
existence of unique parameters 𝑎

𝑖,𝑗
(𝑖 = 0, 1, . . . , 𝑛, 𝑗 =

0, 1, . . . , 𝑚) are given next using the following notations.

Notation 3. Let

ℎ (𝐴, 𝐵) = {ℎ (𝑥, 𝑦) | (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑]}

𝑆 (ℎ) : range of ℎ (𝑥, 𝑦) .
(8)

Theorem 2. Given a function 𝑓(𝑥, 𝑦) continuous in [𝑎, 𝑏] ×
[𝑐, 𝑑] and (𝑛 + 1) × (𝑚 + 1) points (𝑥

𝑖
, 𝑦
𝑗
) such that

𝑎 ⩽ 𝑥
0
< 𝑥
1
<⋅ ⋅ ⋅ < 𝑥

𝑛
⩽ 𝑏; 𝑐 ⩽ 𝑦

0
< 𝑦
1
< ⋅ ⋅ ⋅ < 𝑦

𝑚
⩽ 𝑑,

(9)
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then there exists a unique set of parameters 𝑎
0,0
, 𝑎
0,1
, . . . , 𝑎

𝑁,𝑚

for the interpolation function

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝐴
0
(𝑥, 𝑦) + 𝑆

0
(𝑥, 𝑦)

× 𝑓
1
(𝐴
1
(𝑥, 𝑦) + 𝑆

1
(𝑥, 𝑦)

× 𝑓
2
(𝐴
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑆

𝑁−1
(𝑥, 𝑦)

× 𝑓
𝑁
(𝐴
𝑁
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

𝑖,𝑖
(𝑎
𝑖,𝑖
(𝑥, 𝑦) + 𝑔

𝑖
(𝑥)

×𝑓
𝑖+1,𝑖

(𝑎
𝑖+1,𝑖

(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔
𝑛−1

(𝑥)

×𝑓
𝑛,𝑖
(𝑎
𝑛,𝑖
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))

+ ℎ
𝑖
(𝑦) 𝑓
𝑖,𝑖+1

(𝑎
𝑖,𝑖+1

(𝑥, 𝑦) + ⋅ ⋅ ⋅ + ℎ
𝑚−1

(𝑦)

×𝑓
𝑖,𝑚
(𝑎
𝑖,𝑚
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ) ,

(10)

satisfying

𝑄(𝑥
𝑖
, 𝑦
𝑗
) = 𝑓 (𝑥

𝑖
, 𝑦
𝑗
) , 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

(11)

if

(a) 𝑓
𝑖
,𝑓
𝑖,𝑗

are continuous and strictly monotone in their
domain of definitions and their ranges are (−∞, +∞),
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

(b) 𝑓
0
, 𝑓
𝑖,0
are continuous and their inverse functions 𝑓−1

0
,

𝑓
−1

𝑖,0
exist in 𝑆(𝑓

0
), 𝑆(𝑓

𝑖,0
), respectively, and 𝑆(𝑓

0
) ⊃

𝑓([𝑎, 𝑏], 𝑦
0
), 𝑆(𝑓
𝑖,0
) ⊃ 𝑓(𝑥

𝑖
, [𝑐, 𝑑]),

(c) functions 𝑔
𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 − 1; ℎ

𝑖,𝑗
(𝑦), 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚 − 1, are continuous in [𝑎, 𝑏],
[𝑐, 𝑑], respectively, and

𝑔
𝑖
(𝑥) = {

= 0, 𝑥 = 𝑥
𝑖
;

̸= 0, 𝑥 > 𝑥
𝑖
;

ℎ
𝑖,𝑗
(𝑦) {

= 0, 𝑦 = 𝑦
𝑗
;

̸= 0, 𝑦 > 𝑦
𝑗
.
(12)

Proof. If 𝑥 = 𝑥
0
, then

𝑄 (𝑥
0
, 𝑦)

= 𝑓
0
(𝑓
0,0
(𝑎
0,0
+ ℎ
0
(𝑦) 𝑓
0,1
(𝑎
0,1
+ ⋅ ⋅ ⋅ + ℎ

𝑚−1
(𝑦)

×𝑓
0,𝑚

(𝑎
0,𝑚
) ⋅ ⋅ ⋅ ))) ;

(13)

this is just the univariate structure; from Theorem 1, we can
get 𝑄(𝑥

0
, 𝑦
𝑗
) = 𝑓(𝑥

0
, 𝑦
𝑗
), and 𝑄(𝑥

0
, 𝑦) is continuous.

Similarly, if 𝑦 = 𝑦
0
,

𝑄 (𝑥, 𝑦
0
)

= 𝑓
0
(𝑓
0,0
(𝑎
0,0
+ 𝑔
0
(𝑥) 𝑓
1,0
(𝑎
1,0
+ ⋅ ⋅ ⋅ + 𝑔

𝑛−1
(𝑥)

×𝑓
𝑛,0
(𝑎
𝑛,0
) ⋅ ⋅ ⋅ ))) ;

(14)

we can get 𝑄(𝑥, 𝑦
0
) = 𝑓(𝑥, 𝑦

0
) easily, and 𝑄(𝑥, 𝑦

0
) is

continuous. Similarly, if 𝑥 = 𝑥
1
,

𝑄 (𝑥
1
, 𝑦) = 𝑓

0
(𝐴
0
(𝑥
1
, 𝑦) + 𝑆

0
(𝑥
1
, 𝑦) 𝑓
1
(𝐴
1
(𝑥
1
, 𝑦))) ,

𝐴
0
(𝑥
1
, 𝑦)

= 𝑓
0,0
(𝑎
0,0
+ 𝑔
0
(𝑥
1
) 𝑓
1,0
(𝑎
1,0
) + ℎ
0
(𝑦)

× 𝑓
0,1
(𝑎
0,1
+ ⋅ ⋅ ⋅ + ℎ

𝑚−1
(𝑦) 𝑓
0,𝑚

(𝑎
0,𝑚
) ⋅ ⋅ ⋅ )) ,

𝐴
1
(𝑥
1
, 𝑦)

= 𝑓
1,1
(𝑎
1,1
+ ℎ
1
(𝑦)

×𝑓
1,2
(𝑎
1,2
+ ⋅ ⋅ ⋅ + ℎ

𝑚−1
(𝑦) 𝑓
1,𝑚

(𝑎
1,𝑚
) ⋅ ⋅ ⋅ )) ,

(15)

and if 𝑦 = 𝑦
1
,

𝑄 (𝑥, 𝑦
1
) = 𝑓
0
(𝐴
0
(𝑥, 𝑦
1
) + 𝑆
0
(𝑥, 𝑦
1
) 𝑓
1
(𝐴
1
(𝑥, 𝑦
1
))) ,

𝐴
0
(𝑥, 𝑦
1
) ,

= 𝑓
0,0
(𝑎
0,0
+ 𝑔
0
(𝑥) 𝑓
1,0
(𝑎
1,0
+ ⋅ ⋅ ⋅ + 𝑔

𝑛−1
(𝑥) 𝑓
𝑛,0
(𝑎
𝑛,0
))

+ ℎ
0
(𝑦
1
) 𝑓
0,1
(𝑎
0,1
)) ,

𝐴
1
(𝑥, 𝑦
1
)

= 𝑓
1,1
(𝑎
1,1
+ 𝑔
1
(𝑥) 𝑓
2,1
(𝑎
2,1
+ ⋅ ⋅ ⋅ + 𝑔

𝑛−1
(𝑥) 𝑓
𝑛,1
(𝑎
𝑛,1
))) .

(16)

We repeat the above process similarly, and finally we can
obtain 𝑄(𝑥

𝑛
, 𝑦
𝑗
) = 𝑓(𝑥

𝑛
, 𝑦
𝑗
), and 𝑄(𝑥

𝑛
, 𝑦) is continuous.

When the above conditions are satisfied, the parameters
𝑎
0,0
, 𝑎
0,1
, . . . , 𝑎

𝑛,𝑚
are determined from the following equa-

tions in sequence.
From 𝑄(𝑥

0
, 𝑦
0
) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
)), we can get

𝑎
0,0

= 𝑓
−1

0,0
(𝑓
−1

0
(𝑄 (𝑥
0
, 𝑦
0
))) ; (17)

from 𝑄(𝑥
0
, 𝑦
1
) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
+ ℎ
0
(𝑦
1
)𝑓
0,1
(𝑎
0,1
))), we can get

𝑎
0,1

= 𝑓
−1

0,1

𝑓
−1

0,0
(𝑓
−1

0
(𝑄 (𝑥
0
, 𝑦
1
))) − 𝑎

0,0

ℎ
0
(𝑦
1
)

; (18)

from 𝑄(𝑥
0
, 𝑦
2
) = 𝑓

0
(𝑓
0,0
(𝑎
0,0

+ ℎ
0
(𝑦
2
)𝑓
0,1
(𝑎
0,1

+ ℎ
1
(𝑦
2
)

𝑓
0,2
(𝑎
0,2
)))), we can get

𝑎
0,2

= 𝑓
−1

0,2
(𝑓
−1

0,1
(

𝑓
−1

0,0
(𝑓
−1

0
(𝑄 (𝑥
0
, 𝑦
2
))) − 𝑎

0,0

ℎ
0
(𝑦
2
)

− 𝑎
1,1
)

×(ℎ
1
(𝑦
2
))
−1

) ;

(19)

finally, we can obtain the parameters

𝑎
0,𝑗
, 𝑗 = 0, 1, . . . , 𝑚; (20)
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from 𝑄(𝑥
1
, 𝑦
0
) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
+ 𝑔
0
(𝑥
1
)𝑓
1,0
(𝑎
1,0
))), we can get

𝑎
1,0

= 𝑓
−1

1,0

𝑓
−1

0,0
(𝑓
−1

0
(𝑄 (𝑥
1
, 𝑦
0
))) − 𝑎

0,0

𝑔
0
(𝑥
1
)

; (21)

from 𝑄(𝑥
2
, 𝑦
0
) = 𝑓

0
(𝑓
0,0
(𝑎
0,0

+ 𝑔
0
(𝑥
2
)𝑓
1,0
(𝑎
1,0

+ 𝑔
1
(𝑥
2
)

𝑓
2,0
(𝑎
2,0
)))), we can get

𝑎
2,0

= 𝑓
−1

1,0
(𝑓
−1

1,0
(

𝑓
−1

0,0
(𝑓
−1

0
(𝑄 (𝑥
2
, 𝑦
0
))) − 𝑎

0,0

𝑔
0
(𝑥
2
)

− 𝑎
1,0
)

× (𝑔
1
(𝑥
2
))
−1

) .

(22)

Using the induction method, finally, we can obtain all the
parameters

𝑎
𝑖,𝑗
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚. (23)

Thus, this proves the theorem.

2.1. Special Cases. Some of the special cases of the above
general interpolation formula of bivariate symmetry interpo-
lation function are shown below.

(1) If 𝑓
𝑖
(𝑥) = 𝑥, 𝑖 = 0, 1, . . . , 𝑁, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑆

𝑖
(𝑥, 𝑦) =

(𝑥−𝑥
𝑖
)(𝑦−𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥−𝑥

𝑖
,

ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then

𝑄(𝑥, 𝑦) is bivariate Newton interpolation polynomial
[16].

(2) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥, 𝑓

𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 1/𝑥,

𝑖 ̸= 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥−𝑥

𝑖
)(𝑦−𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants,

𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛,

𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is bivariate symmetric
continued fractions interpolation studied by many
authors [2–5, 8].

(3) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥, 𝑓

𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 1/𝑥,

𝑖 ̸= 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥−𝑥

𝑖
)(𝑦−𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants,

𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 =

0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is Stieltjes-Newton rational
interpolation studied byWang [10]; Zhao and Tan [9]
also studied it and its limiting case.

(4) If𝑓
0
(𝑥) = 𝑥,𝑓

𝑖
(𝑥) = 1/𝑥,𝑓

𝑖,𝑖
(𝑥) = 𝑥,𝑓

𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

,
𝑖 > 𝑗, 𝑓

𝑖,,𝑗
(𝑥) = 𝑥

(−1)
𝑗+1

, 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 −

𝑦
𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) =

𝑦 − 𝑦
𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is

Newton-Thiele-like interpolation formula studied by
Kuchmins’ka and Vozna [6, 7].

(5) If 𝑓
𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑖 > 𝑗,
𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑗+1

, 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
),

𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) =

𝑦 − 𝑦
𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦)

is symmetric Newton associated continued fraction
blending rational interpolation.

(6) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

𝛿, 𝑓
𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥

𝛿, 𝛿 =
1 or − 1, 𝑔

𝑖
(𝑥) = 𝑥−𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦−𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛,

𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is the general frame of
symmetry interpolation studied by Tan and Fang [1].

(7) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

,
𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛,

𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is the general frame of
symmetry interpolation studied byZou andTang [19].

(8) Suppose that the fixed points are arranged in groups
of threes, which form 𝑛 + 1 L-like configurations. If
𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥, 1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑓

𝑖,𝑖
(𝑥) = 𝑥,

𝑓
𝑖,𝑖+1

(𝑥) = 𝑓
𝑖+1,𝑖

(𝑥) = 𝑥,𝑓
𝑖,𝑗
(𝑥) = 𝑓

𝑗,𝑖
(𝑥) = 𝑥, 𝑗 ≥ 𝑖+2,

𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

2𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

2𝑖
, 𝑎
𝑖,𝑖+𝑠

(𝑥) = 𝑎
2𝑖,2𝑖+𝑠

, 1 ≤
𝑠 ≤ 𝑛−𝑖, 𝑎

𝑖+𝑡,𝑖
(𝑥) = 𝑎

2𝑖+𝑡,2𝑖
, 1 ≤ 𝑡 ≤ 𝑚−𝑖, 𝑖 = 0, 1, . . . , 𝑛;

𝑗 = 0, 1, ⋅ ⋅ ⋅ , 𝑚, then 𝑄(𝑥, 𝑦) is bivariate polynomial
interpolation over ortho-triples studied by Salzer [21].

(9) Suppose that the fixed points are arranged in groups
of threes, which form 𝑛 + 1 L-like configurations. If
𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥, 1 ≤ 𝑖 ≤ 𝑁 − 1, 𝑓

𝑖,𝑖
(𝑥) =

𝑥, 𝑓
𝑖,𝑖+1

(𝑥) = 𝑓
𝑖+1,𝑖

(𝑥) = 1/𝑥, 𝑓
𝑖,𝑗
(𝑥) = 𝑓

𝑗,𝑖
(𝑥) = 𝑥,

𝑗 ≥ 𝑖 + 2, 𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

2𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

2𝑖
, 𝑎
𝑖,𝑖+𝑠

(𝑥) =

𝑎
2𝑖,2𝑖+𝑠

, 1 ≤ 𝑠 ≤ 𝑛 − 𝑖, 𝑎
𝑖+𝑡,𝑖

(𝑥) = 𝑎
2𝑖+𝑡,2𝑖

, 1 ≤ 𝑡 ≤

𝑚 − 𝑖, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is
bivariate continued fraction interpolation over ortho-
triples studied by Wang and Qian [11].

(10) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑓

𝑖,𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) =

𝑥
(−1)
𝑖+1

, 𝑖 > 𝑗, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑗+1

, 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) =

(𝑥−𝑥
𝑖
)(𝑦−𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥−𝑥

𝑖
,

ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then

𝑄(𝑥, 𝑦) is a new type of symmetric blending rational
interpolation.

(11) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑓

𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥,

𝑖 > 𝑗, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑗+1

, 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 −

𝑥
𝑖
)(𝑦 − 𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
,

ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then

𝑄(𝑥, 𝑦) is a new type of symmetric blending rational
interpolation.

(12) If 𝑓
𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑖 > 𝑗,

𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1), 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
),

𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is a new
type of symmetric blending rational interpolation.

(13) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

−1, 𝑓
𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑖 >

𝑗, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1), 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
),

𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is a new
type of symmetric blending rational interpolation.

(14) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥,

𝑖 > 𝑗, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1), 𝑖 < 𝑗, 𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
),

𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants, 𝑔

𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is a new
type of symmetric blending rational interpolation.
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(15) If 𝑖(mod 3) = 0, 𝑓
𝑖
(𝑥) = 1/𝑥, otherwise, 𝑓

𝑖
(𝑥) = 𝑥,

𝑓
𝑖,𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑖 > 𝑗, 𝑓

𝑖,𝑗
(𝑥) = 𝑥

(−1), 𝑖 < 𝑗,
𝑆
𝑖
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑖
)(𝑦 − 𝑦

𝑖
), 𝑎
𝑖,𝑗
(𝑥, 𝑦) are constants,

𝑔
𝑖
(𝑥) = 𝑥 − 𝑥

𝑖
, ℎ
𝑖
(𝑦) = 𝑦 − 𝑦

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 =

0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is a new type of symmetric
blending rational interpolation.

Furthermore, one can get more symmetric blending
rational interpolations via choosing 𝑓

𝑖
(𝑥), 𝑓
𝑖,𝑗
(𝑥) appropri-

ately, for example, some new schemes given in the paper
[19]. It is not difficult to generalize the general structure in
this paper to higher dimensions or a vector-valued case or a
matrix-valued case [16, 22, 23].

3. General Interpolation Formulae for Block
Based Bivariate Interpolation

Now we consider the general interpolation formulae of the
following scheme; we divide ∏

𝑛,𝑚
= {(𝑥

𝑖
, 𝑦
𝑗
) | 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚} into (𝑢+1)×(]+1) subsets; namely,

𝑠,𝑡

∏

𝑛,𝑚

= {(𝑥
𝑖
, 𝑦
𝑗
) | 𝑐
𝑠
≤ 𝑖 ≤ 𝑑

𝑠
, ℎ
𝑡
≤ 𝑗 ≤ 𝑟

𝑡
} ,

𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . , V.

(24)

The subsets may be achieved by reordering the interpola-
tion points if necessary.

If we choose 𝐴
𝑖
(𝑥, 𝑦) as follows in formula (2):

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

𝑖,0
(𝑎
𝑖,0
(𝑥, 𝑦) + 𝑔

0
(𝑥)

× 𝑓
1,𝑖
(𝑎
1,𝑖
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔

𝑢−1
(𝑥)

×𝑓
𝑢,𝑖
(𝑎
𝑢,𝑖
(𝑥, 𝑦)) . . .))

+ ℎ
0
(𝑦) 𝑓
𝑖,1
(𝑎
𝑖,1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + ℎV−1 (𝑦)

×𝑓
𝑖,V (𝑎𝑖,V (𝑥, 𝑦)) . . .) ,

(25)

then 𝑄
󸀠

(𝑥, 𝑦) is a general interpolation formula of block
based bivariate interpolation.

Theorem 3. Given a function 𝑓(𝑥, 𝑦) continuous in [𝑎, 𝑏] ×
[𝑐, 𝑑] and (𝑛+1)×(𝑚+1) points (𝑥

𝑖
, 𝑦
𝑗
) (𝑖 = 0, 1, ⋅ ⋅ ⋅ < 𝑛, 𝑗 =

0, 1, . . . , 𝑚) such that

𝑎 ⩽ 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
⩽ 𝑏; 𝑐 ⩽ 𝑦

0
< 𝑦
1
< ⋅ ⋅ ⋅ < 𝑦

𝑚
⩽ 𝑑,

(26)

then there exists a unique set of parameters 𝑎
0,0
, 𝑎
0,1
, . . . , 𝑎

𝑛,𝑚

for the interpolation function

𝑄
󸀠

(𝑥, 𝑦) = 𝑓
0
(𝐴
0
(𝑥, 𝑦) + 𝑆

0
(𝑥, 𝑦)

× 𝑓
1
(𝐴
1
(𝑥, 𝑦) +𝑆

1
(𝑥, 𝑦)

×𝑓
2
(𝐴
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑆

𝑁−1
(𝑥, 𝑦)

×𝑓
𝑁
(𝐴
𝑁
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

(27)

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

𝑖,0
(𝑎
𝑖,0
(𝑥, 𝑦) + 𝑔

0
(𝑥)

×𝑓
1,𝑖
(𝑎
1,𝑖
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔

𝑢−1
(𝑥)

×𝑓
𝑢,𝑖
(𝑎
𝑢,𝑖
(𝑥, 𝑦)) . . .))

+ ℎ
0
(𝑦) 𝑓
𝑖,1
(𝑎
𝑖,1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + ℎV−1 (𝑦)

×𝑓
𝑖,V (𝑎𝑖,V (𝑥, 𝑦)) ⋅ ⋅ ⋅ ) ,

(28)

satisfying

𝑄
󸀠

(𝑥
𝑖
, 𝑦
𝑗
) = 𝑓 (𝑥

𝑖
, 𝑦
𝑗
) , 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

(29)

if

(a) 𝑓
𝑖
, 𝑓
𝑖,𝑗

are continuous and strictly monotone in their
domain of definitions and their ranges are (−∞, +∞),
𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 0, 1, . . . , 𝑚;

(b) 𝑓
0
, 𝑓
𝑖,0
are continuous and their inverse functions 𝑓−1

0
,

𝑓
−1

𝑖,0
exist in 𝑆(𝑓

0
), 𝑆(𝑓

𝑖,0
), respectively, and 𝑆(𝑓

0
) ⊃

𝑓([𝑎, 𝑏], 𝑦
0
), 𝑆(𝑓
𝑖,0
) ⊃ 𝑓(𝑥

𝑖
, [𝑐, 𝑑]);

(c) functions 𝑔
𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛 − 1; ℎ

𝑖,𝑗
(𝑦), 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚 − 1, are continuous in [𝑎, 𝑏],
[𝑐, 𝑑], respectively, and

𝑔
𝑖
(𝑥) {

= 0, 𝑥 = 𝑥
𝑖
;

̸= 0, 𝑥 > 𝑥
𝑖
;

ℎ
𝑖,𝑗
(𝑦) {

= 0 𝑦 = 𝑦
𝑗
;

̸= 0 𝑦 > 𝑦
𝑗
.

(30)

We can prove the previous theorem similarly.

3.1. General Interpolation Formulae for Block BasedUnivariate
Interpolation. If we choose the parameters in formulae (2),
(25) as follows, we can get general interpolation formulae for
block based univariate interpolation.

(1) If we choose 𝑓
𝑖,1
(𝑥) ≡ 0, 𝑓

1
(𝑥) ≡ 0, 𝑔

𝑠
(𝑥) = ∏

𝑑𝑠

𝑖=𝑐𝑠

(𝑥 −

𝑥
𝑖
), 𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 − 1, we can get

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
(𝑥, 𝑦) + 𝑔

0
(𝑥)

× 𝑓
1,0
(𝑎
1,0
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔

𝑢−1
(𝑥)

× 𝑓
𝑢,0
(𝑎
𝑢,0
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

(31)
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where 𝑎
𝑖,𝑗
(𝑥, 𝑦) = 𝑎

𝑖
(𝑥) are univariate interpolating

polynomial, rational interpolation, the Hermite inter-
polating polynomial, or Salzer-type osculatory ratio-
nal interpolation.Then𝑄(𝑥, 𝑦) is a general interpola-
tion formula of block based univariate interpolation.

(2) If we choose 𝑓
1,𝑖
(𝑥) ≡ 0, 𝑓

1
(𝑥) ≡ 0, ℎ

𝑡
(𝑦) = 𝑔

𝑠
(𝑥) =

∏
𝑑𝑠

𝑖=𝑐𝑠

(𝑥 − 𝑥
𝑖
), 𝑠 = 0, 1, . . . , 𝑢 − 1, we can get

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
(𝑥, 𝑦) + ℎ

0
(𝑦)

× 𝑓
0,1
(𝑎
0,1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + ℎV−1 (𝑥)

× 𝑓
0,V (𝑎0,V (𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

(32)

where 𝑎
𝑖,𝑗
(𝑥, 𝑦) = 𝑎

𝑖
(𝑥) are univariate interpolating

polynomial, rational interpolation, the Hermite inter-
polating polynomial, or Salzer-type osculatory ratio-
nal interpolation.Then𝑄(𝑥, 𝑦) is a general interpola-
tion formula of block based univariate interpolation.

3.1.1. Special Case. We discuss the case that we choose the
parameters in (2),

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝑓
0,0
(𝑎
0,0
(𝑥, 𝑦) + 𝑔

0
(𝑥)

× 𝑓
1,0
(𝑎
1,0
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔

𝑢−1
(𝑥)

×𝑓
𝑢,0
(𝑎
𝑢,0
(𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) .

(33)

Some of the special cases of the above general interpolation
formula of interpolation functions are shown below.

(1) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑔

𝑠
(𝑥) = ∏

𝑑𝑠

𝑖=𝑐𝑠

(𝑥 − 𝑥
𝑖
),

𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 − 1, then 𝑄(𝑥, 𝑦)

is univariate block based Newton-like interpolation
polynomial [12].

(2) If 𝑓
0
(𝑥) = 𝑥, 𝑓

0,0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 1/𝑥, 𝑔

𝑠
(𝑥) =

∏
𝑑𝑠

𝑖=𝑐𝑠

(𝑥 − 𝑥
𝑖
), 𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 −

1, then 𝑄(𝑥, 𝑦) is univariate block based Thiele-like
continued fractions interpolation [13].

(3) If 𝑓
0
(𝑥) = 𝑥, 𝑓

0,0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑔
𝑠
(𝑥) =

∏
𝑑𝑠

𝑖=𝑐𝑠

(𝑥 − 𝑥
𝑖
), 𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 − 1, then

𝑄(𝑥, 𝑦) is univariate block based associated continued
fractions interpolation [17].

(4) If 𝑓
0
(𝑥) = 𝑥, 𝑓

0,0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥 or 1/𝑥, 𝑔

𝑠
(𝑥) =

𝑥 − 𝑥
𝑠
, 𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 − 1, then 𝑄(𝑥, 𝑦)

is the general frame of interpolation scheme studied
by Tan and Fang [1].

(5) If 𝑓
0
(𝑥) = 𝑥, 𝑓

0,0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑔
𝑠
(𝑥) =

∏
𝑑𝑠

𝑖=𝑐𝑠

(𝑥 − 𝑥
𝑖
), 𝑖 = 0, 1, . . . , 𝑛, 𝑠 = 0, 1, . . . , 𝑢 − 1, then

𝑄(𝑥, 𝑦) is univariate block based associated continued
fractions interpolation [17].

(6) If 𝑓
0
(𝑥) = 𝑥, 𝑓

0,0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥 or 1/𝑥,

𝑖 = 0, 1, . . . , 𝑛, then 𝑄(𝑥, 𝑦) is the general frame of
interpolation scheme studied by Tang and Zou [17].

(7) If 𝑓
0
(𝑥) = 𝑥, then 𝑄(𝑥, 𝑦) is the general frames of

interpolation scheme studied by Zou and Tang [20].

If we choose 𝑑
𝑠
= 𝑐
𝑠
+ 1 in scheme as shown above,

that is to say, every block only includes one point, then
𝑄(𝑥, 𝑦) is changed into univariate Newton interpolation
polynomial, Thiele continued fractions interpolation, and
associated continued fractions interpolation. Furthermore,
one can get some blending rational interpolations or oscu-
latory interpolation via choosing 𝑓

𝑖
, 𝑓
𝑖,𝑗

appropriately; for
example, one can get modified Thiele continued fractions
blending rational interpolation, three associated continued
fractions interpolation, block based Newton-Werner blend-
ing osculatory rational interpolation,Thiele-Werner blending
osculatory rational interpolation, and so on [16, 24].

3.2. General Interpolation Formulae for Block Based Bivariate
Blending Rational Interpolation. If we choose the parameters
in formulae (2) and (25) as follows,

𝑓
1,𝑖
(𝑥) ≡ 0, 𝑖 = 1, 2, . . . , 𝑛,

𝑆
𝑠
(𝑥, 𝑦) =

𝑑𝑠

∏

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
) , ℎ

𝑡
(𝑦) =

𝑟𝑡

∏

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
) ,

𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . V,

(34)

we can get

𝑄 (𝑥, 𝑦) = 𝑓
0
(𝐴
0
(𝑥, 𝑦) + 𝑆

0
(𝑥, 𝑦)

×𝑓
1
(𝐴
1
(𝑥, 𝑦) + 𝑆

1
(𝑥, 𝑦)

×𝑓
2
(𝐴
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑆

𝑢−1
(𝑥, 𝑦)

×𝑓
𝑢
(𝐴
𝑢
(𝑥, 𝑦)) ⋅ ⋅ ⋅ )))

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

𝑖,0
(𝑎
𝑖,0
(𝑥, 𝑦) + ℎ

0
(𝑦)

×𝑓
𝑖,1
(𝑎
𝑖,1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + ℎV−1 (𝑦)

×𝑓
𝑖,V (𝑎𝑖,V (𝑥, 𝑦)) ⋅ ⋅ ⋅ )) .

(35)

then𝑄(𝑥, 𝑦) is a general interpolation formula of block based
bivariate blending rational interpolation.

3.2.1. Special Case. Some of the special cases of the general
interpolation formula of block based bivariate interpolation
are shown below.

(1) If𝑓
𝑖
(𝑥) = 𝑥,𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 =

0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based
bivariate Newton-like blending rational interpolation
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[12]; especially, let 𝑑
𝑠
= 𝑐
𝑠
+1; that is to say, every block

only includes one point; then, 𝑄(𝑥, 𝑦) is bivariate
Newton interpolation polynomial.

(2) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥, 𝑓

𝑖,𝑗
(𝑥) = 1/𝑥,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 −

𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 =

0, 1, . . . V, then𝑄(𝑥, 𝑦) is block based bivariateThiele-
like blending rational interpolation [13]; especially, let
𝑑
𝑠
= 𝑐
𝑠
+1; that is to say, every block only includes one

point; then, 𝑄(𝑥, 𝑦) is bivariate Thiele-type branched
continued fractions interpolation [11, 25].

(3) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 −

𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 =

0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based Newton-Thiele-
like blending rational interpolation [17]; especially, let
𝑑
𝑠
= 𝑐
𝑠
+ 1; that is to say, every block only includes

one point; then, 𝑄(𝑥, 𝑦) is bivariate Newton-Thiele
blending rational interpolation [11, 20].

(4) If 𝑓
0
(𝑥) = 𝑥,𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 1/𝑥, 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 −

𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 =

0, 1, . . . V, then𝑄(𝑥, 𝑦) is block basedThiele-Newton-
like blending rational interpolation [17, 18]; especially,
let 𝑑
𝑠
= 𝑐
𝑠
+ 1; that is to say, every block only includes

one point; then, 𝑄(𝑥, 𝑦) is bivariate Thiele-Newton
blending rational interpolation [1, 17, 20].

(5) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) = 𝑥, 𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 −

𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 =

0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based bivariate New-
ton associated continued fractions blending rational
interpolation [17, 20]; especially, let 𝑑

𝑠
= 𝑐
𝑠
+ 1; that

is to say, every block only includes one point; then,
𝑄(𝑥, 𝑦) is bivariate Newton associated continued
fractions blending rational interpolation [17, 20, 26].

(6) If 𝑓
𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

,𝑖 =

0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 −

𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 =

0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based bivariate asso-
ciated continued fractions Newton blending rational
interpolation [17, 20, 26]; especially, let 𝑑

𝑠
= 𝑐
𝑠
+1; that

is to say, every block only includes one point; then,
𝑄(𝑥, 𝑦) is bivariate associated continued fractions
Newton blending rational interpolation [17, 20, 26].

(7) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 1/𝑥,

𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,
𝑆
𝑠
(𝑥, 𝑦) = ∏

𝑑𝑠

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
),

𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block
based bivariate Thiele associated continued fractions

blending rational interpolation [17, 20, 26]; especially,
let 𝑑
𝑠
= 𝑐
𝑠
+ 1; that is to say, every block only includes

one point; then, 𝑄(𝑥, 𝑦) is bivariate Thiele associated
continued fractions blending rational interpolation
[17, 20, 26].

(8) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) =

1/𝑥, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) =

∏
𝑑𝑠

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢,

𝑡 = 0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based bivariate
associated continued fractions Thiele blending ratio-
nal interpolation [17, 20, 26]; especially, let 𝑑

𝑠
=

𝑐
𝑠
+ 1; that is to say, every block only includes one

point; then, 𝑄(𝑥, 𝑦) is bivariate associated continued
fractions Thiele blending rational interpolation [17,
20, 26].

(9) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖,0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) =

𝑥
(−1)
𝑖+1

, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, 𝑆
𝑠
(𝑥, 𝑦) =

∏
𝑑𝑠

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
), ℎ
𝑡
(𝑦) = ∏

𝑟𝑡

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
), 𝑠 = 0, 1, . . . , 𝑢,

𝑡 = 0, 1, . . . V, then 𝑄(𝑥, 𝑦) is block based bivari-
ate associated continued fractions blending rational
interpolation [17, 20, 26]; especially, let 𝑑

𝑠
= 𝑐
𝑠
+1; that

is to say, every block only includes one point; then,
𝑄(𝑥, 𝑦) is bivariate branched associated continued
fractions blending rational interpolation [17, 20, 26,
27].

(10) If 𝑓
𝑖
(𝑥) = 𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥, 𝑢 = 𝑛, 𝑆

𝑠
(𝑥) = sin𝑥 − sin𝑥

𝑖
,

ℎ
𝑗
(𝑦) = sin𝑦 − sin𝑦

𝑗
, 𝑖 = 0, 1, . . . , 𝑛; 𝑗 = 0, 1, . . . , 𝑚,

then𝑄(𝑥, 𝑦) is a bivariate trigonometric function and
may be expanded to a finite Fourier series.

(11) If we set 𝑢 = 𝑛, 𝑆
𝑠
(𝑥) = 𝑠(𝑥) − 𝑠(𝑥

𝑖
), ℎ
𝑗
(𝑦) = 𝑠(𝑦) −

𝑠(𝑦
𝑗
) and choose 𝑓

𝑖,𝑗
(𝑥), 𝑓

𝑖
(𝑥), 𝑖 = 0, 1, . . . , 𝑛, 𝑗 =

0, 1, . . . , 𝑚, from 𝑥, 1/𝑥; 𝑠(𝑥), 𝑠(𝑦) are chosen from
𝑒
𝑥

, 𝑥
2

, cos𝑥, 𝑒−𝑥, 𝑠ℎ𝑥, and so forth, then we have a
class of interpolation functions.

(12) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥, or 𝑓

𝑖
(𝑥) = 1/𝑥, 𝑓

𝑖,𝑗
(𝑥) = 𝑥,

or 𝑓
𝑖,𝑗
(𝑥) = 1/𝑥, 𝑢 = 𝑛, V = 𝑚, 𝑆

𝑠
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑠
),

ℎ
𝑡
(𝑦) = (𝑦 − 𝑦

𝑗
), 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then

𝑄(𝑥, 𝑦) is the general frame of interpolation scheme
studied by Tan and Fang [1].

(13) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑢 = 𝑛,
V = 𝑚, 𝑆

𝑠
(𝑥, 𝑦) = (𝑥 − 𝑥

𝑠
), ℎ
𝑡
(𝑦) = (𝑦 − 𝑦

𝑗
), 𝑖 =

0, 1, . . . , 𝑛,𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is the general
frame of interpolation scheme studied by Tang and
Zou [17].

(14) If 𝑓
0
(𝑥) = 𝑥, 𝑓

𝑖
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑓
𝑖,𝑗
(𝑥) = 𝑥

(−1)
𝑖+1

, 𝑖 =
0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚, then 𝑄(𝑥, 𝑦) is the general
frame of interpolation scheme studied by Tang and
Zou [17].

(15) If 𝑆
𝑠
(𝑥, 𝑦), ℎ

𝑡
(𝑦), 𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . , V, are the

same as 𝑔
𝑖
(𝑥), ℎ
𝑖,𝑗
(𝑦), 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

of paper [20], then 𝑄(𝑥, 𝑦) is the general frame of
interpolation scheme studied by Zou and Tang [20].
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Special cases (10) and (11) are interesting and useful; we
will investigate them in depth in the future. Furthermore, one
can get more blending rational interpolations via choosing
𝑓
𝑖
(𝑥), 𝑓
𝑖,𝑗
(𝑥) appropriately. It could be used to deal with the

interpolation problems where inverse differences are nonex-
istent or unattainable points occur via choosing 𝑓

𝑖
(𝑥), 𝑓
𝑖,𝑗
(𝑥)

appropriately [17].

3.3. Algorithm of General Interpolation Formulae of Block
Based Bivariate Interpolation. In this section, we give the
algorithm of general interpolation formula of block based
bivariate interpolation.

𝑓
𝑖
, 𝑓
𝑖,𝑗
given is initialized.

Step 1. Let

𝑓 (𝑥, 𝑦) = 𝑓
0,0

𝑖,𝑗
, 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚. (36)

Step 2. For 𝑡 = 1, 2, . . . , V,

𝑓
0,𝑡

𝑖,𝑗
= 𝑓
−1

0,𝑡
(

𝑓
0,𝑡−1

𝑖,𝑗
− 𝑎
0,𝑡−1

(𝑥
𝑖
, 𝑦
𝑗
)

ℎ
𝑡−1

(𝑦
𝑗
)

) ,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = ℎ
𝑡
, ℎ
𝑡
+ 1, . . . , 𝑚.

(37)

Step 3. For 𝑠 = 1, 2, . . . , 𝑢,

𝑓
𝑠,0

𝑖,𝑗
= 𝑓
−1

𝑠
(

𝑓
𝑠−1,0

𝑖,𝑗
− 𝑍
𝑠−1

(𝑥
𝑖
, 𝑦
𝑗
)

𝑆
𝑠−1

(𝑥
𝑖
)

) ,

𝑖 = 𝑐
𝑠
, 𝑐
𝑠
+ 1, . . . , 𝑛; 𝑗 = 0, 1, . . . , 𝑚.

(38)

Step 4. For 𝑠 = 1, 2, . . . , 𝑢, 𝑡 = 1, 2, . . . , V,

𝑓
𝑠,𝑡

𝑖,𝑗
= 𝑓
−1

𝑠,𝑡
(

𝑓
𝑠,𝑡−1

𝑖,𝑗
− 𝑎
𝑠,𝑡−1

(𝑥
𝑖
, 𝑦
𝑗
)

ℎ
𝑡−1

(𝑦
𝑗
)

) ,

𝑖 = 𝑐
𝑠
, 𝑐
𝑠
+ 1, . . . , 𝑛; 𝑗 = ℎ

𝑡
, ℎ
𝑡
+ 1, . . . , 𝑚.

(39)

Step 5. For 𝑠 = 1, 2, . . . , 𝑢, 𝑡 = 1, 2, . . . , V,

𝑎
𝑠,𝑡
(𝑥, 𝑦) = 𝑓

𝑠,𝑡

𝑖,𝑗
, 𝑐
𝑠
≤ 𝑖 ≤ 𝑑

𝑠
, ℎ
𝑡
≤ 𝑗 ≤ 𝑟

𝑡
,

𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . , V,
(40)

where 𝑎
𝑠,𝑡
(𝑥, 𝑦) (𝑡 = 0, 1, . . . , V) are bivariate polynomials or

rational interpolations on the subsets∏𝑠,𝑡
𝑛,𝑚

.

3.4. Dual Scheme for General Interpolation Formulae for Block
Based Bivariate Interpolation. If we choose the parameters in
formulae (2) and (25) as follows,

𝑓
𝑖,1
(𝑥) ≡ 0, 𝑆

𝑡
(𝑥, 𝑦) =

𝑟𝑡

∏

𝑗=ℎ𝑡

(𝑦 − 𝑦
𝑗
) ,

𝑔
𝑠
(𝑥) =

𝑑𝑠

∏

𝑘=𝑐𝑠

(𝑥 − 𝑥
𝑘
) , 𝑠 = 0, 1, . . . , 𝑢, 𝑡 = 0, 1, . . . V,

(41)

Table 1: Interpolation data.

𝑥
0
= 0 𝑥

1
= 1 𝑥

2
= 2

𝑦
0
= 0 1 2 4

𝑦
1
= 1 0 3 5

𝑦
2
= 2 −2 −3 2

then

𝑄⃗ (𝑥, 𝑦) = 𝑓
0
(𝐴
0
(𝑥, 𝑦) + 𝑆

0
(𝑥, 𝑦)

× 𝑓
1
(𝐴
1
(𝑥, 𝑦) + 𝑆

1
(𝑥, 𝑦)

×𝑓
2
(𝐴
2
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑆V−1 (𝑥, 𝑦)

× 𝑓V (𝐴V (𝑥, 𝑦)) ⋅ ⋅ ⋅ ))) ,

𝐴
𝑖
(𝑥, 𝑦) = 𝑓

0,𝑖
(𝑎
0,𝑖
(𝑥, 𝑦) + 𝑔

0
(𝑥)

× 𝑓
1,𝑖
(𝑎
1,𝑖
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑔

𝑢−1
(𝑥)

× 𝑓
𝑢,𝑖
(𝑎
𝑢,𝑖
(𝑥, 𝑦)) ⋅ ⋅ ⋅ )) .

(42)

We call the scheme defined by formulae (41)-(42) dual
scheme of general interpolation formula for block based
bivariate interpolation of (34)-(35).We can discuss this frame
similarly, and the above dual interpolation function also
includes many kinds of the interpolation schemes which
does not as the same as the schemes we have discussed in
Section 3.2.

4. Numerical Examples

In this section, we take two simple examples to show the
effectiveness of the result in this paper. Example 4 is to show
how the proposed construction takes out under different
choice of 𝑓

𝑖
’s, 𝑓
𝑖,𝑗
’s and 𝑔’s, ℎ’s. Example 10 is given to

solve the interpolation problem where inverse differences are
nonexistent.

Example 4. Let (𝑥
𝑖
, 𝑦
𝑗
) and 𝑓(𝑥

𝑖
, 𝑦
𝑗
) (𝑖 = 0, 1, 2, 𝑗 = 0, 1, 2)

be given in Table 1.
Using the frame in the paper, one can get many special

interpolations; some of them are as follows.

Scheme 1. Symmetric continued fractions interpolation is

𝑄
1
(𝑥, 𝑦) = 1 +

𝑥

1 +
𝑥 − 1

1

+
𝑦

−1 +
𝑦 − 1

2

+
𝑥𝑦

1/2 + ((𝑦 − 1) / (−2/5))
+
(𝑥 − 1) (𝑦 − 1)

1/3
.

(43)
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Scheme 2. Bivariate Newton interpolation polynomial is

𝑄
2
(𝑥, 𝑦) = 1 − 𝑦 −

1

2
𝑦 (𝑦 − 1) + 𝑥

+
1

2
𝑥 (𝑥 − 1) + 2𝑥𝑦 − 3𝑥𝑦 (𝑦 − 1)

− 𝑥𝑦 (𝑥 − 1) +
9

4
𝑥 (𝑥 − 1) 𝑦 (𝑦 − 1) .

(44)

Scheme 3. Bivariate Thiele branched continued fractions
interpolation is

𝑄
3
(𝑥, 𝑦) = 1 +

𝑦

−1 +
𝑦 − 1

3

+
𝑥

1 + (𝑦/ ((−3/2) + (𝑦 − 1) /2))

+
𝑥 − 1

−3 + (𝑦/ ((1/18) + (𝑦 − 1) / (198/97)))
.

(45)

Scheme 4. Bivariate Newton-Thiele blending rational inter-
polation is

𝑄
4
(𝑥, 𝑦) = 1 − 𝑦 −

1

2
𝑦 (𝑦 − 1)

+
𝑥

1 − (2𝑦/3) − (𝑦 (𝑦 − 1) /3)

+
𝑥 − 1

−3 + 18𝑦 − (97/6) 𝑦 (𝑦 − 1)
.

(46)

Scheme 5. Bivariate Thiele-Newton blending rational inter-
polation is

𝑄
5
(𝑥, 𝑦) = 1 +

𝑦

−1 +
𝑦 − 1

3

+(1 +
𝑦

1/2 +
𝑦 − 1

−2/3

)𝑥

+(
1

2
+

𝑦

−1 +
𝑦 − 1

5/9

)𝑥 (𝑥 − 1) .

(47)

If 𝑐
0
= 0, 𝑑

0
= 1, 𝑐

1
= 𝑑
1
= 2; ℎ

0
= 0, 𝑟
0
= 1, ℎ

1
= 𝑟
1
=

2, namely, we divided ∏
2,2

into the following four subsets
∏
0,0

2,2
,∏
0,1

2,2
,∏
1,0

2,2
, and∏1,1

2,2
:

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

(48)

Let 𝑎
0,0

be bivariate Newton interpolating polynomial
∏
0,0

2,2
, 𝑎
0,1

bivariate Newton interpolating polynomial ∏0,1
2,2
,

𝑎
1,0

bivariate Newton interpolating polynomial∏1,0
2,2
, and 𝑎

1,1

bivariate Newton interpolating polynomial∏1,1
2,2
.

Table 2: Interpolation data.

𝑥
0
= 0 𝑥

1
= 1 𝑥

2
= 2

𝑦
0
= 0 1 3 4

𝑦
1
= 1 0 1 1

𝑦
2
= 2 −2 −3 −1

Scheme 6. Block based bivariate Thiele-Newton blending
rational interpolation is

𝑄
6
(𝑥, 𝑦) = 1 + 𝑥 − 𝑦 + 2𝑥𝑦 +

𝑦 (𝑦 − 1)

−2 + 12𝑥/7

+ [
1

2
− 𝑦 +

𝑦 (𝑦 − 1)

−20/27
] 𝑥 (𝑥 − 1) .

(49)

Scheme 7. Block based bivariate Newton-Thiele blending
rational interpolation is

𝑄
7
(𝑥, 𝑦) = 1 + 𝑥 − 𝑦 + 2𝑥𝑦 + (−

1

2
− 3𝑥)𝑦 (𝑦 − 1)

+
𝑥 (𝑥 − 1)

2 − 4𝑦 + (19/6) 𝑦 (𝑦 − 1)
.

(50)

Scheme 8. Block based bivariate Newton-like blending ratio-
nal interpolation is

𝑄
8
(𝑥, 𝑦) = 1 + 𝑥 − 𝑦 + 2𝑥𝑦 + (−

1

2
− 3𝑥)𝑦 (𝑦 − 1)

+ (
1

2
− 𝑦 +

9

4
𝑦 (𝑦 − 1)) 𝑥 (𝑥 − 1) .

(51)

Scheme 9. Block based bivariateThiele-like blending rational
interpolation is

𝑄
9
(𝑥, 𝑦) = 1 + 𝑥 − 𝑦 + 2𝑥𝑦

+
𝑦 (𝑦 − 1)

−2 + (12𝑥/7)

+
𝑥 (𝑥 − 1)

2 − 4𝑦 + (𝑦 (𝑦 − 1) / (42/121))
.

(52)

It is easy to verify

𝑄
𝑠
(𝑥
𝑖
, 𝑦
𝑗
) = 𝑓 (𝑥

𝑖
, 𝑦
𝑗
) ,

𝑖 = 0, 1, 2; 𝑗 = 0, 1, 2, 𝑠 = 1, 2, . . . , 9.

(53)

Example 10. Let (𝑥
𝑖
, 𝑦
𝑗
) and 𝑓(𝑥

𝑖
, 𝑦
𝑗
) be given in Table 2.

Newton-Thiele blending rational interpolation fails in
this case, since calculating inverse differences leads to that
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one of denominator is zero. From the general frame (34)-(35),
by choosing 𝑓

𝑖
(𝑥), 𝑓
𝑖,𝑗
(𝑥) appropriately, we can get

L1 = 1 +
y

,
−1 + (y − 1)/3

y
L2 = 2 + ,

−1 + (y − 1)/3

L3 =
−1

2
+ y(y − 1)

(54)

and we can get the following interpolation function:

𝑄
2,2
(𝑥, 𝑦)

= 𝐿
1
+ 𝑥𝐿
2
+ 𝑥 (𝑥 − 1) 𝐿

3

= (8𝑦 − 8 + 3𝑥𝑦 − 20𝑥 + 7𝑥
2

𝑦 + 4𝑥
2

+ 2𝑥
2

𝑦
3

− 10𝑥
2

𝑦
2

− 2𝑥𝑦
3

+ 10𝑥𝑦
2

)

× (2𝑦 − 8)
−1

.

(55)

It is easy to verify

𝑄
2,2
(𝑥
𝑖
, 𝑦
𝑗
) = 𝑓 (𝑥

𝑖
, 𝑦
𝑗
) , 𝑖 = 0, 1, 2; 𝑗 = 0, 1, 2. (56)

5. Conclusion

The general interpolation formulae of bivariate interpolation
function are more general than the general frames studied
by many scholars [1, 14–20]; it could be used to deal with
the interpolation problems where inverse differences are
nonexistent or unattainable points occur via choosing 𝑓

𝑖
,

𝑓
𝑖,𝑗

appropriately [17]. Another question is coming; there
are so many schemes we can use; how to choose formula
appropriately is our further work. In practical applications,
the choice of 𝑓

𝑖
’s, 𝑓
𝑖,𝑗
’s and 𝑔’s, ℎ’s may be determined by

the desired form of interpolation, for example, polynomial,
rational function of given degree of the numerator and
the denominator, or certain transformation of a rational
function. If there is no restriction as to the formof𝑄(𝑥, 𝑦), the
best choice may be the interpolation function that gives the
smallest error term among the functions certain complexity.
However, it is not easy to determine such a function without
the process of trial and comparison.

We conclude this paper by pointing out that it is not
difficult to generalize the general interpolation formulae in
this paper to rational interpolation for higher dimensions,
vector-valued case, or matrix-valued case [16, 17, 22, 23].
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