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We present the sharp bounds for the Neuman means 𝑆
𝐻𝐴

, 𝑆
𝐴𝐻

, 𝑆
𝐶𝐴

and 𝑆
𝐴𝐶

in terms of the arithmetic, harmonic, and
contraharmonic means. Our results are the refinements or improvements of the results given by Neuman.

1. Introduction

For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the Schwab-Borchardt mean SB(𝑎, 𝑏)

of 𝑎 and 𝑏 is given by

SB (𝑎, 𝑏) =

{{{{

{{{{

{

√𝑏2 − 𝑎2

cos−1 (𝑎/𝑏)
, 𝑎 < 𝑏,

√𝑎2 − 𝑏2

cosh−1 (𝑎/𝑏)
, 𝑎 > 𝑏,

(1)

where cos−1(𝑥) and cosh−1(𝑥) = log(𝑥 + √𝑥2 − 1) are the
inverse cosine and inverse hyperbolic cosine functions,
respectively.

It is well-known that the mean SB(𝑎, 𝑏) is strictly increas-
ing in both 𝑎 and 𝑏, nonsymmetric and homogeneous of
degree 1 with respect to 𝑎 and 𝑏. Many symmetric bivariate
means are special cases of the Schwab-Borchardt mean; for
example,

𝑃 (𝑎, 𝑏) =
𝑎 − 𝑏

2sin−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
= SB (𝐺, 𝐴)

is the first Seiffert mean,

𝑇 (𝑎, 𝑏) =
𝑎 − 𝑏

2tan−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
= SB (𝐴, 𝑄)

is the second Seiffert mean,

𝑀 (𝑎, 𝑏) =
𝑎 − 𝑏

2sinh−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
= SB (𝑄, 𝐴)

is the Neuman-Sándor mean,

𝐿 (𝑎, 𝑏) =
𝑎 − 𝑏

2tanh−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
= SB (𝐴, 𝐺)

is the logarithmic mean,

(2)

where 𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, and 𝑄(𝑎, 𝑏) =

√(𝑎2 + 𝑏2)/2 denote the classical geometric mean, arith-
metic mean, and quadratic mean of 𝑎 and 𝑏, respectively.
The Schwab-Borchardt mean SB(𝑎, 𝑏) was investigated in
[1, 2].

Let 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏) and 𝐶(𝑎, 𝑏) = (𝑎
2

+ 𝑏
2
)/

(𝑎 + 𝑏) be the harmonic and contraharmonic means of two
positive numbers 𝑎 and 𝑏, respectively.Then, it is well-known
that

𝐻 (𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏) ,

(3)

for 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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Recently, the Schwab-Borchardt mean and its special
cases have been the subject of intensive research. Neuman
and Sándor [3, 4] proved that the inequalities

𝑃 (𝑎, 𝑏) >
2

𝜋
𝐴 (𝑎, 𝑏) ,

𝐴 (𝑎, 𝑏)

log (1 + √2)

> 𝑀 (𝑎, 𝑏) >
𝜋

4 log (1 + √2)

𝑇 (𝑎, 𝑏) ,

𝑇 (𝐴 (𝑎, 𝑏) , 𝐺 (𝑎, 𝑏)) < 𝑃 (𝑎, 𝑏) ,

𝑇 (𝑎, 𝑏) > 𝑇 (𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)) ,

𝐿 (𝑎, 𝑏) < 𝐿 (𝐴 (𝑎, 𝑏) , 𝐺 (𝑎, 𝑏)) ,

𝑀 (𝑎, 𝑏) < 𝐿 (𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)) ,

𝐿 (𝑎, 𝑏) > 𝐻 (𝑃 (𝑎, 𝑏) , 𝐺 (𝑎, 𝑏)) ,

𝑃 (𝑎, 𝑏) > 𝐻 (𝐿 (𝑎, 𝑏) , 𝐴 (𝑎, 𝑏)) ,

𝑀 (𝑎, 𝑏) > 𝐻 (𝑇 (𝑎, 𝑏) , 𝐴 (𝑎, 𝑏)) ,

𝑇 (𝑎, 𝑏) > 𝐻 (𝑀 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)) ,

𝐺 (𝑎, 𝑏) 𝑃 (𝑎, 𝑏) < 𝐿
2

(𝑎, 𝑏) <
𝐺
2

(𝑎, 𝑏) + 𝑃
2

(𝑎, 𝑏)

2
,

𝐿 (𝑎, 𝑏) 𝐴 (𝑎, 𝑏) < 𝑃
2

(𝑎, 𝑏) <
𝐿
2

(𝑎, 𝑏) + 𝐴
2

(𝑎, 𝑏)

2
,

𝐴 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏) < 𝑀
2

(𝑎, 𝑏) <
𝐴
2

(𝑎, 𝑏) + 𝑇
2

(𝑎, 𝑏)

2
,

𝑀 (𝑎, 𝑏) 𝑄 (𝑎, 𝑏) < 𝑇
2

(𝑎, 𝑏) <
𝑀
2

(𝑎, 𝑏) + 𝑄
2

(𝑎, 𝑏)

2
,

𝑄
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <
1

3
𝑄 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏)

(4)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. In [5], the author proved that
the double inequalities

𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼) 𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽) 𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆) 𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇) 𝐴 (𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +

√2)]/[(√2 − 1) log(1 + √2)] = 0.3249 ⋅ ⋅ ⋅ , 𝛽 ≥ 1/3, 𝜆 ≤ [1 −

log(1 + √2)]/ log(1 + √2) = 0.1345 ⋅ ⋅ ⋅ , and 𝜇 ≥ 1/6. Chu and
Long [6] found that the double inequality

𝑀
𝑝 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑞𝐼 (𝑎, 𝑏) (6)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ log 2/

log[2 log(1 + √2)] = 1.224 ⋅ ⋅ ⋅ and 𝑞 ≥ 𝑒/[2 log(1 + √2)],
where𝑀

𝑝
(𝑎, 𝑏) = [(𝑎

𝑝
+𝑏
𝑝

)/2]
1/𝑝

(𝑝 ̸= 0) and𝑀
0
(𝑎, 𝑏) = √𝑎𝑏

is the 𝑝th powermean of 𝑎 and 𝑏. Zhao et al. [7] presented the

least values 𝛼
1
, 𝛼
2
, and 𝛼

3
and the greatest values 𝛽

1
, 𝛽
2
, and

𝛽
3
such that the double inequalities

𝛼
1
𝐻 (𝑎, 𝑏) + (1 − 𝛼

1
) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
1
𝐻 (𝑎, 𝑏) + (1 − 𝛽

1
) 𝑄 (𝑎, 𝑏) ,

𝛼
2
𝐺 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
2
𝐺 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝑄 (𝑎, 𝑏) ,

𝛼
3
𝐻 (𝑎, 𝑏) + (1 − 𝛼

3
) 𝐶 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
3
𝐻 (𝑎, 𝑏) + (1 − 𝛽

3
) 𝐶 (𝑎, 𝑏)

(7)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Very recently, the bivariate means 𝑆

𝐴𝐻
, 𝑆
𝐻𝐴

, 𝑆
𝐶𝐴
, and

𝑆
𝐴𝐶

derived from the Schwab-Borchardt mean are defined by
Neuman [8, 9] as follows:

𝑆
𝐴𝐻

= SB (𝐴, 𝐻) , 𝑆
𝐻𝐴

= SB (𝐻, 𝐴) ,

𝑆
𝐶𝐴

= SB (𝐶, 𝐴) , 𝑆
𝐴𝐶

= SB (𝐴, 𝐶) .

(8)

We call the means 𝑆
𝐴𝐻

, 𝑆
𝐻𝐴

, 𝑆
𝐶𝐴
, and 𝑆

𝐴𝐶
given in (8) the

Neuman means. Moreover, let V = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (−1, 1);
then the following explicit formulas for 𝑆

𝐴𝐻
, 𝑆
𝐻𝐴

, 𝑆
𝐴𝐶

, and
𝑆
𝐶𝐴

are found by Neuman [8]:

𝑆
𝐴𝐻

= 𝐴
tanh (𝑝)

𝑝
, 𝑆

𝐻𝐴
= 𝐴

sin (𝑞)

𝑞
, (9)

𝑆
𝐶𝐴

= 𝐴
sinh (𝑟)

𝑟
, 𝑆

𝐴𝐶
= 𝐴

tan (𝑠)

𝑠
, (10)

where 𝑝, 𝑞, 𝑟, and 𝑠 are defined implicitly as sech(𝑝) = 1 −

V2, cos(𝑞) = 1 − V2, cosh(𝑟) = 1 + V2, and sec(𝑠) = 1 + V2,
respectively. Clearly, 𝑝 ∈ (0, ∞), 𝑞 ∈ (0, 𝜋/2), 𝑟 ∈ (0, log(2 +

√3)), and 𝑠 ∈ (0, 𝜋/3).
In [8, 9], Neuman proved that the inequalities

𝐻 (𝑎, 𝑏) < 𝑆
𝐴𝐻 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑆

𝐻𝐴 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) ,

𝑇 (𝑎, 𝑏) < 𝑆
𝐶𝐴 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) < 𝑆

𝐴𝐶 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏) ,

(11)

𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) < 𝑆
𝐻𝐴 (𝑎, 𝑏) <

1

3
𝐻 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏) ,

𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) < 𝑆
𝐶𝐴 (𝑎, 𝑏) <

1

3
𝐶 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏) ,

𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏) < 𝑆
𝐴𝐻 (𝑎, 𝑏) <

1

3
𝐴 (𝑎, 𝑏) +

2

3
𝐻 (𝑎, 𝑏) ,

𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏) < 𝑆
𝐴𝐶 (𝑎, 𝑏) <

1

3
𝐴 (𝑎, 𝑏) +

2

3
𝐶 (𝑎, 𝑏)

(12)

hold for 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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He et al. [10] found the greatest values 𝛼
1
, 𝛼
2

∈ [0, 1/2],
𝛼
3
, 𝛼
4

∈ [1/2, 1], and the least values 𝛽
1
, 𝛽
2

∈ [0, 1/2], 𝛽
3
,

𝛽
4

∈ [1/2, 1] such that the double inequalities

𝐻 (𝛼
1
𝑎 + (1 − 𝛼

1
) 𝑏, 𝛼
1
𝑏 + (1 − 𝛼

1
) 𝑎) < 𝑆

𝐴𝐻 (𝑎, 𝑏)

< 𝐻 (𝛽
1
𝑎 + (1 − 𝛽

1
) 𝑏, 𝛽
1
𝑏 + (1 − 𝛽

1
) 𝑎) ,

𝐻 (𝛼
2
𝑎 + (1 − 𝛼

2
) 𝑏, 𝛼
2
𝑏 + (1 − 𝛼

2
) 𝑎) < 𝑆

𝐻𝐴 (𝑎, 𝑏)

< 𝐻 (𝛽
2
𝑎 + (1 − 𝛽

2
) 𝑏, 𝛽
2
𝑏 + (1 − 𝛽

2
) 𝑎) ,

𝐶 (𝛼
3
𝑎 + (1 − 𝛼

3
) 𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
) 𝑎) < 𝑆

𝐶𝐴 (𝑎, 𝑏)

< 𝐶 (𝛽
3
𝑎 + (1 − 𝛽

3
) 𝑏, 𝛽
3
𝑏 + (1 − 𝛽

3
) 𝑎) ,

𝐶 (𝛼
4
𝑎 + (1 − 𝛼

4
) 𝑏, 𝛼
4
𝑏 + (1 − 𝛼

4
) 𝑎) < 𝑆

𝐴𝐶 (𝑎, 𝑏)

< 𝐶 (𝛽
4
𝑎 + (1 − 𝛽

4
) 𝑏, 𝛽
4
𝑏 + (1 − 𝛽

4
) 𝑎)

(13)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Motivated by inequalities (12), it is natural to ask what the

greatest values 𝛼
1
, 𝛼
2
, 𝛼
3
, and 𝛼

4
and the least values 𝛽

1
, 𝛽
2
,

𝛽
3
, and 𝛽

4
are such that the double inequalities

𝛼
1

[
𝐻 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
] + (1 − 𝛼

1
) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

< 𝑆
𝐻𝐴 (𝑎, 𝑏) < 𝛽

1
[

𝐻 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
1
) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) ,

𝛼
2

[
𝐶 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
] + (1 − 𝛼

2
) 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

< 𝑆
𝐶𝐴 (𝑎, 𝑏) < 𝛽

2
[

𝐶 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
2
) 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) ,

𝛼
3

[
𝐴 (𝑎, 𝑏)

3
+

2𝐻 (𝑎, 𝑏)

3
] + (1 − 𝛼

3
) 𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏)

< 𝑆
𝐴𝐻 (𝑎, 𝑏) < 𝛽

3
[

𝐴 (𝑎, 𝑏)

3
+

2𝐻 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
3
) 𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏) ,

𝛼
4

[
𝐴 (𝑎, 𝑏)

3
+

2𝐶 (𝑎, 𝑏)

3
] + (1 − 𝛼

4
) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

< 𝑆
𝐴𝐶 (𝑎, 𝑏) < 𝛽

4
[

𝐴 (𝑎, 𝑏)

3
+

2𝐶 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
4
) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

(14)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The purpose of this paper is to answer these questions. All

numerical computations are carried out usingMATHEMAT-
ICA software. Our main results are the following Theorems
1–4.

Theorem 1. The double inequality

𝛼
1

[
𝐻 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
] + (1 − 𝛼

1
) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

< 𝑆
𝐻𝐴 (𝑎, 𝑏) < 𝛽

1
[

𝐻 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
1
) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(15)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
1

≤ 4/5 and
𝛽
1

≥ 3/𝜋.

Theorem 2. The two-sided inequality

𝛼
2

[
𝐶 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
] + (1 − 𝛼

2
) 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

< 𝑆
𝐶𝐴 (𝑎, 𝑏) < 𝛽

2
[

𝐶 (𝑎, 𝑏)

3
+

2𝐴 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
2
) 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(16)

holds true for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
2

≤

3[
3

√2 log(2 + √3) − √3]/[(3
3

√2 − 4) log(2 + √3)] = 0.7528 ⋅ ⋅ ⋅

and 𝛽
2

≥ 4/5.

Theorem 3. The double inequality

𝛼
3

[
𝐴 (𝑎, 𝑏)

3
+

2𝐻 (𝑎, 𝑏)

3
] + (1 − 𝛼

3
) 𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏)

< 𝑆
𝐴𝐻 (𝑎, 𝑏) < 𝛽

3
[

𝐴 (𝑎, 𝑏)

3
+

2𝐻 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
3
) 𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏)

(17)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
3

≤ 0 and 𝛽
3

≥

4/5.

Theorem 4. The two-sided inequality

𝛼
4

[
𝐴 (𝑎, 𝑏)

3
+

2𝐶 (𝑎, 𝑏)

3
] + (1 − 𝛼

4
) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

< 𝑆
𝐴𝐶 (𝑎, 𝑏) < 𝛽

4
[

𝐴 (𝑎, 𝑏)

3
+

2𝐶 (𝑎, 𝑏)

3
]

+ (1 − 𝛽
4
) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

(18)

holds true for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
4

≤ 4/5 and
𝛽
2

≥ 3(3√3 −
3

√4𝜋)/[(5 − 3
3

√4)𝜋] = 0.8400 ⋅ ⋅ ⋅ .

2. Two Lemmas

In order to prove our main results, we need two lemmas,
which we present in this section.
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Lemma 5. Let 𝑝 ∈ R and

𝑓 (𝑥) = 𝑝
2
𝑥
6

+ 2𝑝
2
𝑥
5

+ 3 (−𝑝
2

+ 4𝑝 − 2) 𝑥
4

+ 2 (−2𝑝
2

+ 9𝑝 − 6) 𝑥
3

+ (4𝑝
2

+ 6𝑝 − 9) 𝑥
2

+ 6 (𝑝 − 1) 𝑥 + 3 (𝑝 − 1) .

(19)

Then, the following statements are true.

(1) If 𝑝 = 4/5, then 𝑓(𝑥) < 0 for all 𝑥 ∈ (0, 1) and 𝑓(𝑥) >

0 for all 𝑥 ∈ (1,
3

√2).
(2) If 𝑝 = 3/𝜋, then there exists 𝜆

1
∈ (0, 1) such that

𝑓(𝑥) < 0 for 𝑥 ∈ (0, 𝜆
1
) and 𝑓(𝑥) > 0 for 𝑥 ∈ (𝜆

1
, 1).

(3) If 𝑝 = 3[
3

√2 log(2 + √3) − √3]/[(3
3

√2 − 4) log(2 +

√3)] = 0.7528 ⋅ ⋅ ⋅ , then there exists 𝜆
2

∈ (1,
3

√2) such
that 𝑓(𝑥) < 0 for 𝑥 ∈ (1, 𝜆

2
) and 𝑓(𝑥) > 0 for 𝑥 ∈

(𝜆
2
,
3

√2).

Proof. For part (1), if 𝑝 = 4/5, then (19) becomes

𝑓 (𝑥) =
1

25
(𝑥 − 1) (16𝑥

5
+ 48𝑥

4
+ 90𝑥

3
+ 86𝑥

2

+ 45 𝑥 + 15) .

(20)

Therefore, part (1) follows easily from (20).
For part (2), if 𝑝 = 3/𝜋, then simple computations lead to

−𝑝
2

+ 4𝑝 − 2 =
−2𝜋
2

+ 12𝜋 − 9

𝜋2
> 0, (21)

−2𝑝
2

+ 9𝑝 − 6 =
−6𝜋
2

+ 27𝜋 − 18

𝜋2
> 0, (22)

4𝑝
2

+ 6𝑝 − 9 =
−9𝜋
2

+ 18𝜋 + 36

𝜋2
> 0, (23)

𝑓 (0) = −
3 (𝜋 − 3)

𝜋
< 0, (24)

𝑓 (1) =
9 (15 − 4𝜋)

𝜋
> 0, (25)

𝑓
󸀠

(𝑥) = 6𝑝
2
𝑥
5

+ 10𝑝
2
𝑥
4

+ 12 (−𝑝
2

+ 4𝑝 − 2) 𝑥
3

+ 6 (−2𝑝
2

+ 9𝑝 − 6) 𝑥
2

+ 2 (4𝑝
2

+ 6𝑝 − 9) 𝑥

+ 6 (𝑝 − 1) ,

(26)

𝑓
󸀠

(0) =
6 (3 − 𝜋)

𝜋
< 0, (27)

𝑓
󸀠

(1) =
12 (30 − 7𝜋)

𝜋
> 0, (28)

𝑓
󸀠󸀠

(𝑥) = 30𝑝
2
𝑥
4

+ 40𝑝
2
𝑥
3

+ 36 (−𝑝
2

+ 4𝑝 − 2) 𝑥
2

+ 12 (−2𝑝
2

+ 9𝑝 − 6) 𝑥 + 2 (4𝑝
2

+ 6𝑝 − 9) .

(29)

It follows from (21)–(23) and (29) that 𝑓
󸀠
(𝑥) is strictly

increasing on (0, 1).Then, (27) and (28) lead to the conclusion
that there exists 𝑥

0
∈ (0, 1) such that 𝑓(𝑥) is strictly

decreasing in (0, 𝑥
0
] and strictly increasing in [𝑥

0
, 1).

Therefore, part (2) follows from (24) and (25) together
with the piecewise monotonicity of 𝑓(𝑥).

For part (3), if 𝑝 = 3[
3

√2 log(2 + √3) − √3]/[(3
3

√2 −

4) log(2 + √3)] = 0.7528 ⋅ ⋅ ⋅ , then numerical computations
lead to

−𝑝
2

+ 4𝑝 − 2 = 0.444 ⋅ ⋅ ⋅ > 0, (30)

4𝑝
2

+ 6𝑝 − 9 = −2.215 ⋅ ⋅ ⋅ < 0, (31)

6 (𝑝 − 1) = −1.483 ⋅ ⋅ ⋅ < 0, (32)

𝑓 (1) = 9 (5𝑝 − 4) = −2.120 ⋅ ⋅ ⋅ < 0, (33)

𝑓 (
3

√2) = 1.669 ⋅ ⋅ ⋅ > 0. (34)

It follows from (26) and (30)–(32) that

𝑓
󸀠

(𝑥) > 6𝑝
2
𝑥
2

+ 10𝑝
2
𝑥
2

+ 12 (−𝑝
2

+ 4𝑝 − 2) 𝑥
2

+ 6 (−2𝑝
2

+ 9𝑝 − 6) 𝑥
2

+ 2 (4𝑝
2

+ 6𝑝 − 9) 𝑥
2

+ 6 (𝑝 − 1) 𝑥
2

= 12 (10𝑝 − 7) 𝑥
2

> 0

(35)

for 𝑥 ∈ (1,
3

√2).
Therefore, part (3) follows easily from (33)–(35).

Lemma 6. Let 𝑝 ∈ R and

𝑔 (𝑥) = 3 (1 − 𝑝) 𝑥
6

+ 6 (1 − 𝑝) 𝑥
5

+ (−4𝑝
2

− 6𝑝 + 9) 𝑥
4

+ 2 (2𝑝
2

− 9𝑝 + 6) 𝑥
3

+ 3 (𝑝
2

− 4𝑝 + 2) 𝑥
2

− 2𝑝
2
𝑥 − 𝑝
2
.

(36)

Then, the following statements are true.

(1) If𝑝 = 4/5, then𝑔(𝑥) < 0 for all𝑥 ∈ (0, 1) and𝑔(𝑥) > 0

for all 𝑥 ∈ (1,
3

√2).

(2) If 𝑝 = 3(3√3 −
3

√4𝜋)/[(5 − 3
3

√4)𝜋] = 0.8400 ⋅ ⋅ ⋅ , then
there exists 𝜆

3
∈ (1,

3
√2) such that 𝑔(𝑥) < 0 for 𝑥 ∈

(1, 𝜆
3
) and 𝑔(𝑥) > 0 for 𝑥 ∈ (𝜆

3
,
3

√2).

Proof. For part (1), if 𝑝 = 4/5, then (36) becomes

𝑔 (𝑥) =
1

25
(𝑥 − 1) (15𝑥

5
+ 45𝑥

4
+ 86𝑥

3
+ 90𝑥

2

+ 48 𝑥 + 16) .

(37)

Therefore, part (1) follows from (37).
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For part (2), if 𝑝 = 3(3√3 −
3

√4𝜋)/[(5 − 3
3

√4)𝜋] =

0.8400 ⋅ ⋅ ⋅ , then numerical computations lead to

−4𝑝
2

− 6𝑝 + 9 = 1.137 ⋅ ⋅ ⋅ > 0, (38)

𝑝
2

− 4𝑝 + 2 = −0.654 ⋅ ⋅ ⋅ < 0, (39)

𝑔 (1) = 9 (4 − 5𝑝) = −1.801 ⋅ ⋅ ⋅ < 0, (40)

𝑔 (
3

√2) = 1.635 ⋅ ⋅ ⋅ > 0, (41)

𝑔
󸀠

(𝑥) = 18 (1 − 𝑝) 𝑥
5

+ 30 (1 − 𝑝) 𝑥
4

+ 4 (−4𝑝
2

− 6𝑝 + 9) 𝑥
3

+ 6 (2𝑝
2

− 9𝑝 + 6) 𝑥
2

+ 6 (𝑝
2

− 4𝑝 + 2) 𝑥 − 2𝑝
2
.

(42)

From (38) and (39) together with (42), we clearly see that

𝑔
󸀠

(𝑥) > 18 (1 − 𝑝) 𝑥
2

+ 30 (1 − 𝑝) 𝑥
2

+ 4 (−4𝑝
2

− 6𝑝 + 9) 𝑥
2

+ 6 (2𝑝
2

− 9𝑝 + 6) 𝑥
2

+ 6 (𝑝
2

− 4𝑝 + 2) 𝑥
2

− 2𝑝
2
𝑥
2

= 6 (22 − 25𝑝) 𝑥
2

> 0

(43)

for 𝑥 ∈ (1,
3

√2).
Therefore, part (2) follows from (40) and (41) together

with (43).

3. Proofs of Theorems 1–4

Proof of Theorem 1. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎−𝑏)/(𝑎+𝑏), 𝜆 = V√2 − V2, 𝑥 =

6
√1 − 𝜆2,

and 𝑝 ∈ {4/5, 3/𝜋}. Then, V, 𝜆, 𝑥 ∈ (0, 1),

𝑆
𝐻𝐴 (𝑎, 𝑏) − 𝐻

1/3
(𝑎, 𝑏) 𝐴

2/3
(𝑎, 𝑏)

𝐻 (𝑎, 𝑏) /3 + 2𝐴 (𝑎, 𝑏) /3 − 𝐻1/3 (𝑎, 𝑏) 𝐴2/3 (𝑎, 𝑏)

=

𝜆/sin−1 (𝜆) − (1 − 𝜆
2
)
1/6

2/3 + (1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/6

,

(44)

𝑆
𝐻𝐴 (𝑎, 𝑏) − [𝑝 (

1

3
𝐻 (𝑎, 𝑏) +

2𝐴 (𝑎, 𝑏)

3
)

+ (1 − 𝑝) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) ]

= 𝐴 (𝑎, 𝑏) [

[

𝜆

sin−1 (𝜆)
− 𝑝 (

(1 − 𝜆
2
)
1/2

3
+

2

3
)

− (1 − 𝑝) (1 − 𝜆
2
)
1/6

]

]

= (𝐴 (𝑎, 𝑏) [𝑝 ((1−𝜆
2
)
1/2

+2)+3 (1 − 𝑝) (1 − 𝜆
2
)
1/6

])

× (3sin−1 (𝜆))
−1

𝐹 (𝑥) ,

(45)

where

𝐹 (𝑥) =
3√1 − 𝑥6

𝑝𝑥3 + 3 (1 − 𝑝) 𝑥 + 2𝑝
− sin−1 (√1 − 𝑥6) , (46)

𝐹 (0) =
3

2𝑝
−

𝜋

2
, (47)

𝐹 (1) = 0, (48)

𝐹
󸀠

(𝑥) =
3(𝑥 − 1)

2

√1 − 𝑥6[𝑝𝑥3 + 3 (1 − 𝑝) 𝑥 + 2𝑝]
2

𝑓 (𝑥) , (49)

where 𝑓(𝑥) is defined as in Lemma 5.
We divide the proof into two cases.

Case 1 (𝑝 = 4/5).Then, from Lemma 5(1) and (49), we clearly
see that 𝐹(𝑥) is strictly decreasing in (0, 1). Therefore,

𝑆
𝐻𝐴 (𝑎, 𝑏) >

4

5
[

1

3
𝐻 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏)]

+
1

5
𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(50)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows from (45) and (48) together
with the monotonicity of 𝐹(𝑥).
Case 2 (𝑝 = 3/𝜋).Then, from (47) and (49) and Lemma 5(2),
we know that

𝐹 (0) = 0 (51)

and there exists 𝜆
1

∈ (0, 1) such that 𝐹(𝑥) is strictly decreas-
ing in (0, 𝜆

1
] and strictly increasing in [𝜆

1
, 1). Therefore,

𝑆
𝐻𝐴 (𝑎, 𝑏) <

3

𝜋
[

1

3
𝐻 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏)]

+ (1 −
3

𝜋
) 𝐻
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(52)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows from (45) and (48) together
with (51) and the piecewise monotonicity of 𝐹(𝑥).

Note that

lim
𝜆→0

+

𝜆/sin−1 (𝜆) − (1 − 𝜆
2
)
1/6

2/3 + (1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/6

=
4

5
, (53)

lim
𝜆→1

−

𝜆/sin−1 (𝜆) − (1 − 𝜆
2
)
1/6

2/3 + (1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/6

=
3

𝜋
. (54)
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Therefore, Theorem 1 follows from (50) and (52)–(54)
together with the following statements.

(i) If 𝛼 > 4/5, then (44) and (53) imply that there exists
small enough 𝛿 > 0 such that 𝑆

𝐻𝐴
(𝑎, 𝑏) <

𝛼(𝐻(𝑎, 𝑏)/3+2𝐴(𝑎, 𝑏)/3) +(1−𝛼)𝐻
1/3

(𝑎, 𝑏)𝐴
2/3

(𝑎, 𝑏)

for all 𝑎 > 𝑏 > 0 with 𝑏/𝑎 ∈ (0, 𝛿).
(ii) If 𝛽 < 3/𝜋, then (44) and (54) imply that there

exists large enough 𝑀 > 1 such that 𝑆
𝐻𝐴

(𝑎, 𝑏) >

𝛽(𝐻(𝑎, 𝑏)/3+2𝐴(𝑎, 𝑏)/3)+(1−𝛽)𝐻
1/3

(𝑎, 𝑏)𝐴
2/3

(𝑎, 𝑏)

for all 𝑎 > 𝑏 > 0 with 𝑎/𝑏 ∈ (𝑀, +∞).

Proof of Theorem 2. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎−𝑏)/(𝑎+𝑏), 𝜇 = V√2 + V2, 𝑥 =

6
√1 + 𝜇2,

and𝑝 ∈ {3[
3

√2 log(2+√3)−√3]/[(3
3

√2−4) log(2+√3)], 4/5}.
Then, V ∈ (0, 1), 𝜇 ∈ (0, √3), 𝑥 ∈ (1,

3
√2),

𝑆
𝐶𝐴 (𝑎, 𝑏) − 𝐶

1/3
(𝑎, 𝑏) 𝐴

2/3
(𝑎, 𝑏)

𝐶 (𝑎, 𝑏) /3 + 2𝐴 (𝑎, 𝑏) /3 − 𝐶1/3 (𝑎, 𝑏) 𝐴2/3 (𝑎, 𝑏)

=

𝜇/sinh−1 (𝜇) − (1 + 𝜇
2
)
1/6

2/3 + (1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/6

,

(55)

𝑆
𝐶𝐴 (𝑎, 𝑏) − [𝑝 (

1

3
𝐶 (𝑎, 𝑏) +

2𝐴 (𝑎, 𝑏)

3
)

+ (1 − 𝑝) 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏) ]

= 𝐴 (𝑎, 𝑏) [

[

𝜇

sinh−1 (𝜇)
− 𝑝 (

(1 + 𝜇
2
)
1/2

3
+

2

3
)

− (1 − 𝑝) (1 + 𝜇
2
)
1/6

]

]

= (𝐴 (𝑎, 𝑏) [𝑝 ((1 + 𝜇
2
)
1/2

+2)+3 (1−𝑝) (1+𝜇
2
)
1/6

])

× (3sinh−1 (𝜇))
−1

𝐺 (𝑥) ,

(56)

where

𝐺 (𝑥) =
3√𝑥6 − 1

𝑝𝑥3 + 3 (1 − 𝑝) 𝑥 + 2𝑝
− sinh−1 (√𝑥6 − 1) , (57)

𝐺 (1) = 0, (58)

𝐺 (
3

√2) =
3√3

(4 − 3
3

√2) 𝑝 + 3
3

√2

− log (1 + √3) , (59)

𝐺
󸀠

(𝑥) = −
3(𝑥 − 1)

2

√𝑥6 − 1[𝑝𝑥3 + 3 (1 − 𝑝) 𝑥 + 2𝑝]
2

𝑓 (𝑥) , (60)

where 𝑓(𝑥) is defined as in Lemma 5.
We divide the proof into two cases.

Case 1 (𝑝 = 3[
3

√2 log(2 + √3) − √3]/[(3
3

√2 − 4) log(2 +

√3)] = 0.7528 ⋅ ⋅ ⋅ ). Then, from (59) and (60) together with
Lemma 5(3), we clearly see that there exists 𝜆

2
∈ (1,

3
√2)

such that 𝐺(𝑥) is strictly increasing in (1, 𝜆
2
] and strictly

decreasing in [𝜆
2
,
2

√3), and

𝐺 (
3

√2) = 0. (61)

Therefore,

𝑆
𝐶𝐴 (𝑎, 𝑏)

>

3 (
3

√2 log (2 + √3) − √3)

(3
3

√2 − 4) log (2 + √3)

[
1

3
𝐶 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏)]

+ (1 −

3 (
3

√2 log (2 + √3) − √3)

(3
3

√2 − 4) log (2 + √3)

)

× 𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(62)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows easily from (56) and (58)
together with (61) and the piecewise monotonicity of 𝐺(𝑥).

Case 2 (𝑝 = 4/5). Then, Lemma 5(1) and (60) lead to
the conclusion that 𝐺(𝑥) is strictly decreasing in (1,

3
√2).

Therefore,

𝑆
𝐶𝐴 (𝑎, 𝑏) <

4

5
[

1

3
𝐶 (𝑎, 𝑏) +

2

3
𝐴 (𝑎, 𝑏)]

+
1

5
𝐶
1/3

(𝑎, 𝑏) 𝐴
2/3

(𝑎, 𝑏)

(63)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows from (56) and (58) together
with the monotonicity of 𝐺(𝑥).

Note that

lim
𝜇→0

+

𝜇/sinh−1 (𝜇) − (1 + 𝜇
2
)
1/6

2/3 + (1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/6

=
4

5
, (64)

lim
𝜇→√3

−

𝜇/sinh−1 (𝜇) − (1 + 𝜇
2
)
1/6

2/3 + (1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/6

=

3 (
3

√2 log (2 + √3) − √3)

(3
3

√2 − 4) log (2 + √3)

.

(65)

Therefore, Theorem 2 follows from (55) and (62)–
(65).

Proof of Theorem 3. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎 − 𝑏)/(𝑎 + 𝑏), 𝜆 = V√2 − V2, 𝑥 =

6
√1 − 𝜆2,

and 𝑝 ∈ {4/5, 0}. Then, V, 𝜆, 𝑥 ∈ (0, 1) and (9) leads to

𝑆
𝐴𝐻 (𝑎, 𝑏) = 𝐴 (𝑎, 𝑏)

𝜆

tanh−1 (𝜆)
. (66)
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It follows from (66) that

𝑆
𝐴𝐻 (𝑎, 𝑏) − 𝐴

1/3
(𝑎, 𝑏) 𝐻

2/3
(𝑎, 𝑏)

𝐴 (𝑎, 𝑏) /3 + 2𝐻 (𝑎, 𝑏) /3 − 𝐴1/3 (𝑎, 𝑏) 𝐻2/3 (𝑎, 𝑏)

=

𝜆/tanh−1 (𝜆) − (1 − 𝜆
2
)
1/3

1/3 + 2(1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/3

,

(67)

𝑆
𝐴𝐻 (𝑎, 𝑏) − [𝑝 (

1

3
𝐴 (𝑎, 𝑏) +

2𝐻 (𝑎, 𝑏)

3
)

+ (1 − 𝑝) 𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏) ]

= 𝐴 (𝑎, 𝑏) [

[

𝜆

tanh−1 (𝜆)
− 𝑝 (

2(1 − 𝜆
2
)
1/2

3
+

1

3
)

− (1 − 𝑝) (1 − 𝜆
2
)
1/3

]

]

=

𝐴 (𝑎, 𝑏) [𝑝 (2(1 − 𝜆
2
)
1/2

+1)+3 (1−𝑝) (1−𝜆
2
)
1/3

]

3tanh−1 (𝜆)

× 𝐻 (𝑥) ,

(68)

where

𝐻 (𝑥) =
3√1 − 𝑥6

2𝑝𝑥3 + 3 (1 − 𝑝) 𝑥2 + 𝑝
− tanh−1 (√1 − 𝑥6) (69)

𝐻 (1) = 0, (70)

𝐻
󸀠

(𝑥) = −
3(1 − 𝑥)

2

𝑥√1 − 𝑥6[2𝑝𝑥3 + 3 (1 − 𝑝) 𝑥2 + 𝑝]
2

𝑔 (𝑥) , (71)

where 𝑔(𝑥) is defined as in Lemma 6.
If 𝑝 = 4/5, then Lemma 6(1) and (71) lead to the

conclusion that 𝐻(𝑥) is strictly increasing in (0, 1).Therefore,

𝑆
𝐴𝐻 (𝑎, 𝑏) <

4

5
(

1

3
𝐴 (𝑎, 𝑏) +

2𝐻 (𝑎, 𝑏)

3
)

+
1

5
𝐴
1/3

(𝑎, 𝑏) 𝐻
2/3

(𝑎, 𝑏)

(72)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows from (68) and (70) together
with the monotonicity of 𝐻(𝑥).

Note that

lim
𝜆→0

+

𝜆/tanh−1 (𝜆) − (1 − 𝜆
2
)
1/3

1/3 + 2(1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/3

=
4

5
, (73)

lim
𝜆→1

−

𝜆/tanh−1 (𝜆) − (1 − 𝜆
2
)
1/3

1/3 + 2(1 − 𝜆2)
1/2

/3 − (1 − 𝜆2)
1/3

= 0. (74)

Therefore,Theorem 3 follows from (12) and (67) together
with (72)–(74).

Proof of Theorem 4. Without loss of generality, we assume
that 𝑎 > 𝑏. Let V = (𝑎 − 𝑏)/(𝑎 + 𝑏), 𝜇 = V√2 + V2, 𝑥 =

6
√1 + 𝜇2, and 𝑝 ∈ {3(3√3 −

3
√4𝜋)/[(5 − 3

3
√4)𝜋], 4/5}. Then,

V ∈ (0, 1), 𝜇 ∈ (0, √3), and 𝑥 ∈ (1,
3

√2) and (10) leads to

𝑆
𝐴𝐶 (𝑎, 𝑏) = 𝐴 (𝑎, 𝑏)

𝜇

tan−1 (𝜇)
. (75)

It follows from (75) that

𝑆
𝐴𝐶 (𝑎, 𝑏) − 𝐴

1/3
(𝑎, 𝑏) 𝐶

2/3
(𝑎, 𝑏)

𝐴 (𝑎, 𝑏) /3 + 2𝐶 (𝑎, 𝑏) /3 − 𝐴1/3 (𝑎, 𝑏) 𝐶2/3 (𝑎, 𝑏)

=

𝜇/tan−1 (𝜇) − (1 + 𝜇
2
)
1/3

1/3 + 2(1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/3

,

(76)

𝑆
𝐴𝐶 (𝑎, 𝑏) − [𝑝 (

1

3
𝐴 (𝑎, 𝑏) +

2𝐶 (𝑎, 𝑏)

3
)

+ (1 − 𝑝) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏) ]

= 𝐴 (𝑎, 𝑏) [

[

𝜇

tan−1 (𝜇)
− 𝑝 (

2(1 + 𝜇
2
)
1/2

3
+

1

3
)

− (1 − 𝑝) (1 + 𝜇
2
)
1/3

]

]

=

𝐴 (𝑎, 𝑏) [𝑝 (2(1+𝜇
2
)
1/2

+1)+3 (1−𝑝) (1+𝜇
2
)
1/3

]

3tan−1 (𝜇)

× 𝐽 (𝑥) ,

(77)

where

𝐽 (𝑥) =
3√𝑥6 − 1

2𝑝𝑥3 + 3 (1 − 𝑝) 𝑥2 + 𝑝
− tan−1 (√𝑥6 − 1) , (78)

𝐽 (1) = 0, (79)

𝐽 (
3

√2) =
3√3

(5 − 3
3

√4) 𝑝 + 3
3

√4

−
𝜋

3
, (80)

𝐽
󸀠

(𝑥) =
3(𝑥 − 1)

2

√𝑥6 − 1[2𝑝𝑥3 + 3 (1 − 𝑝) 𝑥2 + 𝑝]
2

𝑔 (𝑥) , (81)

where 𝑔(𝑥) is defined as in Lemma 6.
We divide the proof into two cases.

Case 1 (𝑝 = 4/5). Then, (81) and Lemma 6(1) lead to
the conclusion that 𝐽(𝑥) is strictly increasing in (1,

3
√2).

Therefore,

𝑆
𝐴𝐶 (𝑎, 𝑏) >

4

5
(

1

3
𝐴 (𝑎, 𝑏) +

2𝐶 (𝑎, 𝑏)

3
)

+
1

5
𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

(82)
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for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows easily from (77) and (79)
together with the monotonicity of 𝐽(𝑥).

Case 2 (𝑝 = 3(3√3 −
3

√4𝜋)/(5 − 3
3

√4)𝜋).Then, (80) and (81)
together with Lemma 6(2) lead to the conclusion that there
exists 𝜆

3
∈ (1,

3
√2) such that 𝐽(𝑥) is strictly decreasing in

(1, 𝜆
3
] and strictly increasing in [𝜆

3
,
3

√2), and

𝐽 (
3

√2) = 0. (83)

Therefore,

𝑆
𝐴𝐶 (𝑎, 𝑏) <

3 (3√3 −
3

√4𝜋)

(5 − 3
3

√4) 𝜋

(
1

3
𝐴 (𝑎, 𝑏) +

2𝐶 (𝑎, 𝑏)

3
)

+ (1 −

3 (3√3 −
3

√4𝜋)

(5 − 3
3

√4) 𝜋

) 𝐴
1/3

(𝑎, 𝑏) 𝐶
2/3

(𝑎, 𝑏)

(84)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 follows easily from (77) and (79)
together with (83) and the piecewise monotonicity of 𝐽(𝑥).

Note that

lim
𝜇→0

+

𝜇/tan−1 (𝜇) − (1 + 𝜇
2
)
1/3

1/3 + 2(1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/3

=
4

5
, (85)

lim
𝜇→√3

−

𝜇/tan−1 (𝜇) − (1 + 𝜇
2
)
1/3

1/3 + 2(1 + 𝜇2)
1/2

/3 − (1 + 𝜇2)
1/3

=

3 (3√3 −
3

√4𝜋)

(5 − 3
3

√4) 𝜋

.

(86)

Therefore,Theorem 4 follows from (76) and (82) together
with (84)–(86).
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