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We establish some new criteria to guarantee nonexistence, existence, and multiplicity of nontrivial periodic solutions of some
semilinear sixth-order difference equations by using minmax method,𝑍

2
index theory, and variational technique. Our results only

make some assumptions on the period 𝑇, which are very easy to verify and rather relaxed.

1. Introduction

In the present paper, we deal with the following sixth-order
difference equation:

Δ
6
𝑢
𝑡−3
+ 𝐴Δ
4
𝑢
𝑡−2
+ 𝐵Δ
2
𝑢
𝑡−1
+ 𝑢
𝑡
− 𝑢
3

𝑡
= 0, 𝑡 ∈ Z (1)

with 𝑢
0
= 𝑢
𝑇
= 0, where𝑇 ≥ 2 is an integer and [1, 𝑇] denotes

the discrete interval {1, 2, . . . , 𝑇}. Δ is the forward difference
operator defined byΔ𝑢

𝑡
= 𝑢
𝑡+1
−𝑢
𝑡
andΔ𝑛𝑢

𝑡−𝑘
= Δ
𝑛−1
(Δ𝑢
𝑡−𝑘
).

𝐴 and 𝐵 are positive constants satisfying 𝐴2 < 4𝐵.
By using𝑍

2
index theory in combination with variational

technique, we will prove nonexistence, existence, and multi-
plicity of nontrivial periodic solutions to (1) under convenient
assumptions on𝑇. All our results only depend on𝐴 and𝐵 and
are easy to satisfy.

Periodic solution problems for difference equations have
been extensively studied (see the monographs of Laksh-
mikantham and Trigiante [1] and of Agarwal [2]). The classi-
cal theory of difference equations employs numerical analysis
and features from the linear and nonlinear operator theory,
such as fixed point methods; we remark that, usually, the
applications of fixed point methods yield existence results
only. Recently, although many new results have been estab-
lished by applying variational methods, we recall here the
works of Cai and Yu [3], Guo and Yu [4], and Deng et al. [5].

The variational approach represents an important advance as
it allows proving multiplicity results as well.

In general, (1) may be regarded as a discrete analogue of
the following sixth-order differential equation:

𝜕𝑢

𝜕𝑡
=
𝜕
6
𝑢

𝜕𝑥6
+ 𝐴

𝜕
4
𝑢

𝜕𝑥4
+ 𝐵

𝜕
2
𝑢

𝜕𝑥2
+ 𝑢 − 𝑢

3
. (2)

As to (2), it is a model for describing the behavior of phase
fronts in materials that are undergoing a transition between
the liquid and solid state and be widely studied; one can refer
to [6–8] and references therein.

Difference equations, the discrete analogs of differential
equations, represent the discrete counterpart of ordinary dif-
ferential equations and are usually studied in connectionwith
numerical analysis. They occur widely in numerous settings
and forms, both in mathematics itself and in its applications
to computing, statistics, electrical circuit analysis, biology,
dynamical systems, economics, and other fields. For the
general background of difference equations, one can refer to
monographs [2, 9–13] for details.

Since 2003, critical point theory has been a powerful tool
to establish sufficient conditions on the existence of periodic
solutions of difference equations and many significant results
have been obtained; see, for example, [4, 14, 15]. Compared to
first-order or second-order difference equations, the study of
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higher order difference equations has received considerably
less attention. For example, [16] studied

𝑛

∑

𝑖=0

Δ
𝑖
(𝑟
𝑖
(𝑘 − 𝑖) Δ

𝑖
𝑢 (𝑘 − 𝑖)) = 0 (3)

in the context of discrete calculus of variational functional,
and Peil and Peterson [17] studied the asymptotic behaviour
of solutions of (3) with 𝑟

𝑖
(𝑘) ≡ 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1. In

2007, based on Linking Theorem, [3] gave some criteria for
the existence of periodic solutions of

Δ
𝑛
(𝑟
𝑡−𝑛
) Δ
𝑛
𝑢
𝑡−𝑛
+ 𝑓 (𝑡, 𝑢

𝑡
) = 0,

𝑛 ∈ [1, 3] , 𝑛 ∈ Z
(4)

for the case where 𝑓 grows superlinear at both 0 and ∞.
Results in [3] made many assumptions on 𝑓 and they are
not easy to verify. The aim of this paper is to apply critical
point theory to deal with the periodic solution problems of (1)
when it is semilinear under concise and explicit assumptions
on the period 𝑇. The main results of this paper are the
following three theorems.

Theorem 1. Let 𝐴 > 0, 𝐴2 < 4𝐵, and integer 𝑇 satisfy

0 < 𝑇 < 𝑇
1
, (5)

where 𝑇
1
is defined as

sin 𝜋
𝑇
1

= max{( 1

4𝐵 − 𝐴2
)

1/2

,
1

2
(

4𝐵

4𝐵 − 𝐴2
)

1/6

} (6)

then (1) has only the trivial solution.

Theorem 2. Let 𝐴 > 0, 𝐴2 < 4𝐵, and integer 𝑇 satisfy

𝑇 > 𝑇
2
, (7)

where 𝑇
2
is defined as

sin 𝜋

2𝑇
2

=
1

2
(
3

√1

2
+ √

1

4
−
𝐵
3

27
+
3

√1

2
− √

1

4
−
𝐵
3

27
)

1/2

;

(8)

there exists a nontrivial solution of (1).

Theorem 3. Let 𝐴 > 0, 𝐴2 < 4𝐵, and

𝑇 > 𝑚𝑇
2 (9)

for some 𝑚 ∈ N; there exist at least 𝑚 geometrically distinct
nontrivial solutions of (1).

The remaining of the paper is organized as follows. In
Section 2 we establish the variational framework associated
with (1) and transfer the problem on the existence of periodic
solutions of (1) into the existence of critical points of the
corresponding functional. We also state some fundamental
lemmas for later use. Then we present the detailed proofs of
main results in Section 3. Finally, we exhibit a simple example
to illustrate our conclusions.

2. Preliminaries

In order to study the periodic solutions of (1), we will state
some basic notations and lemmas, which will be used in the
proofs of our main results. Let

𝑆 = {𝑢 = {𝑢
𝑡
} | 𝑢
𝑡
∈ R𝑁, 𝑡 ∈ Z} . (10)

For a given integer 𝑇 ≥ 2, 𝐸
𝑇
is defined as a subspace of 𝑆 by

𝐸
𝑇
= {𝑢 = {𝑢

𝑡
} ∈ 𝑆 | 𝑢

𝑡+𝑇
= 𝑢
𝑡
, 𝑡 ∈ Z} , (11)

and for 𝑢, V ∈ 𝐸
𝑇
, let

⟨𝑢, V⟩ =
𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
Δ
3V
𝑡−1
+ Δ
2
𝑢
𝑡−1
Δ
2V
𝑡−1

+Δ𝑢
𝑡−1
ΔV
𝑡−1
+ 𝑢
𝑡
V
𝑡
) .

(12)

Then𝐸
𝑇
is a finite dimensionalHilbert spacewith above inner

product, and the induced norm is

‖𝑢‖ = (

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

+ (Δ
2
𝑢
𝑡−1
)
2

+ (Δ𝑢
𝑡−1
)
2

+ 𝑢
2

𝑡
))

1/2

∀𝑢 ∈ 𝐸
𝑇
.

(13)

As usual, for 1 ≤ 𝑝 < +∞, let

𝑙
𝑝
(Z,R𝑁) = {𝑢 ∈ 𝑆 : ∑

𝑡∈Z

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑝

< +∞} (14)

and its norm is defined by

‖𝑢‖
𝑙
𝑝 = (

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑢𝑡
󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

, ∀𝑢 ∈ 𝑙
𝑝
(Z,R𝑁) . (15)

Define the functional 𝐼 : 𝐸
𝑇
→ R as follows:

𝐼 (𝑢; 𝑇) =

𝑇

∑

𝑡=1

[
1

2
((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
) +

1

4
𝑢
4

𝑡
] .

(16)

Clearly, 𝐼(𝑢; 𝑇) ∈ C1(𝐸
𝑇
,R) and for any 𝑢, V ∈ 𝐸

𝑇
one can

easily check that

⟨𝐼
󸀠
(𝑢; 𝑇) , V⟩ =

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
Δ
3V
𝑡−1
− 𝐴Δ
2
𝑢
𝑡−1
Δ
2V
𝑡−1

+𝐵Δ𝑢
𝑡−1
ΔV
𝑡−1
− 𝑢
𝑡
V
𝑡
+ 𝑢
3

𝑡
V
𝑡
) .

(17)

For any 𝑢 = {𝑢
𝑡
}
𝑡∈Z ∈ 𝐸𝑇, by using 𝑢𝑖 = 𝑢𝑇+𝑖 for any 𝑖 ∈ Z,

Δ
𝑛
𝑢
𝑡−1
=

𝑛

∑

𝑘=0

(−1)
𝑘
(
𝑛

𝑘
) 𝑢
𝑡+𝑛−𝑘−1

. (18)
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We can compute the partial derivative as

𝜕𝐼

𝜕𝑢
𝑡

= Δ
6
𝑢
𝑡−3
+ 𝐴Δ
4
𝑢
𝑡−2
+ 𝐵Δ
2
𝑢
𝑡−1
+ 𝑢
𝑡
− 𝑢
3

𝑡
, 𝑡 ∈ [1, 𝑇] .

(19)

Then, 𝑢 = {𝑢
𝑡
}
𝑡∈Z is a critical point of 𝐼(𝑢; 𝑇) on 𝐸

𝑇
; that is,

𝐼
󸀠
(𝑢; 𝑇) = 0 if and only if

Δ
6
𝑢
𝑡−3
+ 𝐴Δ
4
𝑢
𝑡−2
+ 𝐵Δ
2
𝑢
𝑡−1
+ 𝑢
𝑡
− 𝑢
3

𝑡
= 0, 𝑡 ∈ [1, 𝑇] .

(20)

By the periodicity of 𝑢
𝑡
, we have reduced the existence of

periodic solutions of (1) to the existence of critical points
of 𝐼(𝑢; 𝑇) on 𝐸

𝑇
. For convenience, we identity 𝑢 ∈ 𝐸

𝑇
with

𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑇
)
𝑇, so we draw a conclusion as follows.

Lemma 4. Suppose that 𝑢
𝑡
is a critical point of the functional

𝐼(𝑢; 𝑇); then 𝑢
𝑡
is a 𝑇-periodic solution of (1).

We provide some lemmas which will be needed in proofs
of our main results.

Lemma 5. For any 𝑥(𝑗) > 0, 𝑦(𝑗) > 0, 𝑗 ∈ [1, 𝑛], and 𝑛 ∈ Z,

𝑛

∑

𝑗=1

𝑥 (𝑗) 𝑦 (𝑗) ≤ (

𝑛

∑

𝑗=1

𝑥
𝑟
(𝑗))

1/𝑟

⋅ (

𝑛

∑

𝑗=1

𝑦
𝑠
(𝑗))

1/𝑠

, (21)

where 𝑟 > 1, 𝑠 > 1, and (1/𝑟) + (1/𝑠) = 1.

Lemma 6. Let 𝑢 ∈ 𝐸
𝑇
be a critical point of 𝐼(𝑢; 𝑇); for every

V ∈ 𝐸
𝑇
, there hold

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
ΔV
𝑡−1
= −

𝑇

∑

𝑡=1

Δ
2
𝑢
𝑡−1

V
𝑡
,

𝑇

∑

𝑡=1

Δ
2
𝑢
𝑡−1
Δ
2V
𝑡−1
= −

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
Δ
3V
𝑡−1
.

(22)

Proof. Let 𝑢 ∈ 𝐸
𝑇
be a critical point of 𝐼(𝑢; 𝑇), according to

the definition of Δ and the periodicity of 𝑢
𝑡
and V
𝑡
; then we

have
𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
ΔV
𝑡−1
=

𝑇

∑

𝑡=1

(𝑢
𝑡
− 𝑢
𝑡−1
) (V
𝑡
− V
𝑡−1
)

=

𝑇

∑

𝑡=1

(𝑢
𝑡
V
𝑡
− 𝑢
𝑡−1

V
𝑡−1
) −

𝑇

∑

𝑡=1

(𝑢
𝑡
V
𝑡−1
− 𝑢
𝑡−1

V
𝑡−1
)

=

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1

V
𝑡
−

𝑇

∑

𝑡=1

(𝑢
𝑡+1

V
𝑡
− 𝑢
𝑡
V
𝑡
)

=

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
− Δ𝑢
𝑡
) V
𝑡

= −

𝑇

∑

𝑡=1

Δ
2
𝑢
𝑡−1

V
𝑡
.

(23)

Similarly, we get

𝑇

∑

𝑡=1

Δ
2
𝑢
𝑡−1
Δ
2V
𝑡−1
= −

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
Δ
3V
𝑡−1
. (24)

Let 𝑋 be a real Banach space. Σ is the subset of 𝑋, which
is closed and symmetric with respect to 0; that is,

Σ = {𝐴 ⊂ 𝑋 | 𝐴 is closed and 𝑥 ∈ 𝐴 iff − 𝑥 ∈ 𝐴} . (25)

For any 𝐴 ∈ Σ, the 𝑍
2
geometric index, also called genus, 𝛾

of 𝐴 is defined by

𝛾 (𝐴)

= min {𝑘 ∈ N | there is an odd map 𝜑 ∈ C (𝑋,R𝑘 {0})} ,
(26)

when there exists no such finite 𝑘, set 𝛾(𝐴) = ∞. Finally set
𝛾(0) = 0.

The following lemma is trivial.

Lemma 7 (Chang [18] and Rabinowitz [19]). Let 𝑋
𝑘
be a

subset of 𝑋 with dimension 𝑘 and 𝑆
1
the unit sphere of 𝑋 and

then let 𝛾(𝑋
𝑘
∩ 𝑆
1
) = 𝑘.

Next, let us recall the definition of Palais-Smale condition.
Let 𝑋 be a real Banach space, Φ ∈ C(𝑋,R). Φ is a

continuously Frechet differentiable functional defined on 𝑋.
Φ is said to be satisfied Palais-Smale condition (P.S. condition
for short) if any sequence {𝑢

𝑛
} ⊂ 𝑋 for which {Φ(𝑢

𝑛
)} is

bounded andΦ󸀠(𝑢
𝑛
) → 0 (𝑛 → ∞) possesses a convergent

subsequence in𝑋.

Lemma 8 (see [20]). Let 𝐸 be a real Banach space and let 𝑓 :
𝐸 → R be a C1 functional and satisfy P.S. condition. If 𝑓 is
bound from below, then

𝑐 = inf
𝑢∈𝐸

𝑓 (𝑢) (27)

is a critical value of 𝑓.

Lemma 9 (see [19]). Let Φ be an even functional defined on
𝑋 and satisfy P.S. condition. For positive integer 𝑗, define

𝑐
𝑗
= sup
𝛾(𝐴)≥𝑗

𝐴∈Σ

inf
𝑢∈𝐴

Φ (𝑢) .
(28)

Then

−∞ ≤ ⋅ ⋅ ⋅ ≤ 𝑐
𝑘
≤ 𝑐
𝑘−1
≤ ⋅ ⋅ ⋅ ≤ 𝑐

2
≤ 𝑐
1
≤ +∞ (29)

and

(1) assume −∞ < 𝑐
𝑗
< +∞; then 𝑐

𝑗
is a critical value ofΦ;

(2) if 𝑐 = 𝑐
𝑗
= 𝑐
𝑗+1
= ⋅ ⋅ ⋅ = 𝑐

𝑗+𝑙−1
, then 𝛾(𝐾

𝑐
) ≥ 𝑙, where

𝐾
𝑐
= {𝑢 ∈ 𝑋 | Φ(𝑢) = 𝑐, Φ

󸀠
(𝑢) = 0}.
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3. Proofs of Main Results

With the above preparations, we will prove our main results
in this section. In order to give proofs of theorems, we need
the following lemmas.

Lemma 10. For any 𝑢 ∈ 𝐸
𝑇
, if 𝑢
𝑡
is a critical of 𝐼(𝑢; 𝑇), we

have
𝑇

∑

𝑡=1

𝑢
2

𝑡
≤

1

4sin2 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ𝑢
𝑡
)
2

, (30)

𝑇

∑

𝑡=1

𝑢
2

𝑡
≤

1

16sin4 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

, (31)

𝑇

∑

𝑡=1

𝑢
2

𝑡
≤

1

64sin6 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

. (32)

Proof. From Agarwal [2], we have inequality (30) and

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
)
2

≤
1

4sin2 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

; (33)

then
𝑇

∑

𝑡=1

𝑢
2

𝑡
≤

1

4sin2 (𝜋/𝑇)
⋅

1

4sin2 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

=
1

16sin4 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

(34)

that is inequality (31).
From Lemmas 5 and 6, there holds

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

= −

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
⋅ Δ
3
𝑢
𝑡−1

≤ (

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
)
2

)

1/2

⋅ (

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

)

1/2

= (−

𝑇

∑

𝑡=1

𝑢
𝑡
Δ
2
𝑢
𝑡−1
)

1/2

⋅ (

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

)

1/2

≤ (

𝑇

∑

𝑡=1

𝑢
2

𝑡
)

1/4

⋅ (

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

)

1/4

⋅ (

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

)

1/2

(35)

and it follows

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

≤ (

𝑇

∑

𝑡=1

𝑢
2

𝑡
)

1/3

⋅ (

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

)

2/3

. (36)

Using inequality (31), we have inequality (32) is true.

Lemma 11. Suppose 𝐴 > 0 and 𝐴2 < 4𝐵, 𝑢 ∈ 𝐸
𝑇
is a critical

point of 𝐼(𝑢; 𝑇), and then

𝐴

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

≤
𝐴
2

4

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
)
2

+

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

, (37)

𝐴

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

≤ 𝐵

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
)
2

+
𝐴
2

4𝐵

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

. (38)

Proof. From Lemmas 5 and 6, we have

𝐴

𝑇

∑

𝑡=1

(Δ
2
𝑢
𝑡−1
)
2

= −𝐴

𝑇

∑

𝑡=1

Δ𝑢
𝑡−1
Δ
3
𝑢
𝑡−1

= −

𝑇

∑

𝑡=1

√2

2
𝐴Δ𝑢
𝑡−1
⋅ √2Δ

3
𝑢
𝑡−1

≤ (

𝑇

∑

𝑡=1

(
√2

2
𝐴Δ𝑢
𝑡−1
)

2

)

1/2

⋅ (

𝑇

∑

𝑡=1

2(Δ
3
𝑢
𝑡−1
)
2

)

1/2

≤
1

2
(

𝑇

∑

𝑡=1

𝐴
2

2
(Δ𝑢
𝑡−1
)
2

+

𝑇

∑

𝑡=1

2(Δ
3
𝑢
𝑡−1
)
2

)

=
𝐴
2

4

𝑇

∑

𝑡=1

(Δ𝑢
𝑡−1
)
2

+

𝑇

∑

𝑡=1

(Δ
3
𝑢
𝑡−1
)
2

,

(39)

so inequality (37) holds.
To prove inequality (38), let

𝐴 =
𝐴

√2𝐵
⋅ √2𝐵. (40)

Similar to the proof of inequality (37), we get inequality (38).

Now we will give the proof of Theorem 1.

Proof of Theorem 1. Suppose all conditions of Theorem 1
hold. Let 𝑢 ∈ 𝐸

𝑇
be a nontrivial solution of (1); then

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
+ 𝑢
4

𝑡
) = 0.

(41)
By (37), (30), (5), and (6), we have

0 > −

𝑇

∑

𝑡=1

𝑢
4

𝑡

=

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

≥

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

−
𝐴
2

4
(Δ
2
𝑢
𝑡−1
)
2

− (Δ
3
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

t)
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=

𝑇

∑

𝑡=1

(𝐵 −
𝐴
2

4
) (Δ𝑢

𝑡−1
)
2

−

𝑇

∑

𝑡=1

𝑢
2

𝑡

≥ ((𝐵 −
𝐴
2

4
) ⋅ 4sin2 𝜋

𝑇
− 1)

𝑇

∑

𝑡=1

𝑢
2

𝑡

≥ 0

(42)
which is a contradiction. Moreover, by (38), (31), (5), and (6),
we have

0 > −

𝑇

∑

𝑡=1

𝑢
4

𝑡

=

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

≥

𝑇

∑

𝑡=1

((Δ
3
𝑢
𝑡−1
)
2

− 𝐵(Δ
2
𝑢
𝑡−1
)
2

−
𝐴
2

4𝐵
(Δ
3
𝑢
𝑡−1
)
2

+𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

=

𝑇

∑

𝑡=1

((1 −
𝐴
2

4𝐵
) (Δ
3
𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

≥ ((1 −
𝐴
2

4𝐵
) ⋅ 64sin6 𝜋

𝑇
− 1)

𝑇

∑

𝑡=1

𝑢
2

𝑡

≥ 0

(43)

which is a contradiction.Thus𝑢
𝑡
should be the trivial solution

of (1); in other words, (1) has no nontrivial solution when (5)
and (6) hold.

To apply Lemmas 8 and 9 to look for nontrivial solutions
for (1), next we prove that 𝐼(𝑢; 𝑇) satisfies P.S. condition.

Lemma 12. Let 𝐴 > 0 and 𝐴2 < 4𝐵, and then the
functional 𝐼(𝑢; 𝑇) is bounded from below on 𝐸

𝑇
and satisfies

P.S. condition.

Proof. Denote 𝜖 = 1 − (𝐴2/4𝐵), and then 𝜖 > 0. From (38)
and the elementary inequality

−
1

2
𝑢
2
+
1

4
𝑢
4
≥ −

1

4
(44)

there hold
𝐼 (𝑢; 𝑇)

=

𝑇

∑

𝑡=1

[
1

2
((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

+
1

4
𝑢
4

𝑡
]

=

𝑇

∑

𝑡=1

1

2
((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

)

+

𝑇

∑

𝑡=1

(
1

2
𝑢
2

𝑡
+
1

4
𝑢
4

𝑡
)

≥

𝑇

∑

𝑡=1

𝜖

2
(Δ
3
𝑢
𝑡−1
)
2

−

𝑇

∑

𝑡=1

1

4

≥ −
𝑇

4

(45)

which means that the functional 𝐼(𝑢; 𝑇) is bounded from
below on 𝐸

𝑇
.

Next we will show that 𝐼(𝑢; 𝑇) satisfies P.S. condition.
Suppose {𝑢(𝑘)} ⊂ 𝐸

𝑇
satisfy that {𝐼(𝑢(𝑘); 𝑇)} is a bounded

sequence from above; that is, there exists a positive constant
𝐶 such that

𝐼 (𝑢
(𝑘)
; 𝑇) ≤ 𝐶, ∀𝑘 ∈ N. (46)

By (38), we have

𝜖

2

𝑇

∑

𝑡=1

(Δ
3
𝑢
(𝑘)

𝑡−1
)
2

≤

𝑇

∑

𝑡=1

(
𝜖

2
(Δ
3
𝑢
(𝑘)

𝑡−1
)
2

+
1

4
((𝑢
(𝑘)

𝑡
)
2

− 1)

2

)

=

𝑇

∑

𝑡=1

(
1

2
(1 −

𝐴
2

4𝐵
) (Δ
3
𝑢
(𝑘)

𝑡−1
)
2

+
1

4
(𝑢
(𝑘)

𝑡
)
4

−
1

2
(𝑢
(𝑘)

𝑡
)
2

+
1

4
)

≤

𝑇

∑

𝑡=1

[
1

2
((Δ
3
𝑢
(𝑘)

𝑡−1
)
2

− 𝐴(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

+𝐵(Δ𝑢
(𝑘)

𝑡−1
)
2

− (𝑢
(𝑘)

𝑡
)
2

)

+
1

4
(𝑢
(𝑘)

𝑡
)
4

+
1

4
]

= 𝐼 (𝑢
(𝑘)
; 𝑇) +

𝑇

4

≤ 𝐶 +
𝑇

4

(47)

and it follows

𝑇

∑

𝑡=1

(Δ
3
𝑢
(𝑘)

𝑡−1
)
2

≤
2

𝜖
(𝐶 +

𝑇

4
) . (48)

And together with (32), there holds

𝑇

∑

𝑡=1

(𝑢
(𝑘)

𝑡
)
2

≤
2

64𝜖sin6 (𝜋/𝑇)
(𝐶 +

𝑇

4
) . (49)
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From (37), it follows

𝜖

2

𝑇

∑

𝑡=1

(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

≤

𝑇

∑

𝑡=1

(
𝜖

2
(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

+
1

4
((𝑢
(𝑘)

𝑡
)
2

− 1)

2

)

≤

𝑇

∑

𝑡=1

[
1

2
((Δ
2
𝑢
(𝑘)

𝑡−1
)
2

− 𝐴(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

+𝐵(Δ𝑢
(𝑘)

𝑡−1
)
2

− (𝑢
(𝑘)

𝑡
)
2

)

+
1

4
(𝑢
(𝑘)

𝑡
)
4

+
1

4
]

= 𝐼 (𝑢
(𝑘)
; 𝑇) +

𝑇

4

≤ 𝐶 +
𝑇

4

(50)

and then
𝑇

∑

𝑡=1

(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

≤
8

4𝐵 − 𝐴2
(𝐶 +

𝑇

4
) ; (51)

thus
𝑇

∑

𝑡=1

(Δ𝑢
(𝑘)

𝑡−1
)
2

≤
1

4sin2 (𝜋/𝑇)

𝑇

∑

𝑡=1

(Δ
2
𝑢
(𝑘)

𝑡−1
)
2

≤
8

4 (4𝐵 − 𝐴2) sin2 (𝜋/𝑇)
(𝐶 +

𝑇

4
) .

(52)

Therefore, by (48)–(52), we get that there exists a positive
constant𝑀 such that
𝑇

∑

𝑡=1

((Δ
3
𝑢
(𝑘)

𝑡−1
)
2

+ (Δ
2
𝑢
(𝑘)

𝑡−1
)
2

+ (Δ𝑢
(𝑘)

𝑡−1
)
2

+ (𝑢
(𝑘)

𝑡
)
2

) ≤ 𝑀
2
;

(53)

that is,
󵄩󵄩󵄩󵄩󵄩
𝑢
(𝑘)󵄩󵄩󵄩󵄩󵄩

≤ 𝑀. (54)

As a consequence, {𝑢(𝑘)} possesses a convergence subse-
quence in the finite dimensional Hilbert space 𝐸

𝑇
and

𝐼(𝑢; 𝑇) satisfies P.S. condition. This completes the proof of
Lemma 12.

From Lemmas 8 and 12, there exists 𝑐 = inf
𝑢∈𝐸𝑇

𝐼(𝑢; 𝑇)

is a critical value of 𝐼(𝑢; 𝑇), which means that there exists a
critical point of 𝐼(𝑢; 𝑇) on 𝐸

𝑇
. Next, we devote ourselves to

verifying the critical point is nontrivial.
Set

𝑀(𝑇) = min {𝐼 (𝑢; 𝑇) | 𝑢 ∈ 𝐸
𝑇
} . (55)

In Theorem 1, we have shown that𝑀(𝑇) = 0 if 𝑇 ≤ 𝑇
1
. To

complete the proof of Theorem 2, we will show this does not
hold for large 𝑇. We prove that for 𝑇 > 𝑇

2
, where 𝑇

2
is an

appropriate number defined as (8), it holds 𝑀(𝑇) < 0 and
the corresponding critical point is nontrivial.

Proof of Theorem 2. By Lemma 12, 𝑐 = inf
𝑢∈𝐸𝑇

𝐼(𝑢; 𝑇) is
nontrivial. So if we can find some critical point 𝑢 such that
𝐼(𝑢) < 0, then 𝑢 is a nontrivial solution of (1). Let us take

𝑢 = 𝛿 sin 𝜋𝑡
𝑇
, (56)

where 𝛿will be chosen later. By direct computation, it follows

𝐼 (𝑢; 𝑇)

=

𝑇

∑

𝑡=1

[
1

2
((Δ
3
𝑢
𝑡−1
)
2

− 𝐴(Δ
2
𝑢
𝑡−1
)
2

+ 𝐵(Δ𝑢
𝑡−1
)
2

− 𝑢
2

𝑡
)

+
1

4
𝑢
4

𝑡
]

=
1

4
𝛿
2
𝑇((2 sin 𝜋

2𝑇
)

6

− 𝐴(2 sin 𝜋

2𝑇
)

4

+𝐵(2 sin 𝜋

2𝑇
)

2

− 1 +
3

8
𝛿
2
) .

(57)

Since 𝐴 > 0 if

(2 sin 𝜋

2𝑇
)

6

+ 𝐵(2 sin 𝜋

2𝑇
)

2

− 1 < 0 (58)

for sufficiently small 𝛿, we have 𝐼(𝑢) < 0. We show that
there exists 𝑇

2
, when 𝑇 > 𝑇

2
, such that (58) is true. Denote

(2 sin(𝜋/2𝑇))2 = 𝑝, inequality (58) is equivalent to

𝑝
3
+ 𝐵𝑝 − 1 < 0. (59)

The roots of the polynomial 𝑃
3
(𝑝) = 𝑝

3
+ 𝐵𝑝 − 1 are

𝑝
1
=
3

√1

2
+ √

1

4
−
𝐵
3

27
+
3

√1

2
− √

1

4
−
𝐵
3

27
,

𝑝
2
= 𝜔

3

√1

2
+ √

1

4
−
𝐵
3

27
+ 𝜔

3

√1

2
− √

1

4
−
𝐵
3

27
,

𝑝
3
= 𝜔

3

√1

2
+ √

1

4
−
𝐵
3

27
+ 𝜔

3

√1

2
− √

1

4
−
𝐵
3

27
,

(60)

where𝜔 = (−1+√3𝑖)/2 and𝜔 = (−1−√3𝑖)/2.Therefore, (59)
holds for 𝑝 < 𝑝

1
and (58) holds for 2 sin(𝜋/2𝑇) < 𝑝1/2

1
; that

is, sin(𝜋/2𝑇) < (1/2)𝑝1/2
1

. Then (1) has a nontrivial solution
for 𝑇 > 𝑇

2
, where 𝑇

2
is defined as (8).

We can prove the multiplicity result in Theorem 3 using
Lemma 9.

Denote 𝐵
𝛿
the open ball in 𝐸

𝑇
with radius 𝛿 about 0; 𝑆

𝛿
is

the boundary of 𝐵
𝛿
.
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Proof of Theorem 3. For integer 1 ≤ 𝑚 ≤ 𝑇, let us consider
the subset 𝐾 ⊂ 𝐸

𝑇
,

𝐾 = {𝜆
1
sin 𝜋𝑡

𝑇
+ 𝜆
2
sin 2𝜋𝑡

𝑇
+ ⋅ ⋅ ⋅ + 𝜆

𝑚
sin 𝑚𝜋𝑡

𝑇
:

𝜆
2

1
+𝜆
2

2
+ ⋅ ⋅ ⋅ + 𝜆

2

𝑚
= 𝜌
2
} ,

(61)

where 𝜌 is an appropriate positive number. Give an odd
continuous mapping𝐻 : 𝐾 → 𝑆

𝜌
:

𝐻 (𝜆
1
sin 𝜋𝑡

𝑇
+ 𝜆
2
sin 2𝜋𝑡

𝑇
+ ⋅ ⋅ ⋅ + 𝜆

𝑚
sin 𝑚𝜋𝑡

𝑇
)

= (−
𝜆
1

𝜌
, −
𝜆
2

𝜌
, . . . , −

𝜆
𝑚

𝜌
) .

(62)

As defined in (26), by the monotonicity and superinvariance
of genus and Lemma 7, for any 𝜌 > 0, we have

𝛾 (𝐾 ∩ 𝑆
𝜌
) = 𝑚. (63)

𝐾 is also a subset of the𝑚-dimensional space

𝐸
𝑚
= span {sin 𝜋𝑡

𝑇
, sin 2𝜋𝑡

𝑇
, . . . , sin 𝑚𝜋𝑡

𝑇
} (64)

equipped with the norm

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆
1
sin 𝜋𝑡

𝑇
+ 𝜆
2
sin 2𝜋𝑡

𝑇
+ ⋅ ⋅ ⋅ + 𝜆

𝑚
sin 𝑚𝜋𝑡

𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑚

= 𝜆
2

1
+ 𝜆
2

2
+ ⋅ ⋅ ⋅ 𝜆

2

𝑚
.

(65)

Then for every V ∈ 𝐸
𝑚
there exist positive constants 𝑘

1
and 𝑘
2

such that

𝑘
1‖V‖𝑚 ≤ ‖V‖𝑙4 ≤ 𝑘2‖V‖𝑚. (66)

In particular,

‖V‖𝑙4 ≤ 𝑘2𝜌, ∀V ∈ 𝐾 ∩ 𝑆
𝜌
. (67)

Since 𝑇 > 𝑚𝑇
2
> 𝑘𝑇
2
for 𝑘 = 1, 2, . . . , 𝑚, we have

0 <
𝑘

𝑇
≤
𝑚

𝑇
<
1

𝑇
2

, (68)

(2 sin 𝑘𝜋
2𝑇
)

6

+ 𝐵(2 sin 𝑘𝜋
2𝑇
)

2

− 1

≤ (2 sin 𝑚𝜋
2𝑇
)

6

+ 𝐵(2 sin 𝑚𝜋
2𝑇
)

2

− 1

< (2 sin 𝜋

2𝑇
2

)

6

+ 𝐵(2 sin 𝜋

2𝑇
2

)

2

− 1

= 0.

(69)

For V ∈ 𝐾 ∩ 𝑆
𝜌
, V
𝑡
= ∑
𝑚

𝑖=1
𝜆
𝑖
sin(𝑖𝜋𝑡/𝑇). Using (67) and (69),

there holds

𝐼 (V; 𝑇)

=

𝑇

∑

𝑡=1

[
1

2
((Δ
3V
𝑡−1
)
2

− 𝐴(Δ
2V
𝑡−1
)
2

+ 𝐵(ΔV
𝑡−1
)
2

− V2
𝑡
)

+
1

4
V4
𝑡
]

≤

𝑇

∑

𝑡=1

[
1

2
((Δ
3V
𝑡−1
)
2

+ 𝐵(ΔV
𝑡−1
)
2

− V2
𝑡
) +

1

4
V4
𝑡
]

=

𝑇

∑

𝑡=1

[

[

1

2
((

𝑚

∑

𝑖=1

𝜆
𝑖
(2 sin 𝑖𝜋

2𝑇
)

3

cos 𝑖𝜋 (2𝑡 + 1)
2𝑇

)

2

+ 𝐵(

𝑚

∑

𝑖=1

𝜆
𝑖
(2 sin 𝑖𝜋

2𝑇
) cos 𝑖𝜋 (2𝑡 − 1)

2𝑇
)

2

−(

𝑚

∑

𝑖=1

𝜆
𝑖
sin 𝑖𝜋𝑡

𝑇
)

2

) +
1

4
V4
𝑡
]

]

=
𝑇

4
(

𝑚

∑

𝑖=1

𝜆
2

𝑖
(2 sin 𝑖𝜋

2𝑇
)

6

+ 𝐵

𝑚

∑

𝑖=1

𝜆
2

𝑖
(2 sin 𝑖𝜋

2𝑇
)

2

− 1)

+

𝑇

∑

𝑡=1

1

4
V4
𝑡

≤
𝜌
2

4
[𝑇((2 sin 𝑚𝜋

2𝑇
)

6

+ 𝐵(2 sin 𝑚𝜋
2𝑇
)

2

− 1)] + 𝑘
4

2
𝜌
2

<
𝜌
2

4
[𝑇((2 sin 𝜋

2𝑇
2

)

6

+ 𝐵(2 sin 𝜋

2𝑇
2

)

2

− 1)] + 𝑘
4

2
𝜌
2

< 0

(70)

for sufficiently small 𝜌. It follows

𝑐
1
< 0, (71)

where 𝑐
1
is defined in Lemma 9.

According to Lemma 9, 𝐼(𝑢; 𝑇) has at least 𝑚 geometri-
cally distinct critical points. Furthermore, 𝑇 > 𝑚𝑇

2
> 𝑇
2
;

similar to the proof of Theorem 2, we draw a conclusion
that all 𝑚 distinct critical points we have obtained are all
nontrivial. And the proof of Theorem 3 is completed.

Finally, we exhibit a simple example to illustrate our
conclusions.

Example. Consider system (1) with 𝐴 = √10 and 𝐵 = 3.

Solution. Here 𝐴 = √10 > 0, 𝐵 = 3 > 0, 𝐴2 < 4𝐵, and
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sin 𝜋

2𝑇
2

=
1

2
(
3

√1

2
+ √

1

4
−
𝐵
3

27
+
3

√1

2
− √

1

4
−
𝐵
3

27
)

1/2

=
1

2

(72)

and it follows we can choose 𝑇
2
= 3/2. When 𝑇 > 3/2, (1) has

a nontrivial solution. If one let 𝑇 > (3/2)𝑚, where 1 ≤ 𝑚 is a
integer, then (1) has𝑚 distinct nontrivial solution.

Remark. From the given example, one can find our results
only depend on coefficients 𝐴 and 𝐵 which are very easy to
verify and rather relaxed.
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