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Due to its simplicity and easy implementation, partial least squares (PLS) serves as an efficient approach in large-scale industrial
process. However, like many data-based methods, PLS is quite sensitive to outliers, which is a common abnormal characteristic of
the measured process data that can significantly affect the monitoring performance of PLS. In order to develop a robust prediction
and fault detection method, this paper employs the partial robust M-regression (PRM) to deal with the outliers. Moreover, to
eliminate the useless variations for prediction, an orthogonal decomposition is performed on the measurable variables space so
as to allow the new method to serve as a powerful tool for quality-related prediction and fault detection. The proposed method is

finally applied on the Tennessee Eastman (TE) process.

1. Introduction

With the rapid development of modern science and tech-
nology, the industrial production processes become more
automated and more complicated. The result is that safety
and reliability of the complicated process become critical
issues concerned during the process design [1, 2]. Many
efforts have been done both in industry and academia. If
precise analytical model of the process is known as prior,
the well-developed model-based diagnosis approaches can
be successfully applied for online process monitoring [3-8].
However, limited to the poor understanding of the underling
process, it is quite difficult to obtain a precise model of the
process, which means that model-based techniques usually
cannot be applied in practical.

Different from model-based approaches, data-driven
techniques do not require any knowledge about the model
of the complex process. Many efficient data-driven methods
have been developed in recent years [9-13]. Due to its
simplicity and easy implementation, partial least squares [14,
15] quickly becomes one of the most popular methods. By
identifying the regression coefficient between the measurable
variables space and the prediction variables space, PLS can
be easily applied for the prediction of the quality-related

indicator [16, 17]. Besides, the successful applications of PLS
in fault detection have also been reported in many existing
literatures [9, 16, 18]. However, one drawback of PLS is that
it is very sensitive to the abnormal characteristics of the
measured process data, for example, outliers, which may be
caused by various reasons like formatting errors, hardware
failure, nonrepresentative sampling, and so forth. One single
outlier may seriously affect the performance of PLS. In statis-
tical sense, outliers are samples with extreme values that are
located far from the data majority. There are two categories of
outliers in the measurable variables space and the prediction
variables space, called high leverage points and high residual
points, respectively. To overcome the drawback of classical
PLS, many robust versions of PLS had been proposed [19-21].
Nevertheless, all these methods either suffer from nonrobust
to high leverage points or are not efficient enough. To develop
a robust and efficient method, Serneels et al. [22] proposed a
partial robust M-regression (PRM) approach which weakens
the effect of outliers by choosing a proper weighting scheme
with relative less computational load. PRM has become a
popular method and a matlab toolbox had been developed.
On the other hand, the goal of modern industrial process
is the pursuit of high quality, not just the high production.
It is extremely important to ensure high quality products to
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ArgoriTHM I: SIMPLS algorithm.

make enterprises to survive in the fierce competition of the
worldwide market. Nowadays, quality-related prediction and
diagnosis play a critical role in practical production and have
a wide range of applications [23, 24]. Therefore, it has prac-
tical significance to develop a robust data-driven, quality-
related prediction and diagnosis method which can deal with
the outliers. The main purpose of this paper is to develop
such an approach. Based on the partial robust M-regression
method, this paper first realizes a PRM-based prediction
approach. Furthermore, with an orthogonal decomposition
[16] performed on the measurable variables space, this paper
finally develops a quality-related prediction and diagnosis
method.

The rest of this paper is organized as follows. Section 2
first reviews the basic algorithm of the partial robust M-
regression and then proposes the new method. Section 3
briefly introduces the industrial benchmark of Tennessee
Eastman (TE) process. Section 4 presents the simulation
results, and we draw conclusion in Section 5.

2. Preliminaries and the New Approach

2.1. Partial Robust M-Regression. PRM is a robust version
of PLS which can weaken the effect of outliers by choosing
a proper weighting scheme. Let us first review the classical
PLS algorithm. Given measurement data matrix (measurable
variables space) X, in which N observations of # measurable
variables are recorded, and a quality variable vector y which
contains N observations of one prediction variable (a univari-
ate output is considered here), that is,

T T
X1 gl
X = : c Ran y= : c RN><1

T T @

XN IN
x;€R", yeR i=1,..,N
by projecting X and y onto the latent variables space,
T=[t, t,] e RN, )

we have the following PLS model:

X=TP ' +X=X+X, (3)
y=Tq +7=7+7 (4)
7= pX, (5)

where h is the number of latent variables and P € R™" and
g € R"" are the loading matrices of X and y, respectively.
7 is the predicted output and B € R™! is the regression
coefficient between the measurable variables space and the
prediction variables space. X and 7 are the residuals of X and
y, respectively. Algebraically, the PLS model can be calculated
by an iterative algorithm, such as NIPALS [25] or SIMPLS
[15]. We take SIMPLS for example, which can be summarized
in Algorithm 1.

As mentioned previously, there are two categories of
outliers existing in the measurable variables space and the
prediction variables space, respectively. In order to weaken
their influence, two types of weighting coeflicients are
designed in PRM, called leverage weights y;" and residual
weights y!, which are computed as follows:

. |t = med,, ()] >
Y= ,0 ], 6
vi=/ ( med (”ti —med; (T)") ©

ro_ T
v =f(%0) @)
with
=Y - tq (8)
0= med(|ri—med(rj)|), 9)
1

f(z,0) = W’ (10)

where med and med; are the median estimate and L,-
median estimate, respectively. f is the “fair” function and 6
is a tuning constant [22]. Then, the global weight v is

V=YY (1)

To solve PRM, an iterative reweighted partial least squares
algorithm will be used. In each step, the observation (x;, y;)
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and then compute y using (11);
S2: Multiply each row of X and y® by /%, then perform

S3: Calculate 7; using (8), and y using (6), (7), (11);

then continue to the next step, else go back to S2;
S5: Get T, P, g, 3 in the last step of PLS at the final iteration.

SI: Calculate y; using (7) with initial value r; = y; — med(y,), calculate y;" using (6) with ¢; replaced by x;,

PLS regression (see Algorithm 1) on the new PLS model. Divide each row of T by ~/y;

S4: If the relative difference in norm between two consecutive approximations of the regression coefficients is smaller than 10~

ALGORITHM 2: Main steps of PRM.

$3: Perform SVD on BS".

S1: Compute regression coefficient 3 using PRM algorithm (see Algorithm 2).
S2: Realize online prediction using (5).

S4: Monitor subspace X using (15) and (16).
S4: Monitor subspace X using (17) and (18).

ALGORITHM 3: Main steps of the new prediction and diagnosis approach.

will be first multiplied by \/i to (\/¥x;, /¥ y;), and then PLS
regression is performed on the reweighted model. Detailed
steps of PRM are summarized in Algorithm 2.

2.2. The Proposed Prediction and Diagnosis Approach. Based
on the algorithm of PRM (see Algorithm 2) and (5), we
can easily implement online prediction of quality-related
indicators. Next we will develop EM-PRM-based fault detec-
tion scheme. For most existing schemes, detecting all the
faults timely and accurately is the most important evaluation
criteria. However, not all the faults may cause serious damage
in practice, for example, faults that are unrelated to the
quality-related indicators are harmless to the production.
Therefore, if the nature of the fault is known in advance,
reducing fault alarm rate for the fault unrelated to the quality-
related indicators is another important evaluation criteria
[16]. Zhou et al. [26] proposed such a criteria which classifies
the faults into two categories, that is, faults effecting y and
faults having influence on y. Based on this criteria, we should
design test statistics and the corresponding threshold in
subspaces X and X, separately. Following the idea of [16], an
orthogonal decomposition algorithm is employed in our new
fault detection scheme.

First, perform singular value decomposition on matrix

T
BB
s =1[A, 0][B)
B, B, [ ’ HJ’T] (12)
] 0 0 P,
where P, € R, B, e RV A, e R' ¥ 1.
Then, construct orthogonal spaces IT,, IT;; as follows:
5 BT
Hb = Pbe >

o (13)
11 = B,Bl.

Last, project X onto the orthogonal subspaces X and X:
X = XII, = XB,P},
_ s (14)
X = X1, = XB,B;.

After obtaining X and X, we can continue to design test
statistics and threshold in the two subspaces, respectively.

Firstly, we use X; = P, x; for T* statistic for monitoring
subspace X; we have
= = -1
- (B/X"XB,\ -
2 _ T b b T
TX =X; Pb(ﬁ) Pb X (15)

and the corresponding threshold is

(N*-1) 16)
Jinr2 = mFa (LN-1),
where F, (1, N — 1) is F distribution with significance level .
If Tf? > ]th’T)zA(, a fault which affects y appeared, and else it is
fault free. N
Similarly, we use ¥ = B[x; for monitoring subspace
X and have the following T? statistic and corresponding
threshold:

_(PIX"XP,\ -
2 T b b T
T)~( = Xi Pb<ﬁ> Pb .X'i, (17)
(n-1)(N*-1)

2=—————2F n-1,N-n+1). (18
]th,TX N(N-I’l—f—l) a(n n )
If T% > ]th)T)z? , a fault which has no influence on y appeared,

and else it is fault free. We summarize the main steps of our
new method in Algorithm 3.
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F1GURE 1: The Tennessee Eastman process.

3. Description of Tennessee
Eastman Benchmark

The Tennessee Eastman process is a chemical plant simu-
lator, in which a total of 53 variables are available with 12
manipulated variables (XMV(1-12)) and 41 process variables
(XMEAS(1-41)). It is developed by Eastman Chemical Com-
pany to serve as a benchmark for research purpose and it
can be downloaded from http://brahms.scs.uiuc.edu. Figure 1
shows the schematic diagram of TE. As we can see, five
units are contained in the process: a vapor-liquid separator,
the condenser, the reactor, a product stripper, and a recycle
compressor. The process produces two products from four
reactants. An inert and a by-product are also present, making
a total of eight components, which are named as A, B, C,
D, E, E G, and H [10]. Additionally, for monitoring studies
purpose, 21 faults (IDV(1-21)) are designed in the benchmark
just as shown in Table 1. The effectiveness of the proposed
approach will be verified on the TE benchmark.

4. Simulation Results

In this section, the proposed scheme will be applied on the
TE benchmark. Two tasks are involved in the simulation,
that is, quality-related prediction and fault detection. Firstly,
we determine the input and output variables. As mentioned
earlier, there are 53 variables available and we choose 22
process measurements (XMEAS(1-22)) and 11 manipulated
variables (XMV(2-12)) as the input variables. The analyzer
for component G (XMEAS(40)) is used for the final product

TABLE 1: Predefined faults in Tennessee Eastman process.

Fault number Location

IDV(1) A/C feed ratio, B composition constant
IDV(2) B composition, A/C ration constant
IDV(3) D feed temperature

IDV(4) Reactor cooling water inlet temperature
IDV(5) Condenser cooling water inlet temperature
IDV(6) A feed loss

IDV(7) C header pressure loss-reduced availability
IDV(8) A, B, C feed composition

IDV(9) D feed temperature

IDV(10) C feed temperature

IDV (1) Reactor cooling water inlet temperature
IDV(12) Condenser cooling water inlet temperature
IDV(13) Reaction kinetics

IDV(14) Reactor cooling water valve

IDV(15) Condenser cooling water valve

IDV(16) Unknown

IDV(17) Unknown

IDV(18) Unknown

IDV(19) Unknown

IDV(20) Unknown

IDV(21) The valve fixed at steady state position

analysis; therefore, we choose it as the output variable, that is,
the quality indicator. A total of 480 samples are obtained from
normal process operation, and these samples will be used for
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FIGURE 2: Quality-related indicator prediction using PLS and PRM
with no outliers.
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FIGURE 3: Quality-related indicator prediction using PLS and PRM
with 5% outliers.

scheme design. In addition, a certain percentage of outliers
are artificially added into the normal samples. Four groups
of prediction results are completed, in which 0% outliers,
5% outliers, 10% outliers, and 15% outliers are mixed in the
normal samples, respectively. Figures 2, 3, 4, and 5 show
these results. As we can see in these figures, the classical PLS
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FIGURE 4: Quality-related indicator prediction using PLS and PRM
with 10% outliers.
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FIGURE 5: Quality-related indicator prediction using PLS and PRM
with 15% outliers.

method has an obvious prediction bias due to the existing of
outliers, especially in Figure 5. In contrast, the PRM-based
method provides a more accurate prediction result. These
results explain the nonrobust nature of PLS and verify the
robustness of PRM.
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FIGURE 6: Fault detection using PRM-based monitoring method.

Next, we apply the PRM-based method for quality-
related fault detection. As explained previously, in the sense
of quality-related classification of faults, the PRM-based
method should distinguish whether a fault affects the pre-
dicted output or not. To illustrate this, we detect the faults
IDV(4), IDV(5), IDV(8), and IDV(18) using the PRM-based
fault detection method. Both the statistical results in the
orthogonal subspaces X and X are shown in Figures 6(a)-
6(d), represented by “T2h” and “T2t”, respectively. According
to [16], we know that X and y are completely unrelated. Seen
from Figures 6(a)-6(d), the faults that affect the predicted
output and have no effect on the predicted output are clearly
distinguished. For example, in Figure 6(b), although both
subspaces X and X have a fault during 160's and 350, the
fault in subspace X disappears after 350s. In Figure 6(d),
during 250s and 400s there is a fault in subspace X but
there is no fault in subspace X. In Figures 6(a) and 6(c),
both subspaces X and X have a fault or not, synchronously.

By summarizing these experiments we are able to come to a
conclusion that all these simulation results demonstrate the
effectiveness of the proposed new approach.

5. Conclusion

Aiming to solve the nonrobustness of PLS against miss-
ing values and outliers, this paper presents an PRM-based
quality-related prediction and fault detection scheme. Based
on the partial robust M-regression approach, a prediction
method is first implemented. Following the idea of orthogo-
nal projection, different test statistics are designed in the two
orthogonal subspaces, respectively. Thereby, quality-related
fault detection is realized, in which faults that affect or do not
affect the quality indicator are distinguished, so that the false
alarm rate for the fault unrelated to the quality indicator will
be reduced. The effectiveness of the new approach is finally
demonstrated on the benchmark of Tennessee Eastman
process.



Abstract and Applied Analysis

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The research leading to these results has received funding
from the Polish-Norwegian Research Program operated by
the National Centre for Research and 24 Development under
the Norwegian Financial Mechanism 2009-2014 in the frame
of Project Contract no. Pol-Nor/200957/47/2013.

References

(1]
(2]
(3]

(4]

(10]

L. H. Chiang, R. D. Braatz, and E. Russell, Fault Detection and
Diagnosis in Industrial Systems, Springer, 2001.

R. J. Patton and P. M. Frank, Issues of Fault Diagnosis for
Dynamic Systems, Springer, 2000.

S. X. Ding, Model-Based Fault Diagnosis Techniques: Design
Schemes, Algorithms, and Tools, Springer, 2008.

7. Gao, T. Breikin, and H. Wang, “Reliable observer-based
control against sensor failures for systems with time delays in
both state and input,” IEEE Transactions on Systems, Man, and
Cybernetics Part A: Systems and Humans, vol. 38, no. 5, pp. 1018-
1029, 2008.

D. Du, B. Jiang, and P. Shi, “Sensor fault estimation and
compensation for time-delay switched systems,” International
Journal of Systems Science. Principles and Applications of Systems
and Integration, vol. 43, no. 4, pp. 629-640, 2012.

H. Dong, Z. Wang, and H. Gao, “Fault detection for Markovian
jump systems with sensor saturations and randomly varying
nonlinearities,” IEEE Transactions on Circuits and Systems. L.
Regular Papers, vol. 59, no. 10, pp. 2354-2362, 2012.

D. Du, B. Jiang, P. Shi, and H. R. Karimi, “Fault detection for
continuoustime switched systems under asynchronous switch-
ing,” International Journal of Robust and Nonlinear Control,
2013.

H. Zhang, X. Zhang, and J. Wang, “Robust gain-scheduling
energy-topeak control of vehicle lateral dynamics stabilisation,”
Vehicle System Dynamics, pp. 1-32, 2014.

S. Yin, S. Ding, A. Haghani, H. Hao, and P. Zhang, “A com-
parison study of basic data-driven fault diagnosis and process
monitoring methods on the benchmark tennessee eastman
process,” Journal of Process Control, vol. 22, no. 9, pp. 1567-1581,
2012.

S. X. Ding, P. Zhang, A. Naik, E. L. Ding, and B. Huang,
“Subspace method aided data-driven design of fault detection
and isolation systems,” Journal of Process Control, vol. 19, no. 9,
pp. 1496-1510, 2009.

J. Dong, M. Verhaegen, and F. Gustafsson, “Robust fault
detection with statistical uncertainty in identified parameters,’
IEEE Transactions on Signal Processing, vol. 60, no. 10, pp. 5064—
5076, 2012.

S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven
monitoring for stochastic systems and its application on batch
process,” International Journal of Systems Science. Principles and
Applications of Systems and Integration, vol. 44, no. 7, pp. 1366
1376, 2013.

S. X. Ding, P. Zhang, S. Yin, and E. L. Ding, “An integrated
design framework of fault-tolerant wireless networked control

(18]

(21]

(22]

systems for industrial automatic control applications;,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 462-471,
2013.

P. Geladi and B. R. Kowalski, “Partial least-squares regression: a
tutorial,” Analytica Chimica Acta, vol. 185, pp. 1-17, 1986.

S. De Jong, “SIMPLS: an alternative approach to partial least
squares regression,” Chemometrics and Intelligent Laboratory
Systems, vol. 18, no. 3, pp. 251-253,1993.

S. Yin, S. X. Ding, P. Zhang, A. Hagahni, and A. Naik, “Study
on modifications of pls approach for process monitoring,
Threshold, vol. 2, article 4, 2011.

S. Yin and G. Wang, “A modified partial robust m-regression
to improve prediction performance for data with outliers,” in
Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE ’13), pp. 1-6, 2013.

S.Yin, Z. Wei, H. Gao, and K. Peng, “Data-driven quality related
prediction and monitoring,” in Proceedings of the 38th Annual
Conference on IEEE Industrial Electronics Society (IECON ’12),
pp. 3874-3879, 2012.

I. Wakelinc and H. Macfie, “A robust pls procedure;” Journal of
Chemometrics, vol. 6, no. 4, pp. 189-198, 1992.

D. J. Cummins and C. W. Andrews, “Iteratively reweighted
partial least squares: a performance analysis by monte carlo
simulation,” Journal of Chemometrics, vol. 9, no. 6, pp. 489-507,
1995.

M. Hubert and K. Vanden Branden, “Robust methods for partial
least squares regression,” Journal of Chemometrics, vol. 17, no. 10,
pp. 537-549, 2003.

S. Serneels, C. Croux, P. Filzmoser, and P. J. Van Espen, “Partial
robust M-regression,” Chemometrics and Intelligent Laboratory
Systems, vol. 79, no. 1-2, pp. 55-64, 2005.

C. Gao, L. Jian, and S. Luo, “Modeling of the thermal state
change of blast furnace hearth with support vector machines;”
IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp.
1134-1145, 2012.

D. Wang, “Robust data-driven modeling approach for real-time
final product quality prediction in batch process operation,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 371-
377, 2011.

B. Dayal and J. E Macgregor, “Improved pls algorithms,” Journal
of Chemometrics, vol. 11, no. 1, pp. 73-85, 1997.

D. Zhou, G. Li, and S. J. Qin, “Total projection to latent
structures for process monitoring,” AIChE Journal, vol. 56, no.
1, pp. 168-178, 2010.



