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This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions
of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are
described based on 𝑞-calculus and Caputo fractional derivatives on any order.

1. Introduction

There are abundant background results concerning the
exact and approximate solutions of fractional differential
equations [1–4], fractional derivatives involving products
of polynomials [5, 6], fractional derivatives and fractional
powers of operators [7–9], and boundary value problems
concerning fractional calculus in a theoretical context and
also concerning awide range of applications like, for instance,
control theory, robotics, signal processing, heat transfer,
lossless transmission lines, and so forth [1–22]. In particular,
some generalized operators of fractional integration have
been recently applied to the product of generalized Bessel
functions of the first class in [6] leading to multivariable
generalized Lauricella-type functions. Furthermore, related
generalized fractional integrals are also discussed in that
paper. On the other hand, new unified integral formulas
involving products of Srivastava-type polynomials and the
𝐻-function as well as fractional integration for Appell’s
functions are discussed in [23, 24].

This paper is concerned with the investigation of nonneg-
ative solutions of fractional 𝑞-differential dynamic systems
with point delays and some related asymptotic properties
formulated by the Caputo fractional derivative. See, for
instance, [25–31] for formulations of functional dynamic
systems under delays. Some of these papers are concerned
with fundamental properties of positive dynamic systems

or with the nonnegative solutions of dynamic systems in a
fractional context. See, for instance, [32–34]. On the other
hand, see [13–22, 32–39] for a background on quantum and
fractional calculus and some related applications to dynamic
systems.

The Caputo 𝑞-difference scheme has been proposed in
[40] and then the problems of initial values are investigated in
[41, 42]. In particular, a Caputo-type 𝑞-fractional initial value
problem is solved in [41] with the solution being formulated
in terms of a new 𝑞-Mittag-Leffler function. On the other
hand, the related investigation in [42] is focused on analytical
aspects of 𝑞-fractional calculus while the variational iteration
method is extended “ad hoc” to 𝑞-fractional calculus in order
to solve the Caputo 𝑞-fractional initial value problem. There
is also a recent monograph [43] available on the fractional
𝑞-difference methodology which is of potential interest for
readers interested in quantum fractional calculus. Also, it has
to be pointed out that an increasing research interest is being
devoted to the use of fractional calculus in the analysis of
mathematical models based on partial differential equations.
In particular, the fractal heat conduction problem is solved
by proposing a local fractional variation iteration method
in [44]. On the other hand, the solutions of the Helmholtz
equation involving local fractional derivative operators are
investigated in [45] combined with series expansion and
variational iteration methods.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 247375, 19 pages
http://dx.doi.org/10.1155/2014/247375

http://dx.doi.org/10.1155/2014/247375


2 Abstract and Applied Analysis

It might be pointed out that positive dynamic models are
an essential tool to describe some real world applications as,
for instance, medical, biological, or epidemic models. It has
to be pointed out that a major advantage of the use of 𝑞-
calculus is that it does not need the existence of limits or
restrictive regularity conditions on the functions dealt with
in order to establish the formulation. In particular, derivatives
and higher-order derivatives of a wide class of functions exist
almost everywhere under the 𝑞-calculus framework [37].
In this context, the 𝑞-calculus formalism on differ-integral
systems is close to the classical one on difference systems
with the additional advantage that the parameter running the
samples can be chosen to be real so that it links the selection
of the sampling points in a multiplicative fashion. Such
sampling points are backward-in-time dependent on each
time instant for which the 𝑞-fractional solution is evaluated
while asymptotically vanishing to zero as the number of used
samples increases to infinity for each given time instantwhere
the quantum fractional solution is being computed.

1.1. Notation. Z, R, and C are the sets of integer, real, and
complex numbers,Z

+
andR

+
are the positive integer and real

numbers, and
N ≡ Z

0+
:= Z

+
∪ {0} ; R

0+
:= R

+
∪ {0} ;

C
+
:= {𝑧 ∈ C : Re 𝑧 > 0} ; C

0+
:= {𝑧 ∈ C : Re 𝑧 ≥ 0} ,

𝑛 := {1, 2, . . . , 𝑛} .

(1)
The following notation is used to characterize different levels
of positivity of matrices.

R𝑛×𝑚

0+
:= {𝑀 = (𝑚

𝑖𝑗
) ∈ R𝑛×𝑚

: 𝑚
𝑖𝑗
≥ 0; for all (𝑖, 𝑗) ∈

𝑛 × 𝑚} is the set of all 𝑛 × 𝑚 real matrices of nonnegative
entries. If𝑀 ∈ R𝑛×𝑚 then𝑀 ≥ 0 is used as a simpler notation
for𝑀 ∈ R𝑛×𝑚

0+
.

R𝑛×𝑚

+
:= {0 ̸=𝑀 = (𝑚

𝑖𝑗
) ∈ R𝑛×𝑚

: 𝑚
𝑖𝑗
≥ 0; for all (𝑖, 𝑗) ∈

𝑛 × 𝑚} is the set of all nonzero 𝑛 × 𝑚 real matrices of
nonnegative entries (i.e., those with at least one of their
entries being positive). If𝑀 ∈ R𝑛×𝑚 then𝑀 > 0 is used as a
simpler notation for𝑀 ∈ R𝑛×𝑚

+
.

R𝑛×𝑚

++
:= {𝑀 = (𝑀

𝑖𝑗
) ∈ R𝑛×𝑚

: 𝑀
𝑖𝑗
> 0; for all (𝑖, 𝑗) ∈

𝑛 × 𝑚} is the set of all 𝑛 × 𝑚 real matrices of positive entries.
If𝑀 ∈ R𝑛×𝑚 then𝑀 ≫ 0 is used as a simpler notation for
𝑀 ∈ R𝑛×𝑚

++
. The superscript 𝑇 denotes the transpose and𝑀𝑇

𝑖

and𝑀
𝑗
are, respectively, the 𝑖th row and the jth column of the

matrix𝑀.
A close notation to characterize the positivity of vectors

is the following.
R𝑛

0+
:= {V = (V

1
, V

2
, . . . , V

𝑛
)
𝑇

∈ R𝑛
: V

𝑖
≥ 0; for all 𝑖 ∈ 𝑛}

is the set of all 𝑛 real vectors of nonnegative components. If
V ∈ R𝑛 then V ≥ 0 is used as a simpler notation for V ∈ R𝑛

0+
.

R𝑛

+
:= {0 ̸= V = (V

1
, V

2
, . . . , V

𝑛
)
𝑇

∈ R𝑛
: V

𝑖
≥ 0; for all 𝑖 ∈

𝑛} is the set of all 𝑛 real nonzero vectors of nonnegative
components (i.e., at least one component is positive). If V ∈ R𝑛

then V > 0 is used as a simpler notation for V ∈ R𝑛

+
.

R𝑛

++
:= {V = (V

1
, V

2
, . . . , V

𝑛
)
𝑇

∈ R𝑛
: V

𝑖
> 0; for all 𝑖 ∈ 𝑛} is

the set of all 𝑛 real vectors of positive components. If V ∈ R𝑛

then V ≫ 0 is used as a simpler notation for V ∈ R𝑛

++
.

𝑀 = (𝑀
𝑖𝑗
) ∈ R𝑛×𝑛 is a Metzler matrix if 𝑀

𝑖𝑗
≥

0; for all (𝑖, 𝑗 ̸= 𝑖) ∈ 𝑛×𝑛.𝑀R𝑛×𝑛 is the set ofMetzler matrices
of order 𝑛.

The maximum real eigenvalue, if any, of a real matrix𝑀,
is denoted by 𝜆max(𝑀).
𝑥 ≥ 𝑦, 𝑥 > 𝑦, and 𝑥 ≫ 𝑦 mean, respectively, 𝑥 − 𝑦 ≥ 0,

𝑥 − 𝑦 > 0, and 𝑥 − 𝑦 ≫ 0 for 𝑥, 𝑦 being any real scalars,
vectors, or matrices of compatible dimensions or orders.

The following fundamental result of [32] is concerned
with the unique left-sided solution on R

0+
of the differential

fractional system (36).

Theorem 1. Consider the Caputo fractional differential system
of order 𝛼 with 𝑝 ≥ 0 (potentially repeated) delays and 0 ≤ 𝑞 ≤
𝑝 distinct delays:

(
𝐶

𝐷
𝛼

𝑎+
𝑥) (𝑡)

:=
1

Γ (𝑘 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑘−𝛼−1

(𝑥
(𝑘)

(𝜏)) 𝑑𝜏

=

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡 − ℎ

𝑖
) + 𝐵𝑢 (𝑡) ; 𝑡 ∈ [𝑎, 𝑏]

(2)

on R
0+
, for any 𝛼 ∈ C

0+
with 𝑘 = [Re𝛼] + 1 if 𝛼 ∉ Z

+

and 𝑘 = 𝛼 if 𝛼 ∈ Z
+
; 𝑘 − 1, 𝑘 ∈ Z

0+
, 0 = ℎ

0
< ℎ

1
<

ℎ
2
< ⋅ ⋅ ⋅ < ℎ

𝑝
= ℎ < ∞ are distinct constant delays,

𝐴
0
, 𝐴

𝑖
∈ R𝑛×𝑛

(𝑖 ∈ 𝑝 := {1, 2, . . . , 𝑝}), are the matrices of
dynamics for each delay ℎ

𝑖
, 𝑖 ∈ 𝑝∪ {0}, 𝐵 ∈ R𝑛×𝑚 is the control

matrix andwith initial condition of the state being given by 𝑘 𝑛-
real vector functions 𝜑

𝑗
: [−ℎ, 0] → R𝑛, with 𝑗 ∈ 𝑘 − 1 ∪ {0},

which are absolutely continuous except eventually in a set of
zero measure of [−ℎ, 0] ⊂ R of bounded discontinuities with
𝜑
𝑗
(0) = 𝑥

𝑗
(0) = 𝑥

(𝑗)
(0) = 𝑥

𝑗0
𝑗 ∈ 𝑘 − 1 ∪ {0} and 𝑢 : R

0+
→

R𝑚 is a bounded piecewise continuous control function. Then,
the unique left-sided solution of (2) is given by

𝑥 (𝑡) =

𝑘−1

∑

𝑗=0

(Φ
𝛼𝑗0
(𝜏) 𝑥

𝑗0

+

𝑝

∑

𝑖=1

∫

ℎ𝑖

0

Φ
𝛼
(𝑡 − 𝜏)𝐴

𝑖
𝜑
𝑗
(𝜏 − ℎ

𝑖
) 𝑑𝜏)

+

𝑝

∑

𝑖=1

∫

𝑡

ℎ𝑖

Φ
𝛼
(𝑡 − 𝜏)𝐴

𝑖
𝑥 (𝜏 − ℎ

𝑖
) 𝑑𝜏

+ ∫

𝑡

0

Φ
𝛼
(𝑡 − 𝜏) 𝐵𝑢 (𝜏) 𝑑𝜏; 𝑡 ∈ R

0+

(3)

with 𝑘 = [Re𝛼] + 1 if 𝛼 ∉ Z
+
and 𝑘 = 𝛼 if 𝛼 ∈ Z

+
, where

Φ
𝛼𝑗0
(𝑡) := 𝑡

𝑗

𝐸
𝛼,𝑗+1
(𝐴

0
𝑡
𝛼

) ;

Φ
𝛼
(𝑡) := 𝑡

𝛼−1

𝐸
𝛼,𝛼
(𝐴

0
𝑡
𝛼

) ,

𝐸
𝛼,𝑗
(𝐴

0
𝑡
𝛼

) :=

∞

∑

ℓ=0

(𝐴
0
𝑡
𝛼
)
ℓ

Γ (𝛼ℓ + 𝑗)
; 𝑗 ∈ 𝑘 − 1 ∪ {0, 𝛼}

(4)
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for 𝑡 ≥ 0 and Φ
𝛼0
(𝑡) = Φ

𝛼
(𝑡) = 0 for 𝑡 < 0, where 𝐸

𝛼,𝑗
(𝐴

0
𝑡
𝛼
)

are the Mittag-Leffler functions.

If 𝑞-calculus is used then the integral formulas of
Theorem 1 are not necessary to calculate the fractional
Caputo-type solutions of any order as shown in the subse-
quent example.

Example 2. Consider the differential equation 𝑥̇(𝑡) = 𝑎𝑥(𝑡),
𝑥(0) = 𝑥

0
. The standard solution for any real 𝑞 ∈ (0, 1)

and 𝑡 ≥ 0 is 𝑥(𝑡) = 𝑒𝑎(1−𝑞)𝑡𝑥(𝑞𝑡). It is globally stable (resp.,
globally asymptotically stable) for 𝑎 ≤ 0 (resp., for 𝑎 < 0) and
nonnegative for any 𝑎 ∈ R if 𝑥(0) ≥ 0.

Theuse of 𝑞-calculus for𝐷
𝑞
𝑥(𝑡) := (𝑥(𝑡)−𝑥(𝑞𝑡))/(1−𝑞)𝑡 =

𝑎𝑥(𝑡) yields

𝑥 (𝑡) = 𝑥 (𝑞𝑡) + (1 − 𝑞) 𝑎𝑡𝑥 (𝑡) ; (5)

then, the solution becomes

𝑥 (𝑡) =
𝑥 (𝑞𝑡)

1 − (1 − 𝑞) 𝑎𝑡
. (6)

(a) If 𝑎 > 0 then it is positive if 𝑥(0) ≥ 0 and 0 ≤
𝑡 < 1/[(1 − 𝑞)𝑎] but any 𝑞-solution is unbounded if
𝑥(0) ̸= 0 and |𝑥(𝑡)/𝑥(𝑞𝑡)| > 1 if 0 ≤ 𝑡 < 1/[(1 − 𝑞)𝑎]
and |𝑥(𝑡)/𝑥(𝑞𝑡)| = +∞ if 𝑡 = 1/[(1 − 𝑞)𝑎].

(b) If 𝑎 = 0 then 𝑥(𝑡) = 𝑥(0) so that the 𝑞-solution is
constant, globally stable, and nonnegative if 𝑥(0) ≥ 0.

(c) If 𝑎 < 0 then 𝑥(𝑡) = 𝑥(𝑞𝑡)/(1 + (1 − 𝑞)|𝑎|𝑡) ≤ 𝑥(𝑞𝑡) ≤
𝑥(0); 𝑡 ≥ 0 with the first inequality being obvious
and the second one being proved by contradiction.
Assume that the second inequality is false.Then, there
is 𝑡 > 0, so that there is 𝑞𝑡 > 0, such that for any 𝑛 ∈ N,
the subsequent contradiction is got:

𝑥 (0) < 𝑥 (𝑞𝑡)

= (1 + (1 − 𝑞) |𝑎| 𝑡) 𝑥 (𝑡) ≤ 𝑥 (𝑞
2

𝑡)

= (1 + (1 − 𝑞) |𝑎| 𝑞𝑡) 𝑥 (𝑞𝑡)

≤ ⋅ ⋅ ⋅ ≤ (1 + (1 − 𝑞) |𝑎| 𝑞
𝑛

𝑡) 𝑥 (𝑞
𝑛+1

𝑡)

≤ lim sup
𝑛→+∞

(1 + (1 − 𝑞) |𝑎| 𝑞
𝑛

𝑡) 𝑥 (𝑞
𝑛+1

𝑡)

= lim
𝑛→+∞

(1 + (1 − 𝑞) |𝑎| 𝑞
𝑛

𝑡) 𝑥 (𝑞
𝑛+1

𝑡) = 𝑥 (0) .

(7)

Since 𝑥(𝑡) is bounded for 𝑡 ≥ 0 for any given 𝑥(0) then
lim

𝑡→∞
𝑥(𝑡) = 0. Therefore, for 𝑎 < 0 the 𝑞-differential

equationhas a nonnegative 𝑞-solution onR
0+
for any𝑥(0) ≥ 0

and it is globally asymptotically stable. On the other hand,
the Caputo fractional solution of real order 𝛼 of the associate
fractional differential equation is

𝑥
(𝛼)

(𝑡) =
𝑑𝑥

(𝛼)

(𝑡)

𝑑𝑡𝛼
= 𝑎𝑥 (𝑡) , 𝑥 (0) = 𝑥

0
, 𝑡 ≥ 0. (8)

The formulation within the 𝑞-calculus framework leads to

𝑥
(𝛼−1)

(𝑡) = 𝑥
(𝛼−1)

(0) + ∫

𝑡

0

𝑎𝑥 (𝜏
1
) 𝑑𝜏

1
,

𝑥
(𝛼−2)

(𝑡) = 𝑥
(𝛼−2)

(0) + 𝑡𝑥
(𝛼−1)

(0)

+ ∫

𝑡

0

∫

𝜏1

0

𝑎𝑥 (𝜏
2
) 𝑑𝜏

2
𝑑𝜏

1
,

...

𝑥
(𝛼−𝑗)

(𝑡) =

𝑗

∑

𝑖=1

𝑡
𝑗−𝑖

𝑥
(𝑗−𝑖)

(0)

+ 𝑎∫

𝑡

0

∫

𝜏𝑗−1

0

⋅ ⋅ ⋅ ∫

𝜏1

0

𝑥 (𝜏
𝑗
) 𝑑𝜏 𝑑𝜏

2
𝑑𝜏

1
,

...

𝑥 (𝑡) ≡ 𝑥
(0)

(𝑡) =

𝑘

∑

𝑖=1

𝑡
𝛼−𝑖

𝑥
(𝛼−𝑖)

(0)

+ 𝑎∫

𝑡

0

∫

𝜏𝑘−1

0

⋅ ⋅ ⋅ ∫

𝜏1

0

𝑥 (𝜏
𝑘
) 𝑑𝜏 𝑑𝜏

2
𝑑𝜏

1
.

(9)

Note that the solution is positive for any order 𝛼 = 𝑘 if 𝑎 ≥ 0
and 𝑥(𝑖)(0) ≥ 0 for 𝑖 = 1, 2, . . . , 𝑘 and 𝑥(0)(0) = 𝑥(0) = 𝑥

0
.

Assume that, for 𝑎 < 0, there is some 𝑡 > 0 such that 𝑥(𝑡) = 0
and 𝑥

𝑘−1
(𝜏) < 0 for 𝜏 ∈ (𝑡, 𝑡 + 𝑇) and some 𝑇 > 0 since

it follows from continuity arguments that if it is negative at a
point it is also negative on some interval containing the point.
Then, the following contradiction arises:

0 > 𝑥 (𝑡 + 𝑇)

=

𝛼

∑

𝑖=1

𝑇
𝑘−𝑖

𝑥
(𝑖)

(𝑡)

+ |𝑎| ∫

𝑇

0

∫

𝜏𝑘−1

0

⋅ ⋅ ⋅ ∫

𝜏1

0

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑘 + 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜏 𝑑𝜏2 𝑑𝜏1

≥ |𝑎| ∫

𝑇

0

∫

𝜏𝛼−1

0

. . . ∫

𝜏1

0

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑘 + 𝑡)
󵄨󵄨󵄨󵄨 𝑑𝜏 𝑑𝜏2 𝑑𝜏1 > 0

(10)

so that any Caputo fractional solution of any real order 𝛼
is nonnegative for 𝑡 ≥ 0 and any given initial conditions
𝑥
(𝑖)
(0) ≥ 0 for 𝑖 = 0, 1, . . . , 𝑘 − 1. Since any solution is

nonnegative for any nonnegative initial conditions, then if
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𝑎 < 0, one gets for the case of interest 𝑥(𝑖)(0) = 0 for
𝑖 = 1, 2, . . . , 𝑘

0 ≤ 𝑥 (𝑡)

=

𝑘

∑

𝑖=1

𝑡
𝑘−𝑖

𝑥
(𝑘−𝑖)

(0)

− |𝑎| ∫

𝑡

0

∫

𝜏𝑘−1

0

. . . ∫

𝜏1

0

𝑥 (𝜏
𝑘
) 𝑑𝜏 𝑑𝜏

2
𝑑𝜏

1

= 𝑥 (0) − |𝑎| ∫

𝑡

0

∫

𝜏𝑘−1

0

. . . ∫

𝜏1

0

𝑥 (𝜏
𝑘
) 𝑑𝜏 𝑑𝜏

2
𝑑𝜏

1

󳨐⇒ lim
𝑡→∞

𝑥 (𝑡) = 0

(11)

and then global (resp., global asymptotic) stability holds for
𝑎 ≤ 0 (resp., for 𝑎 < 0) while the solutions are nonnegative
for any nonnegative initial conditions and any real 𝑎. These
stability properties are independent of the nonnegativity of
the solutions since if 𝑥(0) < 0 then by continuity of the
solutions 𝑥(𝑡) < 0 in some interval [0, 𝑡

𝑒
) so that

𝑥 (𝑡) = − |𝑥 (0)| + |𝑎| ∫

𝑡

0

∫

𝜏𝑘−1

0

. . . ∫

𝜏1

0

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑘)
󵄨󵄨󵄨󵄨 𝑑𝜏 𝑑𝜏2 𝑑𝜏1;

𝑡 ∈ [0, 𝑡
𝑒
)

(12)

and 𝑡
𝑒
= 𝑡

𝑒
(𝑥

0
) is large enough, since 𝑟(𝑡) =

∫
𝑡

0
∫
𝜏𝑘−1

0
. . . ∫

𝜏1

0
|𝑥(𝜏

𝑘
)|𝑑𝜏 𝑑𝜏

2
𝑑𝜏

1
is strictly increasing since it

possesses a nonnegative integrand, so that there is 𝑡∗ ∈ [0, 𝑡
𝑒
)

such that 𝑥(𝑡∗) = 0 and then 𝑥(𝑡) = 0; for all 𝑡 ≥ 𝑡∗, that
is, the solution reaches the zero-equilibrium in finite time
and global asymptotic stability is guaranteed. To evaluate the
error between the 𝑞-calculus solution and the standard one,
denote them, respectively, as 𝑥(𝑡) = 𝑥∗(𝑡) + 𝑒(𝑡) and 𝑥∗(𝑡)
and then define the extended vector V(𝑡) = (𝑥∗(𝑡), 𝑒(𝑡))𝑇. The
substitution of both solutions yields

V (𝑡) = [[

[

𝑒
𝑎(1−𝑞)𝑡

0

(1 − 𝑞) 𝑎𝑡

1 − (1 − 𝑞) 𝑎𝑡

1

1 − (1 − 𝑞) 𝑎𝑡

]
]

]

V (𝑞𝑡) ; ∀𝑡 ∈ R
0+
.

(13)

Note that for 𝑎 ̸= 0, the first eigenvalue of the matrix of
dynamics tends to +∞ if 𝑎 > 0 and to zero if 𝑎 < 0 while the
second one converges to zero as 𝑡 → ∞ in both cases. Thus,
the error between both solutions converges asymptotically to
zero if 𝑎 ̸= 0. If 𝑎 = 0 then V(𝑡) = V(𝑞𝑡), for all 𝑡 ∈ R

0+
.

2. Preliminaries on Fractional
𝑞-Differential Systems

Fundamental definitions of 𝑞-calculus are [35–38]

[𝑎]
𝑞
=
1 − 𝑞

𝑛

1 − 𝑞
, 𝑎 ∈ R, 𝑞 ∈ (0, 1) . (14)

The 𝑞-power function is

(𝑎 − 𝑏)
(0)

= 1, (𝑎 − 𝑏)
(𝑧)

= 𝑎
𝑧

∞

∏

𝑘=0

[
𝑎 − 𝑏𝑞

𝑘

𝑎 − 𝑏𝑞𝑧+𝑘
] ,

𝑧 (∈ R) ̸= 0; 𝑎, 𝑏 ∈ R.

(15)

If 𝑧 ∈ Z
+
then the 𝑞-power function is

(𝑎 − 𝑏)
(0)

= 1, (𝑎 − 𝑏)
(𝑧)

=

𝑧−1

∏

𝑘=0

[𝑎 − 𝑏𝑞
𝑘

] (16)

leading, in particular, to (𝑎 − 𝑏)(1) = ∏0

𝑘=0
[𝑎 − 𝑏𝑞

𝑘
] = 𝑎 −

𝑏. Formula (16) is the 𝑞-analog of the Pochhammer symbol
(𝑞-shifted factorial) [36]. The 𝑞-derivative of a function 𝑓 is
defined by

(𝐷
𝑞
𝑓) (𝑧) =

𝑓 (𝑞𝑧) − 𝑓 (𝑧)

(𝑞 − 1) 𝑧
,

(𝐷
𝑞
𝑓) (0) = lim

𝑧→0

(𝐷
𝑞
𝑓) (𝑧)

(17)

[35, 36] and the 𝑞-derivative of high 𝑛-order of a function 𝑓
is defined by (𝐷0

𝑞
𝑓)(𝑧) = 𝑓(𝑧) and

(𝐷
𝑛

𝑞
𝑓) (𝑧) = 𝐷

𝑞
(𝐷

𝑛−1

𝑞
𝑓) (𝑧) , 𝑛 ∈ Z

0+
. (18)

Lemma 3. The following properties hold.

(i) The commutation property 𝐷
𝑗

𝑞
(𝐷

𝑘

𝑞
𝑓)(𝑧) =

𝐷
𝑘

𝑞
(𝐷

𝑗

𝑞
𝑓)(𝑧); 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 ∈ Z

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞 ∈ (0, 1)

holds for any real 𝑧 ̸= 0.
(ii) The commutation property 𝐷

𝑗

𝑞
(𝐷

𝑘

𝑞
𝑓)(𝑧) =

𝐷
𝑘

𝑞
(𝐷

𝑗

𝑞
𝑓)(𝑧);𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 ∈ Z

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞 ∈ (0, 1)

holds for 𝑧 = 0 for any 𝑗,𝑘, 𝑛 ∈ Z
0+
, such that

𝑛 = 𝑗 + 𝑘, provided that (𝐷𝑖

𝑞
𝑓)(0) exists for any

𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}.
(iii) (𝐷𝑛

𝑞
(𝑓 + 𝑔))(𝑧) = (𝐷

𝑛

𝑞
𝑓)(𝑧) + (𝐷

𝑛

𝑞
𝑔)(𝑧) or any real

𝑧 ̸= 0, and also for 𝑧 = 0 if (𝐷𝑖

𝑞
𝑓)(0) exists for any

𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}.
(iv)

(𝐷
𝑛

𝑞
𝑓) (𝑧) =

1

(1 − 𝑞)
𝑛

𝑧𝑛

𝑛

∑

𝑗=0

(−1)
𝑗

(
𝑛

𝑗
)𝑓 (𝑞

𝑗

𝑧) ; (19)

for all 𝑛 ∈ Z
0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑞 ∈ (0, 1) holds for any real

𝑧 ̸= 0 and also for 𝑧 = 0 if

(𝐷
𝑛

𝑞
𝑓) (0) =

1

(1 − 𝑞)
𝑛
lim
𝑧→0

(

𝑛

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)
𝑓 (𝑞

𝑗
𝑧)

𝑧𝑛
) (20)

exist for all 𝑛 ∈ Z
0+
.

Proof. First, note that for 𝑧 ̸= 0 the identity (𝐷𝑛

𝑞
𝑓)(𝑧) =

𝐷
𝑞
(𝐷

𝑛−1

𝑞
𝑓)(𝑧) always holds for 𝑛 ∈ Z

0+
, with (𝐷0

𝑞
𝑓)(𝑧) =
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𝑓(𝑧), which ensures the existence of (𝐷𝑛

𝑞
𝑓)(𝑧) for 𝑛 ∈ Z

0+
and

𝑧 ̸= 0. Proceed now by complete induction and assume that,
for some given 𝑘 ∈ Z

0+
, the commutation property below

holds for the existing (𝐷𝑛

𝑞
𝑓)(𝑧) for any real 𝑧 ̸= 0:

(𝐷
𝑛

𝑞
𝑓) (𝑧) = 𝐷

𝑛−1

𝑞
(𝐷

𝑞
𝑓) (𝑧) = 𝐷

𝑞
(𝐷

𝑛−1

𝑞
𝑓) (𝑧) . (21)

Then, by using the commutation property of the operator
(𝐷

𝑞
𝐷

𝑛−1

𝑞
) on𝐷

𝑞
𝑓 for any real 𝑧 ̸= 0

(𝐷
𝑞
𝐷

𝑛−1

𝑞
) (𝐷

𝑞
𝑓) (𝑧) = (𝐷

𝑛−1

𝑞
𝐷

𝑞
) (𝐷

𝑞
𝑓) (𝑧)

= (𝐷
𝑞
𝐷

𝑛

𝑞
𝑓) (𝑧) = (𝐷

𝑛

𝑞
𝐷

𝑞
𝑓) (𝑧)

= (𝐷
𝑛+1

𝑞
𝑓) (𝑧) .

(22)

The commutation of the operator composition𝐷𝑛

𝑞
𝐷

𝑞
for any

nonzero 𝑧 ∈ Z
+
has been proven. Now, for any integer 𝑧 ≥ 2

we can find integers 𝑗, 𝑘 ∈ Z
+
(being nonunique for 𝑧 ≥ 3)

such that 𝑗 + 𝑘 = 𝑛. Hence, (𝐷𝑗

𝑞
𝐷

𝑘

𝑞
𝑓)(𝑧) = (𝐷

𝑘

𝑞
𝐷

𝑗

𝑞
𝑓)(𝑧) =

(𝐷
𝑗+𝑘

𝑞
𝑓)(𝑧) and the result follows by taking an arbitrary 𝑛 and

nonzero 𝑧 ∈ Z
+
. Property (i) has been proved. Property (ii)

can be proved in the same way for 𝑗 + 𝑘 = 𝑛 and any 𝑛 ∈ Z
0+

such that (𝐷𝑖

𝑞
𝑓)(0) exists for 𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}. Properties

(i)–(iii) have been proved.
On the other hand, the 𝑞-derivative operator (17) is a

linear operator [37], so that

(𝐷
𝑞
(𝑓 + 𝑔)) (𝑧) = (𝐷

𝑞
𝑓) (𝑧) + (𝐷

𝑞
𝑔) (𝑧) . (23)

Property (i) and (23) yield for 𝑧 ̸= 0, and also for 𝑧 = 0 if
(𝐷

𝑖

𝑞
𝑓)(0) exists for any 𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}, the following

relationships:

(𝐷
𝑛

𝑞
(𝑓 + 𝑔)) (𝑧) = (𝐷

𝑞
(𝐷

𝑛−1

𝑞
(𝑓 + 𝑔))) (𝑧)

= (𝐷
𝑛−1

𝑞
(𝐷

𝑞
(𝑓 + 𝑔))) (𝑧)

= (𝐷
𝑛−1

𝑞
((𝐷

𝑞
𝑓) (𝑧) + (𝐷

𝑞
𝑔))) (𝑧)

= 𝐷
𝑞
((𝐷

𝑛−1

𝑞
𝑓) (𝑧) + (𝐷

𝑛−1

𝑞
𝑔))) (𝑧)

= (𝐷
𝑛

𝑞
𝑓) (𝑧) + (𝐷

𝑛

𝑞
𝑔) (𝑧) .

(24)

Hence, Property (iii) follows.
To prove Property (iv), define the time 𝑞-delay operator

z
𝑞
on 𝑓 as (z

𝑞
𝑓)(𝑧) = 𝑓(𝑞𝑧) so that (z𝑗

𝑞
𝑓)(𝑧) = 𝑓(𝑞

𝑖
𝑧),

for all 𝑗 ∈ Z
0+

with (z0
𝑞
𝑓)(𝑧) = 𝑓(𝑧). Now, for any nonzero

real 𝑧, assume that the property is true for 𝑛 = 0, 1, . . . , 𝑘 and
some given 𝑘 ∈ Z

+
. Thus,

(𝐷
𝑛

𝑞
𝑓) (𝑧) =

1

(1 − 𝑞)
𝑛

𝑧𝑛

𝑛

∑

𝑗=0

(−1)
𝑗

(
𝑛

𝑗
)𝑓 (𝑞

𝑗

𝑧)

=
((1 − z

𝑞
)
𝑛

𝑓) (𝑧)

(1 − 𝑞)
𝑛

𝑧𝑛

(25)

for 𝑛 = 0, 1, . . . , 𝑘 from (19) (first identity) and the definition
of the operator z

𝑞
(second identity). Then, one gets from the

definition of the 𝑞-derivative in (17) the use of the first and
second identities of (25) for (𝐷𝑛

𝑞
𝑓)(𝑧), with 𝑛 = 𝑘, the identity

(z
𝑞
𝑓)(𝑧) = 𝑓(𝑞𝑧), and, finally, the second identity in (25) for

𝑛 = 𝑘 + 1:

(𝐷
𝑘+1

𝑞
𝑓) (𝑧) = (𝐷

𝑞
(𝐷

𝑘+1

𝑞
𝑓)) (𝑧)

=

((1 − z
𝑞
)
𝑘

𝑓) (𝑧) − ((1 − z
𝑞
)
𝑘

𝑓) (𝑞𝑧)

(1 − 𝑞)
𝑘

𝑧𝑘 (1 − 𝑞) 𝑧

=

((1 − z
𝑞
)
𝑘

𝑓) (𝑧) − ((1 − z
𝑞
)
𝑘

z
𝑞
𝑓) (𝑧)

(1 − 𝑞)
𝑘+1

𝑧𝑘+1

=

((1 − z
𝑞
)
𝑘+1

𝑓) (𝑧)

(1 − 𝑞)
𝑘+1

𝑧𝑘+1

=
1

(1 − 𝑞)
𝑘+1

𝑧𝑘+1

𝑘+1

∑

𝑗=0

(−1)
𝑗

(
𝑘 + 1

𝑗
)𝑓 (𝑞

𝑗

𝑧)

(26)

so that if (19) holds for any given real 𝑧 ̸= 0 and 𝑛 = 0, 1, . . . , 𝑘
for any given 𝑘 ∈ Z

+
then it also holds for 𝑛 = 0, 1, . . . ., 𝑘 + 1

and such a nonzero real 𝑧. Then, by complete induction, (19)
is true for any nonnegative integer 𝑛. If (𝐷𝑛

𝑞
𝑓)(0) exists for

any 𝑛 ∈ Z
0+

the result also applies for 𝑧 = 0.

Assume that 𝑓 : [𝑎, 𝑏] → C𝑛 for some real interval
[𝑎, 𝑏] ⊂ R. Then, the Riemann-Liouville left-sided fractional
𝑞-derivative RL

𝐷
𝛼

𝑞𝑎+
𝑓 of order 𝛼 ∈ C

0+
of the vector function

𝑓 in [𝑎, 𝑏] is point-wise defined as

(
RL
𝐷

𝛼

𝑞𝑎+
𝑓) (𝑡)

:=
1

Γ
𝑞
(𝑘 − 𝛼)

(𝐷
𝑘

𝑞
(∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝑞𝜏)
𝛼+1−𝑘

𝑑𝜏
𝑞
)) ;

𝑡 ∈ [𝑎, 𝑏] ,

(27)

where 𝑘 = [Re𝛼] + 1 and Γ : C \ Z
0−
→ C, where

Z
0−
:= {𝑛 ∈ Z : 𝑛 ≤ 0}, is the 𝑞-gamma function defined

as Γ
𝑞
(𝑧) := (1 − 𝑞)

(𝑧−1)

/(1 − 𝑞)
𝑧−1

= (1/(1 − 𝑞)
𝑧−1

)∏
∞

𝑗=0
[(1 −

𝑞
𝑗
)/(1 − 𝑞

𝑧+𝑗−1
)]; 𝑧 ∈ C \ Z

0−
which satisfies the following

relations [35, 36]:

Γ
𝑞
(𝑧 + 1) = (1 − 𝑞)

(𝑧)

(1 − 𝑞)
−𝑧

= [𝑧]
𝑞
Γ
𝑞
(𝑧) , (28)

where [𝑧]
𝑞
= (1 − 𝑞

𝑧
)/(1 − 𝑞) for 𝑧 ∈ R is a 𝑞-real

number. Remember that the usual gamma function is defined
by Γ(𝑧) := ∫∞

0
𝜏
𝑧−1
𝑒
−𝜏
𝑑𝜏; 𝑧 ∈ C \ Z

0−
. Now, we can

replace the standard simple and higher-order derivatives
under the integral symbol by their 𝑞-derivative versions to
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build the Caputo fractional 𝑞-derivative 𝐶

𝐷
𝛼

𝑞𝑎+
𝑓 by using the

identities

(𝐷
𝑘

𝑞
𝑓) (𝜏) = 𝑓

(𝑘)

𝑞
(𝜏) =

𝑑
𝑘

𝑞
𝑓 (𝜏)

𝑑𝜏𝑘
𝑞

= 𝐷
𝑞
(𝐷

𝑘−1

𝑞
𝑓) (𝜏) = 𝐷

𝑘−1

𝑞
(𝐷

𝑞
𝑓) (𝜏)

(29)

in [𝑎, 𝑏]; then the Caputo left-sided fractional 𝑞-derivative
𝐶

𝐷
𝛼

𝑞𝑎+
𝑓 of order 𝛼 ∈ C

0+
of the vector function 𝑓 in [𝑎, 𝑏] ⊂

R
+
is point-wise defined as

(
𝐶

𝐷
𝛼

𝑞𝑎+
𝑓) (𝑡)

=
1

Γ
𝑞
(𝑘 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑓 (𝜏)) 𝑑

𝑞
𝜏;

𝑡 ∈ [𝑎, 𝑏] ,

(30)

where 𝑘 = [Re𝛼] + 1 if 𝛼 ∉ Z
0+

and 𝑘 = 𝛼 if 𝛼 ∈ Z
0+
.

Note that the existence of 𝑓 ∈ 𝐶𝑘−1
((𝑎, 𝑏),R𝑛

) in (30) is not
required, as it is required in the standard fractional calculus
for the existence of Caputo derivatives since the existence
of the standard and higher-order fractional 𝑞-derivatives is
ensured.

Example 4. Consider the differential dynamic system

𝑥̇ (𝑡) =

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡 − ℎ

𝑖
) + 𝐵𝑢 (𝑡) ; 𝑡 ∈ [0,∞) , (31)

where 0 = ℎ
0
< ℎ

1
< ℎ

2
< ⋅ ⋅ ⋅ < ℎ

𝑝
= ℎ < ∞ are

distinct constant delays, 𝐴
0
, 𝐴

𝑖
∈ R𝑛×𝑛

; for all 𝑖 ∈ 𝑝 are the
matrices of dynamics for each delay ℎ

𝑖
, 𝑖 ∈ 𝑝 ∪ {0}, 𝐵 ∈ R𝑛×𝑚

is the control matrix and with initial condition of the state
being given the real vector function 𝜑 : [−ℎ, 0] → R𝑛,
which is absolutely continuous except eventually in a set of
zero measure of [−ℎ, 0] ⊂ R of bounded discontinuities with
𝜑(0) = 𝑥(0) = 𝑥

0
𝑗 ∈ 𝑝, and 𝑢 : R

0+
→ R𝑚 is a bounded

piecewise-continuous control function. Some results about
the nonnegativity of the solutions of (31) by using standard,
fractional and 𝑞-calculus follow below.

Proposition 5. The solution of (31) is nonnegative on [0,∞)
for any 𝜑 : [−ℎ, 0] → R𝑛

0+
and 𝑢 : R

0+
→ R𝑚

0+
if and only if,

𝐴
𝑖
∈ R𝑛×𝑛

0+
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑝 and 𝐴

0
∈ 𝑀R𝑛×𝑛.

Proof. The sufficiency part of the proof is direct since the
unique left-sided mild solution is given by

𝑥 (𝑡) = 𝑒
𝐴0𝑡(𝑥

0
+

𝑝

∑

𝑖=1

∫

ℎ𝑖

0

𝑒
−𝐴0𝜏𝐴

𝑖
𝜑 (𝜏 − ℎ

𝑖
) 𝑑𝜏

+

𝑝

∑

𝑖=1

∫

𝑡

ℎ𝑖

𝑒
−𝐴0𝜏𝐴

𝑖
𝑥 (𝜏 − ℎ

𝑖
) 𝑑𝜏

+ ∫

𝑡

0

𝑒
−𝐴0𝜏𝐵𝑢 (𝜏) 𝑑𝜏) ; ∀𝑡 ∈ R

0+
.

(32)

It turns out that, under the given assumptions, 𝑥 : R
0+
→

R𝑛

0+
and then the solution is nonnegative; for all 𝑡 ∈ R

0+
since

𝑒
𝐴0𝑡 ∈ R𝑛×𝑛

0+
; for all 𝑡 ∈ R

0+
since 𝐴

0
∈ 𝑀R𝑛×𝑛. On the other

hand,

𝑥
𝑖
(𝑡) = 𝑒

𝑇

𝑖
𝑒
𝐴0𝑡𝑥

0

+

𝑛

∑

𝑗=1

(

𝑝

∑

𝑖=1

∫

ℎ𝑖

0

𝑒
𝑇

𝑖
𝑒
𝐴0(𝑡−𝜏)

× (𝐴
𝑖𝑗
𝜑
𝑗
(𝜏 − ℎ

𝑖
) 𝑑𝜏

+

𝑝

∑

𝑖=1

∫

𝑡

ℎ𝑖

𝑒
−𝐴0𝜏𝐴

𝑖𝑗
𝑥
𝑗
(𝜏 − ℎ

𝑖
) 𝑑𝜏))

+

𝑚

∑

𝑗=1

𝑝

∑

𝑖=1

∫

𝑡

ℎ𝑖

𝑒
𝑇

𝑖
𝑒
𝐴0(𝑡−𝜏)𝐵

𝑖𝑗
𝑢
𝑗
(𝜏 − ℎ

𝑖
) 𝑑𝜏,

∀𝑡 ∈ R
0+
, 𝑖 ∈ 𝑛.

(33)

It is easy to see that it is always possible to get 𝑥
𝑖
(𝑡) < 0 by

construction if any of the conditions 𝜑 : [−ℎ, 0] → R𝑛

0+
,

𝐴
𝑖
∈ R𝑛×𝑛

0+
; for all 𝑖 ∈ 𝑝, 𝑢 : R

0+
→ R𝑚

0+
, or 𝐴

0
∈

𝑀R𝑛×𝑛
⇔ 𝑒

𝐴0𝑡 ∈ R𝑛

+
; for all 𝑡 ∈ R

0+
fails for some 𝜑 :

[−ℎ, 0] → R𝑛

0+
and 𝑢 : R

0+
→ R𝑚

0+
by taking some

large component in either the initial condition function or
the control function corresponding to a negative entry of the
matrix whose positivity condition fails.

Proposition 6 (Theorem 4.1(iii) of [32]). Any solution (37)
to any Caputo fractional differential system of fractional order
𝛼 ∈ C

0+
is nonnegative independent of the delays; that is,

𝑥(𝑡) ∈ R𝑛

0+
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [−ℎ, 𝑡) ∩ R

0+
for some 𝑡 ∈ R

0+
, for any

set of delays satisfying 0 = ℎ
0
< ℎ

1
< ℎ

2
< ⋅ ⋅ ⋅ < ℎ

𝑝
≤ ℎ < ∞

and any absolutely continuous functions of initial conditions
𝜑
𝑗
: [−ℎ, 0] → R𝑛

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑘 − 1 ∪ {0} and any

piecewise continuous control 𝑢 : R
0+
→ R𝑚

0+
, if and only if

𝐴
0
∈ 𝑀R𝑛×𝑛 for 𝑡 ∈ R

0+
being sufficiently small. Furthermore,

𝑥(𝑡) ∈ R𝑛

0+
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [−ℎ, 0) ∪ R

0+
either if, in addition,

𝐴
0
≥ 0 or if 𝐴

0
is nilpotent or if 0 < 𝛼 ≤ 𝑘 = 1, 𝐴

𝑖
∈ R𝑛×𝑛

0+

(𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑝) and 𝐵 ∈ R𝑛×𝑚

0+
.

Proposition 7. Consider the 𝑞-calculus version of (31) under
similar initial conditions:

(𝐷
𝑞
𝑥) (𝑡) :=

𝑥 (𝑡) − 𝑥 (𝑞𝑡)

(1 − 𝑞) 𝑡
=

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡 − ℎ

𝑖
) + 𝐵𝑢 (𝑡) ;

𝑡 ∈ [0,∞) .

(34)

Assume that 𝜑 : [−ℎ, 0] → R𝑛

0+
, 𝑢 : R

0+
→ R𝑚

0+
, 𝐴

𝑖
∈

R𝑛×𝑛

0+
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑝. Then,

(i) 𝑥(𝑡) ≥ 0; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+

if either 1 > 𝐴
0𝑖𝑖
> 0 or

𝐴
0𝑖𝑖
≤ 0 and 𝐴

0𝑖𝑗
= 0 for all 𝑖, 𝑗 ( ̸= i)∈ 𝑛.
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(ii) 𝑥(𝑡) ≥ 0;𝑓𝑜𝑟𝑎𝑙𝑙 𝑡 ∈ R
0+

if (−𝐴
0
) ∈ 𝑀R𝑛×𝑛

+
with𝐴

0𝑖𝑖
=

−1; 𝑓𝑜𝑟𝑎𝑙𝑙 𝑖 ∈ 𝑛 and 𝐴
0𝑖𝑗
≤ 0 with 𝐴

0𝑖𝑗
< 0 for only

one 𝑗 ∈ 𝑛 for each 𝑖 ∈ 𝑛.

Proof. The solution of (34) is

𝑥 (𝑡) = (𝐼 − 𝐴
0
)
−1

(𝑥 (𝑞𝑡) + (1 − 𝑞) 𝑡

𝑝

∑

𝑖=1

𝐴
𝑖
𝑥 (𝑡 − ℎ

𝑖
)) ;

∀𝑡 ∈ R
0+

(35)

provided that (𝐼 − 𝐴
0
)
−1 exists. Since 𝜑 : [−ℎ, 0] → R𝑛

0+
,

𝑢 : R
0+
→ R𝑚

0+
,𝐴

𝑖
∈ R𝑛×𝑛

0+
, for nonnegativity of the solutions

the existence of (𝐼 − 𝐴
0
)
−1

∈ R𝑛×𝑛

+
is also required. Note that

if (𝐼 − 𝐴
0
) ∈ R𝑛×𝑛

+
and nonsingular then (𝐼 − 𝐴

0
)
−1

∈ R𝑛×𝑛

+

if and only if (𝐼 − 𝐴
0
) ∈ R𝑛×𝑛

+
is monomial (or generalized

permutation matrix, i.e., it has only a nonzero entry per
row and then only a nonzero entry per column). Due to
its structure, this condition can be fulfilled with 𝐴

0
being

diagonal, that is, 𝐴
0𝑖𝑗
= 0 for 𝑖, 𝑗( ̸= 𝑖) ∈ 𝑛 in order that

(𝐼−𝐴
0
) is monomial and (𝐼−𝐴

0
) ∈ R𝑛×𝑛

+
.Then, (𝐼 − 𝐴

0
)
−1

∈

R𝑛×𝑛

0+
if and only if for all 𝑖 ∈ 𝑛 either 1 > 𝐴

0𝑖𝑖
> 0 or

𝐴
0𝑖𝑖
≤ 0. Hence, Property (i) follows directly. Property (ii)

follows since, under the given constraints, (−𝐴
0
) ∈ 𝑀R𝑛×𝑛,

with 𝐴
0𝑖𝑖
= −1for all 𝑖 ∈ 𝑛, (𝐼 − 𝐴

0
) ∈ R𝑛×𝑛

+
and Metzler,

monomial (then nonsingular) so that (𝐼 − 𝐴
0
)
−1

∈ R𝑛×𝑛

+
.

Hence, Property (ii) follows.

The following extension of Proposition 7 is obvious.

Proposition 8. Proposition 7 still holds if 𝐴
𝑖
: R

0+
→ R𝑛×𝑛;

𝑖 ∈ 𝑛 ∪ {0}.

3. Fractional 𝑞-Differential Dynamic Systems
of Order 𝛼 with Internal Point Delays

ThefractionalCaputo 𝑞-differential dynamic systems of order
𝛼 can become modified from (2). The functions Γ

𝑞
(𝑘 − 𝛼),

𝐷
𝑘

𝑞
(∫

𝑡

𝑎
(𝑡 − 𝑞𝜏)

𝑘−𝛼−1

𝑓(𝜏)𝑑𝜏
𝑞
), and ∫

𝑡

𝑎
(𝑡 − 𝑞𝜏)

𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑓)

(𝜏)𝑑
𝑞
𝜏 are now displayed to be used later in order to solve

such a differential system. The combination of (2) with (24)
with the replacement of 𝑓(𝑡) with 𝑥(𝑡) leads to

1

Γ
𝑞
(𝑘 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

=

𝑝

∑

𝑖=0

𝐴
𝑖
𝑥 (𝑡 − ℎ

𝑖
) + 𝐵𝑢 (𝑡) ; 𝑡 ∈ [𝑎, 𝑏] .

(36)

(a) If 𝛼 ∈ R
+
and 𝛼 ∉ Z

0+
then 𝑘 < 𝛼 + 1, and

1

Γ
𝑞
(𝑘 − 𝛼)

=
(1 − 𝑞)

𝑘−𝛼−1

(1 − 𝑞)
(𝑘−𝛼−1)

= (1 − 𝑞)
𝑘−𝛼−1

∞

∏

𝑗=0

[
1 − 𝑞

𝑘+𝑗−𝛼

1 − 𝑞𝑗+1
] .

(37)

(b) If 𝛼 ∈ Z
0+

then 𝑘 = 𝛼, and

1

Γ
𝑞
(0)
=
1 − 𝑞

(1 − 𝑞)
(1)
= 1. (38)

Now consider, from (2) and (24), the linear time-varying dif-
ferential functional left-sided Caputo fractional 𝑞-differential
system of order 𝛼

(
𝐶

𝐷
𝛼

𝑞0+
𝑥) (𝑡) = (1 − 𝑞)

𝑘−𝛼−1

∞

∏

𝑗=0

[
1 − 𝑞

𝑘+𝑗−𝛼

1 − 𝑞𝑗+1
]

× ∫

𝑡

𝑎

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

=

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡) 𝑥 (𝑡 − ℎ

𝑖
) + 𝐵 (𝑡) 𝑢 (𝑡)

(39)

with 𝑘 − 1 < 𝛼 (∈ R
+
) ≤ 𝑘; 𝑘 − 1, 𝑘 ∈ Z

0+
, 0 = ℎ

0
< ℎ

1
<

ℎ
2
< ⋅ ⋅ ⋅ < ℎ

𝑝
= ℎ < ∞ being distinct constant delays; 𝐴

0
:

R
0+
→ R𝑛, 𝐴

𝑖
: R

0+
→ R𝑛

(𝑖 ∈ 𝑝 := {1, 2, . . . , 𝑝}), are the
bounded matrix functions of dynamics for each delay ℎ

𝑖
, 𝑖 ∈

𝑝 ∪ {0}, and 𝐵 : R
0+
→ R𝑛×𝑚 is the control matrix function.

The initial conditions are given by 𝑘 𝑛-real vector functions
𝜑
𝑗
: [−ℎ, 0] → R𝑛, with 𝑗 ∈ 𝑘 − 1 ∪ {0} and with 𝜑

𝑗
(0) =

𝑥
𝑗
(0) = 𝑥

(𝑗)
(0) = 𝑥

𝑗0
, and 𝑢 : R

0+
→ R𝑚 is a bounded

piecewise continuous control function. The Jackson integral
in the integral term in (39) becomes

∫

𝑡

𝑎

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

= ∫

𝑡

0

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

− ∫

𝑎

0

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

− (1 − 𝑞) 𝑎

∞

∑

𝑛=0

(1 − 𝑞
𝑛+1

)
𝑘−𝛼−1

𝑎
𝑘−𝛼−1

𝑞
𝑛

(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑛

𝑎)

(40)

for 𝑡 ≥ 𝑎. By replacing the dummy argument 𝜏 under the two
integral symbols in (40) by 𝑞𝑛𝑡 and 𝑞𝑛𝑎, respectively, since
(see [37]):

∫

𝑡

0

𝑓 (𝜏) 𝑑
𝑞
𝜏 = (1 − 𝑞) 𝑡

∞

∑

𝑛=0

𝑓 (𝑞
𝑛

𝑡) 𝑞
𝑛

. (41)

The series in (41) is convergent for all 𝑡 ∈ R
0+

since the
function 𝑓 satisfies |𝑓(𝑡)| < 𝐵𝑡𝐶 in a right neighborhood
of 𝑡 = 0 for some real constants 𝐵 > 0 and 𝐶 > −1. So,
the Jackson integral in (40) is convergent since ‖(𝐷𝑘

𝑞
𝑥)(𝑡)‖ <

𝐵𝑡
𝐶+𝛼+1−𝑘 in some right neighbourhood of 𝑡 = 0 for real
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constants 𝐵 > 0 and 𝐶 > −1 [37, 39]. Equations (40) and
(39), together with (18), Lemma 3 (see (19)), and (17), yield:

(
𝐶

𝐷
𝛼

𝑞𝑎+
𝑥) (𝑡)

= (1 − 𝑞)
𝑘−𝛼−1

∞

∏

𝑗=0

[
1 − 𝑞

𝑘+𝑗−𝛼

1 − 𝑞𝑗+1
]

× (1 − 𝑞) [𝑡

∞

∑

𝑛=0

(1 − 𝑞
𝑛+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼−1

𝑞
𝑛

× 𝐷((𝐷
𝑘−1

𝑞
𝑥)) (𝑞

𝑛

𝑡) − 𝑎

∞

∑

𝑛=0

(1 − 𝑞
𝑛+1

)
𝑘−𝛼−1

× 𝑎
𝑘−𝛼−1

𝑞
𝑛

𝐷((𝐷
𝑘−1

𝑞
𝑥)) (𝑞

𝑛

𝑎) ]

=

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡) 𝑥 (𝑡 − ℎ

𝑖
) + 𝐵 (𝑡) 𝑢 (𝑡) .

(42)

The following auxiliary results hold concerning the
product ∏𝑛

𝑗=0
[(1 − 𝑞

𝑘+𝑗−𝛼
)/(1 − 𝑞

𝑗+1
)] and the series

∑
∞

𝑛=0
(1 − 𝑞

𝑛+1
)
𝑘−𝛼−1

𝑡
𝑘−𝛼−1
𝑞
𝑛
𝐷((𝐷

𝑘−1

𝑞
𝑥))(𝑞

𝑛
𝑡).

Lemma 9. Define 𝑃
𝑛
:= (∏

𝑛

𝑗=0
[(1 − 𝑞

𝑘+𝑗−𝛼
)/(1 − 𝑞

𝑗+1
)]).

Then, 𝑃
𝑛+1
= 𝑔

𝑛
𝑃
𝑛
for all 𝑛 ∈ Z

0+
, where

(a) 𝑃
0
= 0 and 𝑔

𝑛
= 1, for all 𝑛 ∈ Z

0+
, so that 𝑃

𝑛
≡ 0, if

𝛼 ∈ Z
0+
;

(b) 𝑃
0
= (1 − 𝑞

𝑘−𝛼
)/(1 − 𝑞) = (𝑘 − 𝛼)

𝑞
and 𝑔

𝑛
:=

(𝑘 + 𝑛 + 1 − 𝛼)
𝑞
/∑

𝑛

𝑖=0
𝑞
𝑖
< 1, for all 𝑛 ∈ Z

0+
, if 𝛼 ∉

Z
0+
;

(c) ∃ lim
𝑛→∞

𝑃
𝑛
= 𝑃

∗.

Proof. Note that

(1) 𝑃
𝑛+1
/𝑃

𝑛
= ((1−𝑞

𝑘+𝑛+1−𝛼
)/(1−𝑞

𝑛+1
))/((1−𝑞

𝑘+𝑛−𝛼
)/(1−

𝑞
𝑛
)) → 1 as 𝑛 → ∞;

(2) if 𝑘 = 𝛼 (∈ Z
0+
), 𝑃

0
= 0, 𝑃

1
= 0, 𝑃

𝑛+1
/𝑃

𝑛
= 1 𝑦 𝑃 =

𝑃
𝑛
= 𝑃

0
= (𝑘 − 𝛼)

𝑞
= [𝑘 − 𝛼]

𝑞
= [0]

𝑞
= 0;

(3) if 𝑘 ̸= 𝛼 (∈ R
+
), with 𝛼 ∉ Z

0+
, then 𝑃

0
= (1 −

𝑞
𝑘−𝛼
)/(1−𝑞) = (𝑘 − 𝛼)

𝑞
, 𝑃

1
= ((1−𝑞

𝑘−𝛼
)/(1−𝑞))((1−

𝑞
𝑘+1−𝛼
)/(1 − 𝑞

2
)) = (1/(1 + 𝑞))(𝑘 − 𝛼)

𝑞
(𝑘 + 1 − 𝛼)

𝑞
=

((𝑘 + 1 − 𝛼)
𝑞
/(1 + 𝑞))𝑃

0
, 𝑃

2
= ((1 − 𝑞

𝑘+2−𝛼
)/(1 −

𝑞
3
))𝑃

1
= (1/(1 + 𝑞 + 𝑞

2
))((1 − 𝑞

𝑘+2−𝛼
)/(1 − 𝑞))𝑃

1
=

(1/(1 + 𝑞 + 𝑞
2
))(𝑘 + 2 − 𝛼)

𝑞
𝑃
1
, 𝑃

𝑛+1
= 𝑔

𝑛
𝑃
𝑛
with 𝑔

𝑛
=

(𝑘 + 𝑛 + 1 − 𝛼)
𝑞
/∑

𝑛

𝑖=0
𝑞
𝑖 and 𝑔

𝑛
< 1. Assume this is

false so that𝑔
𝑛
≥ 1.Then, 1−𝑞𝑛−𝑞𝑘+𝑛+1−𝛼+𝑞𝑘+2𝑛+1−𝛼 ≥

1 − 𝑞
𝑛+1
− 𝑞

𝑘+𝑛−𝛼
+ 𝑞

𝑘+2𝑛+1−𝛼 and, equivalently, (−𝑞𝑛 −
𝑞
𝑘+𝑛+1−𝛼

) ≥ (−𝑞
𝑛+1
−𝑞

𝑘+𝑛−𝛼
), or 𝑞𝑛(1−𝑞) ≤ 𝑞𝑘+𝑛−𝛼(1−

𝑞) ⇒ 1 ≤ 𝑞
𝑘−𝛼
< 1 if 𝛼 < 𝑘 < 𝛼 + 1 (a contradiction).

Lemma 10. Assume that ‖(𝐷𝑘

𝑞
𝑥)(𝑡)‖𝑡

𝑘+𝛾−𝛼−1 is bounded in a
right neighborhood [0, 𝑡

0
) of 𝑡 = 0 for some 𝑡

0
∈ R

+
and some

real constant 1 > 𝛾 ≥ 0. Define

𝑆 (𝑡, 𝑛) :=

𝑛

∑

𝑖=0

(1 − 𝑞
𝑖+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑖

(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖

𝑡) ;

∀𝑡 ∈ R
0+
, ∀𝑛 ∈ Z

0+
.

(43)

Then, the following identities hold:

𝑛

∑

𝑖=0

(1 − 𝑞
𝑖+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑖

[(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖+1

𝑡) − (𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖

𝑡)]

= 𝑞
𝛼−𝑘

(𝑆 (𝑞𝑡, 𝑛) − 𝑆 (𝑡, 𝑛)) ; ∀𝑡 ∈ R
0+
, ∀𝑛 ∈ Z

0+
,

(44)
∞

∑

𝑖=0

(1 − 𝑞
𝑖+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑖

[(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖+1

𝑡) − (𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖

𝑡)]

= 𝑞
𝛼−𝑘

(𝑆
∗

(𝑞𝑡) − 𝑆
∗

(𝑡)) ; ∀𝑡 ∈ [0, 𝑡
0
) ,

(45)

𝑆
∗

(𝑡) =
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝑥 (𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) , (46)

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) =

1

(1 − 𝑞)
𝛼+1

𝑡𝛼

𝑘

∑

𝑗=1

(−1)
𝑗

(
𝑘

𝑗
) 𝑥 (𝑞

𝑗

𝑡)

+

𝑁

∑

𝑖=1

𝑘

∑

𝑗=0

(−1)
𝑗

𝑞
𝑖

(1 − 𝑞𝑖+1) (1 − 𝑞)
𝑘

𝑡𝛼

× (
𝑘

𝑗
) 𝑥 (𝑞

𝑗+𝑖

𝑡) ,

(47)

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) =

∞

∑

𝑖=𝑁+1

𝑘

∑

𝑗=0

(−1)
𝑗

𝑞
𝑖

(1 − 𝑞𝑖+1)(1 − 𝑞)
𝑘

𝑡𝛼
(
𝑘

𝑗
)𝑥 (𝑞

𝑗+𝑖

𝑡)

(48)

for any given 𝑁 ∈ Z
0+

if 𝛼 ∉ Z
0+
, where 𝑘 = [Re𝛼] + 1,

𝑞
𝑁
= (𝑞, 𝑞

2
, . . . , 𝑞

𝑁+𝑘
), 𝑞

𝑁
= (𝑞

𝑁+1
, 𝑞

𝑁+2
, 𝑞

𝑁+3
, . . .), 𝑆∗(𝑡) =

lim
𝑛→∞

𝑆(𝑡, 𝑛); 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+
, since such a limit function

exists; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+
, and 𝑆

𝑁𝑡
(𝑡) → 0 as 𝑁 → ∞;

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ (
𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(49)
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where {𝜀
𝑁
} is a nonnegative real sequence which converges to

0; 𝛾 ∈ R
+
is subject to

1 > 𝛾 > 𝑞max(1, max
𝑖≥𝑁+1

1

(1 − 𝑞𝑖+1)
(1+𝛼−𝑘)/𝑖

) (50)

for any given𝑁 ∈ Z
0+
.

Equations (46)-(47) also hold for 𝑘 = 𝛼 (∈ Z
0+
) by

replacing 𝑘 → 𝛼 everywhere 𝑘 appears. Consider

𝑆 (𝑡, 𝑛 + 1) = 𝑆 (𝑡, 𝑛) + 𝑑 (𝑡, 𝑛) (𝐷
𝑘

𝑞
𝑥) (𝑞

𝑛+1

𝑡) ;

∀𝑡 ∈ R
0+
, ∀𝑛 ∈ Z

0+
,

∃ lim
𝑛→∞

[(1 − 𝑞
𝑛+2

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑛+1

(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑛+1

𝑡)]=0;

∀𝑡 ∈ R
0+
,

(51)

where 𝑑(𝑡, 𝑛) = (1 − 𝑞𝑛+2)𝑘−𝛼−1𝑡𝑘−𝛼𝑞𝑛+1.

Proof. Since ‖(𝐷𝑘

𝑞
𝑥)(𝑡)‖𝑡

𝑘+𝛾−𝛼−1 is bounded in a right neigh-
bourhood [0, 𝑡

0
) of 𝑡 = 0 for some real constant 1 > 𝛾 ≥ 0

then the Jackson integral

∫

𝑡

0

(𝑡 − 𝑞𝜏)
𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥) (𝜏) 𝑑

𝑞
𝜏

= (1 − 𝑞)

∞

∑

𝑛=0

(1 − 𝑞
𝑛+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑛

(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑛

𝑡)

(52)

converges to a function 𝐹(𝑡) on [0, 𝑡
0
) which is a 𝑞-

antiderivative of (𝑡 − 𝑞𝜏)𝑘−𝛼−1(𝐷𝑘

𝑞
𝑥)(𝜏) and which is con-

tinuous at 𝑡 = 0 with 𝐹(0) = 0 and is a unique
(𝑡 − 𝑞𝜏)

𝑘−𝛼−1

(𝐷
𝑘

𝑞
𝑥)(𝜏) in this class of functions [39]. Note that

𝑆(𝑡, 𝑛) ≤ 𝑆
∗
(𝑡) = lim

𝑛→∞
𝑆(𝑡, 𝑛); for all 𝑛 ∈ Z

0+
; 𝑡 ∈ [0, 𝑡

0
)

since the series 𝑆(𝑡, 𝑛) is convergent, since the Jackson integral
(52) is convergent for each fix 𝑡 ∈ [0, 𝑡

0
), and non-decreasing

with 𝑛 since it is consists of nonnegative terms. It follows from
(43), with the replacement 𝑡 → 𝑞𝑡, that

𝑆 (𝑞𝑡, 𝑛) = 𝑞
𝑘−𝛼

[

𝑛

∑

𝑖=0

(1 − 𝑞
𝑖+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑖

(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖+1

𝑡)]

= 𝑞
𝑘−𝛼

(𝑆 (𝑡, 𝑛)

+

𝑛

∑

𝑖=0

(1 − 𝑞
𝑖+1

)
𝑘−𝛼−1

𝑡
𝑘−𝛼

𝑞
𝑖

× [(𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖+1

𝑡) − (𝐷
𝑘

𝑞
𝑥) (𝑞

𝑖

𝑡)]) ;

(53)

for all 𝑡 ∈ [0, 𝑡
0
) and hence (44) follows. By taking limits

as 𝑛 → ∞ in (44), one gets (46)–(48) since the limit
𝑆
∗
(𝑡) = lim

𝑛→∞
𝑆(𝑡, 𝑛) exists for all 𝑡 ∈ R

0+
by using

Lemma 3(iv) for the expansion of the 𝑞-derivative of order 𝑘

since 𝑞𝑛 → 0 as 𝑛 → ∞. Equation (49) follows by defining
𝛾
𝑖
:= (1 − 𝑞

𝑖+1
)
(𝑘−𝛼−1)/𝑖

𝑞 < 1 with 𝛾𝑖
𝑖
≤ 𝛾

𝑖
< 1 for some

1 > 𝛾 > 𝑞; for all i (≥N)∈ Z
0+

and some 𝑁 ∈ Z
0+
, or

equivalently

(1 − 𝑞
𝑖+1

)
1+𝑎−𝑘

≥ (
𝑞

𝛾
)

𝑖

⇐⇒ 1 ≥ 𝑞
𝑖+1

+ (
𝑞

𝛾
)

𝑖/(1+𝑎−𝑘)

. (54)

Hence, (46)–(48) follow from (55) for some strictly decreas-
ing real sequence {𝜀

𝑁
} ∈ R

+
such that |𝑥(𝑞𝑗+𝑖𝑡)| ≤ | 𝑥(0)|+𝜀

𝑁
;

for all 𝑖 (≥N)∈ Z
0+

for 𝑗 = 0, 1, . . . , 𝑘.

The quantum Caputo fractional solutions have explicit
expressions as formulated in the subsequent result.

Theorem 11. Consider the left-sided 𝑞-fractional Caputo solu-
tion of or fractional order 𝛼 of the functional differential system

(
𝐶

𝐷
𝛼

𝑞0+
𝑥) (𝑡) =

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡) 𝑥 (𝑡 − ℎ

𝑖
) + 𝐵 (𝑡) 𝑢 (𝑡) ; 𝑡 ∈ [0,∞)

(55)

with initial condition of the state 𝑥 : [−ℎ,∞) → R𝑛 being
defined by 𝑘 𝑛-real vector functions 𝜑

𝑗
: [−ℎ, 0] → R𝑛, with

𝑗 ∈ 𝑘 − 1 ∪ {0} and 𝜑
𝑗
(0) = 𝑥

𝑗
(0) = 𝑥

(𝑗)
(0) = 𝑥

𝑗0
𝑗 ∈ 𝑘 − 1 ∪

{0}, and 𝑢 : R
0+
→ R𝑚 is a bounded piecewise continuous

control function and ℎ = ℎ
𝑝
= max

1≤𝑖≤𝑝
ℎ
𝑖
.

Thus, the unique left-sided solution of (55) is calculated
almost everywhere via analytical expressions obtained from
Lemma 10 as follows.

(i) If 𝛼 ∉ Z
0+

so that 𝑘 = [Re𝛼] + 1 then one gets for any
given𝑁 ∈ Z

+
that

𝑥 (𝑡) = (
(𝑃

𝑁
+ 𝜌

𝑁
)

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)] + 𝐵𝑢 (𝑡)) ;

(56)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑇𝑅
𝑁𝐾

, where 𝑇𝑅
𝑁𝑘
:= {𝑡 ∈ R

+
: (((𝑃

𝑁
+

𝜌
𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1

𝑡
𝛼
)𝐼 − 𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟}.
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(ii) If 𝑘 = (𝛼 ∈ Z
0+
) then one gets for any given 𝑁 ∈ Z

+

that

𝑥 (𝑡) = (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)

−𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + 𝐵 (𝑡) 𝑢 (𝑡))

= (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
)

+
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝑥 (𝑡) − 𝑆

∗

(𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)) ;

(57)

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝑇𝑅
𝛼
, where 𝑇𝑅

𝛼
:= {𝑡 ∈ R

+
:

((1/(1 − 𝑞)
𝛼+1

𝑡
𝛼
)𝐼 − 𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟}.

Proof. One can evaluate the approximation of (42) for 𝑎 = 0
and 𝛼 ∉ Z

0+
by using (46) as

(
𝐶

𝐷
𝛼

𝑞0+
𝑥) (𝑡) = (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝑥 (𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)

+𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) ]

=

𝑝

∑

𝑗=0

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡) if 𝛼 ∉ Z

0+
,

(58)

where

𝜌
𝑁
:= 𝑃

∗

− 𝑃
𝑁
󳨀→ 0, 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) 󳨀→ 0

as 𝑁 󳨀→∞; ∀𝑡 ∈ R
0+

(59)

with 𝜌
𝑁
→ 0, 𝜎

𝑁
(𝑡) → 0 as 𝑁 → ∞, for all 𝑡 ∈ R

0+
.

On the other hand, for 𝑎 = 0 and 𝑘 = 𝛼 (∈ Z
0+
), note that

1/Γ(0) = (1 − 𝑞)
𝑘−𝛼
(∏

∞

𝑗=0
[(1 − 𝑞

𝑘+𝑗−𝛼
)/(1 − 𝑞

𝑗+1
)]) = 𝑃

𝑁
+

𝜌
𝑁
= 1 from (37)-(38) so that (58) (with 𝑘 = 𝛼) becomes

simplified as follows:

(
𝐶

𝐷
𝛼

𝑞0+
𝑥) (𝑡)

= [
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝑥 (𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) + 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)]

=

𝑝

∑

𝑗=0

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑔) 𝑢 (𝑡) if 𝑘 = (𝛼 ∈ Z

0+
) .

(60)

Thus, the (unique) left-sided solution of (55) follows directly
from (59) and (60).

A variant ofTheorem 11might be obtained in a simpleway
by selecting the initial point 𝑎 = 𝑎(𝑡) = 𝑡 − 𝜁 so that the real
interval [𝑡 − 𝑎(𝑡), 𝑡] has a constant measure for each 𝑡 (≥h)
∈ R

+
independent of 𝑡. For that purpose, one implements

the quantum fractional left-sided Caputo derivative with the
operator ( 𝐶𝐷

𝛼

𝑞(𝑡−𝜁)+
𝑥)(𝑡) replacing ( 𝐶𝐷

𝛼

𝑞0+
𝑥)(𝑡) while fixing

𝑎(𝑡) = 𝑡 − 𝜁 in (42) to reformulate (55) with the appropriate
“ad hoc” modifications of (56) and (57).

Theorem 12. Consider the left-sided 𝑞-fractional Caputo solu-
tion of or fractional order 𝛼 ∈ R

0+
of the functional differential

system

(
𝐶

𝐷
𝛼

𝑞(𝑡−𝜁)+
𝑥) (𝑡)

=

𝑝

∑

𝑖=0

𝐴
𝑖
(𝑡) (𝑡 − ℎ

𝑖
) + 𝐵𝑢 (𝑡) ; 𝑡 ∈ [0,∞)

(61)

for some prefixed 𝜁 ∈ R
+
, with initial condition of the state

𝑥 : [−ℎ,∞) → R𝑛 being defined by 𝑘 𝑛-real vector functions
𝜑
𝑗
: [−ℎ, 0] → R𝑛

0+
, with 𝑗 ∈ 𝑘 − 1 ∪ {0}, which are bounded

with 𝜑
𝑗
(0) = 𝑥

𝑗
(0) = 𝑥

(𝑗)
(0) = 𝑥

𝑗0
𝑗 ∈ 𝑘 − 1 ∪ {0}, and

𝑢 : R
0+
→ R𝑚 is a bounded piecewise continuous control

function and ℎ = ℎ
𝑝
= max

1≤𝑖≤𝑝
ℎ
𝑖
.

Thus, the unique left-sided solution of (55) is calculated
almost everywhere via analytical expressions as follows.

(i) If 𝛼 ∉ Z
0+

so that 𝑘 = [Re𝛼] + 1 then one gets for any
given𝑁 ∈ Z

+
that

𝑥 (𝑡) = (
(𝑃

𝑁
+ 𝜌

𝑁
)

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡)

+ (𝑃
𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× (𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁))

+𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡))) ;

(62)
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𝑓𝑜𝑟𝑎𝑙𝑙 𝑡 ∈ 𝑇𝑅
𝑁𝐾

, where 𝑇𝑅
𝑁𝑘
:= {𝑡 ∈ R

+
: (((𝑃

𝑁
+

𝜌
𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1

𝑡
𝛼
)𝐼 −𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟}, where

𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
𝑡) and 𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
𝑡) are got by replacing 𝑡 →

(𝑡 − 𝜁) in their counterparts 𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) and 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)

defined in (47)-(48).
(ii) If 𝑘 = (𝛼 ∈ Z

0+
) then one gets for any given𝑁 ∈ Z

+
that

𝑥 (𝑡) = (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡)

+ 𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) + 𝑆

𝑁(𝑡−𝜁)

× (𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)) ;

(63)

𝑓𝑜𝑟𝑎𝑙𝑙 𝑡 ∈ 𝑇𝑅
𝛼
, where 𝑇𝑅

𝛼
:= {𝑡 ∈ R

+
:

((1/(1 − 𝑞)
𝛼+1

𝑡
𝛼
)𝐼 − 𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟}, where

𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
𝑡) and 𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
𝑡) are got by replacing 𝑡 →

(𝑡 − 𝜁) in their counterparts 𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) and 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)

defined in (47)-(48).

Proof. It is omitted since it follows directly as that of
Theorem 11 by using (42) with 𝑎 = 𝑎(𝑡) = 𝑡 − 𝜁, for all 𝑡 ∈
R

0+
.

The following auxiliary result is useful to then formulate
the solution calculation under a finite truncation of the
infinite series associated with the Jackson integral.

Lemma 13. The following properties hold.

(i) For any 𝜀 ∈ R
+
and any finite real𝑇

1
> 𝜀 and𝑇

2
> 𝜁+𝜀,

the limits below exist:

lim
𝑁→∞

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) = 0; 𝑡 ∈ [𝜀, 𝑇

1
) , (64a)

lim
𝑁→∞

[𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − 𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
(𝑡 − 𝜁))] = 0;

𝑡 ∈ [𝜁 + 𝜀, 𝑇
2
) .

(64b)

(ii) Assume, furthermore, that the solution 𝑥 : R
0+
→ R𝑛

of (61) has the following property:

lim sup
𝑡→∞

(sup
𝑖≥𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑞
𝑖
𝑡)

𝑡𝛼
−
𝑥 (𝑞

𝑖

(𝑡 − 𝜁))

(𝑡 − 𝜁)
𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

− 𝑂(𝑡 − 𝜁)
𝛼

) = 0.

(65)

Then, the limit below exists:

lim
𝑡→∞

lim
𝑁→∞

[𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − 𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
(𝑡 − 𝜁))] = 0. (66)

Proof. One gets from Lemma 10, (48) that

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑁+1

𝑘

∑

𝑗=0

(−1)
𝑗

𝑞
𝑖

(1 − 𝑞𝑖+1) (1 − 𝑞)
𝑘
(
𝑘

𝑗
)

× (
𝑥 (𝑞

𝑗+𝑖

(𝑡 − 𝜁))

(𝑡 − 𝜁)
𝛼

−
𝑥 (𝑞

𝑗+𝑖
𝑡)

𝑡𝛼
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2
𝑞
𝑁+1

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

× sup
𝑖≥𝑁

[
1

(𝑡 − 𝜁)
𝛼
(
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

(𝑡 − 𝜁))
󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

𝑡)
󵄩󵄩󵄩󵄩󵄩
)] ;

∀𝑡 (≥ 𝜁) ∈ R
0+

(67)

since

∞

∑

𝑖=𝑁+1

𝑞
𝑖

1 − 𝑞𝑖+1
≤

∞

∑

𝑖=𝑁+1

𝑞
𝑖

1 − 𝑞𝑖

≤

∞

∑

𝑖=𝑁+1

𝑞
𝑖

1 − 𝑞𝑁+1
≤

𝑞
𝑁+1

(1 − 𝑞) (1 − 𝑞𝑁+1)
.

(68)

In a similar way, one can obtain

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩
≤

𝑞
𝑁+1

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

× sup
𝑖≥𝑁

[
1

𝑡𝛼
(
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

𝑡)
󵄩󵄩󵄩󵄩󵄩
)] ; ∀𝑡 ∈ R

0+

(69)

and hence Property (i) follows since one has from (67) and
(69) for some finite positive real constants 𝑀

1
= 𝑀(𝜀, 𝑇

1
)

and𝑀
2
= 𝑀(𝜁 + 𝜀, 𝑇

2
) that

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩
≤

𝑞
𝑁+1

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

× sup
𝜀≤𝑡≤𝑇1

sup
𝑖≥𝑁

[
1

𝜀𝛼
(
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

(𝑡))
󵄩󵄩󵄩󵄩󵄩
)]

≤
𝑞
𝑁+1
𝑀

1

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

; ∀𝑡 ∈ [𝜀, 𝑇
1
) ,

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − 𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
(𝑡 − 𝜁))

󵄩󵄩󵄩󵄩󵄩

≤
2𝑞

𝑁+1
𝑀

2

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

; ∀𝑡 ∈ [𝜁 + 𝜀, 𝑇
2
) .

(70)
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Note that if the solution of (61) satisfies (65) then

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=𝑁+1

𝑘

∑

𝑗=0

(−1)
𝑗

𝑞
𝑖

(1 − 𝑞𝑖+1) (1 − 𝑞)
𝑘

× (
𝑘

𝑗
)(
𝑥 (𝑞

𝑗+𝑖

(𝑡 − 𝜁))

(𝑡 − 𝜁)
𝛼

−
𝑥 (𝑞

𝑗+𝑖
𝑡)

𝑡𝛼
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝐾

𝑆
𝑞
𝑁+1

1 − 𝑞
sup
𝑖≥𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑥 (𝑞

𝑖

(𝑡 − 𝜁))

(𝑡 − 𝜁)
𝛼
−
𝑥 (𝑞

𝑖
𝑡)

𝑡𝛼
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(71)

Then,

lim sup
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩

≤
𝐾

𝑆
𝑞
𝑁+1

1 − 𝑞
lim sup
𝑡→∞

(sup
𝑖≥𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑥 (𝑞

𝑖

(𝑡 − 𝜁))

(𝑡 − 𝜁)
𝛼
−
𝑥 (𝑞

𝑖
𝑡)

𝑡𝛼
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

(72)

so that

0 ≤ lim sup
𝑡→∞

lim
𝑁→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩

≤ ( lim
𝑁→∞

𝐾
𝑆
𝑞
𝑁+1

1 − 𝑞
) lim sup

𝑡→∞

(0(𝑡 − 𝜁)
𝛼

) = 0

(73)

and then ∃ lim
𝑡→∞

lim
𝑁→∞

‖𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡−𝜁))−𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)‖ =

0. Hence, Property (ii) follows.

The subsequent result follows directly from Theorem 12
and Lemma 13.

Theorem 14. The following properties hold for 𝛼 ∈ R
0+
.

(i) If 𝛼 ∉ Z
0+

so that 𝑘 = [Re𝛼] + 1 then one gets

lim
𝑁→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑡) − (
𝑃

∗

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡)

+ 𝑃
∗

(1 − 𝑞)
𝑘−𝛼

(𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁))

−𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0;

𝑡 ∈ 𝑇𝑅
𝑘𝛼

(74)

for any real 𝜀 ∈ R
+
and 𝜁 + 𝜀 ≤ 𝑇 < ∞, where

𝑇𝑅
𝑘𝛼
:= {𝑡 ∈ [𝜁 + 𝜀, 𝑇) :

(
𝑃

∗

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} .

(75)

If, in addition, 𝐴
0

is nonsingular and
lim sup

𝑡→∞
(sup

𝑖≥𝑁
‖𝑥(𝑞

𝑖
𝑡)/𝑡

𝛼
− 𝑥(𝑞

𝑖
(𝑡 −

𝜁))/(𝑡 − 𝜁)
𝛼

‖ − 𝑂(𝑡 − 𝜁)
𝛼

) = 0 then

lim
𝑡→∞

lim
𝑁→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑡) + 𝐴
−1

0
(𝑡)

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡)

+ 𝑃
∗

(1 − 𝑞)
𝑘−𝛼

(𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁))

−𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)) )

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(76)

(ii) If 𝑘 = (𝛼 ∈ Z
0+
) then one gets

lim
𝑁→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑡) − (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 𝑢 (𝑡)

+ 𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0;

𝑡 ∈ 𝑇𝑅
𝛼

(77)

for any real 𝜀 ∈ R
+
and 𝜁 + 𝜀 ≤ 𝑇 < ∞, where

𝑇𝑅
𝛼
: = {𝑡 ∈ [𝜁 + 𝜀, 𝑇) :

(
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡)) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} .

(78)
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If, in addition, 𝐴
0
is nonsingular and lim sup

𝑡→∞

(sup
𝑖≥𝑁
‖𝑥(𝑞

𝑖
𝑡)/𝑡

𝛼
−𝑥(𝑞

𝑖
(𝑡−𝜁))/(𝑡 − 𝜁)

𝛼

‖−𝑂(𝑡 − 𝜁)
𝛼

) =

0 then

lim
𝑡→∞

lim
𝑁→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑡) + 𝐴
−1

0
(𝑡)

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + 𝐵 (𝑡) 𝑢 (𝑡) + 𝑆

𝑁(𝑡−𝜁)

× (𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(79)

4. Nonnegativity of the 𝑞-Solutions of Caputo
Fractional Order 𝛼

The following two results hold for the nonnegativity for
all time of the solutions of (55) under certain nonnegative
controls.

Theorem 15. Consider the Caputo fractional 𝑞-differential
system of order 𝛼 ∈ R

0+
(55) under a piecewise-continuous

control vector function 𝑢 : R
0+
→ R𝑛

0+
and any set of

vector functions of initial conditions 𝜑
𝑗
: [−ℎ, 0] → R𝑛

0+
,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑘 − 1 ∪ {0}. Assume also that 𝛼 ∉ Z
0+
, 𝐵(𝑡) =

(𝑏
𝑖𝑗
(𝑡)) ∈ R𝑛×𝑛

+
is a monomial diagonal matrix (i.e., 𝑏

𝑖𝑖
>

0 and 𝑏
𝑖𝑗
= 0; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ( ̸= 𝑖) ∈ 𝑛) and that the control

components satisfy the constraints for some𝑁 ∈ Z
+
and some

real nonnegative strictly decreasing sequence {𝜀
𝑛
}:

𝑢
𝑖
(𝑡)

≥ max(0 , 𝑏−1
𝑖𝑖
(𝑡)

× ( (𝑃
𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑒
𝑇

𝑖
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

]

−

𝑝

∑

𝑗=1

𝑒
𝑇

𝑖
𝐴

𝑗
𝑥 (𝑡 − ℎ

𝑗
))) ; ∀𝑖 ∈ 𝑛, ∀𝑡 ∈ R

0+
,

(80)

where 𝑒
𝑖
is the unit Euclidean vector of R𝑛 with its 𝑖th

component being one.Then, the solution of (55) is nonnegative,
that is, 𝑥 : [−ℎ, 0] ∪ R

0+
→ R𝑛

0+
under a nonnegative real

control 𝑢 : R
0+
→ R𝑛

0+
if one of the following conditions holds.

(C1) Either (𝑃
𝑁
+ 𝜌

𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1
𝑡
𝛼
> 𝐴

0𝑖𝑖
(𝑡) > 0 or

𝐴
0𝑖𝑖
(𝑡) ≤ 0 with lim sup

𝑡→∞
𝐴

0𝑖𝑖
(𝑡) < 0 and 𝐴

0𝑖𝑗
(𝑡) = 0,

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ( ̸= 𝑖) ∈ 𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+

or
(C2) (−𝐴

0
(𝑡)) ∈ 𝑀R𝑛×𝑛

+
, 𝐴

0𝑖𝑖
(𝑡) = −(𝑃

𝑁
+

𝜌
𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1

𝑡
𝛼,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑛,𝐴

0𝑖𝑗
(𝑡) ≤ 0with𝐴

0𝑖𝑗
(𝑡) < 0

for only one 𝑗 ∈ 𝑛 for each 𝑖 ∈ 𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+
.

Proof. Since 𝛼 ∉ Z
0+
then 𝑘 = [Re𝛼] + 1 and one gets from

(55)–(58), (49), and (80) that

𝑥 (𝑡) ≥ (
𝑃
𝑁
+ 𝜌

𝑁

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒]

]

+𝐵 (𝑡) 𝑢 (𝑡)) ≥ 0;

∀𝑡 ∈ R
0+

(81)

since (((𝑃
𝑁
+ 𝜌

𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1
𝑡
𝛼
)𝐼 − 𝐴

0
(𝑡))

−1

∈

R𝑛×𝑛

+
for all 𝑡 ∈ R

0+
under any of conditions (C1) or

(C2) where 𝑒 ∈ R𝑛 is a real vector with all its components
being one, since

(

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒

+𝐵 (𝑡) 𝑢 (𝑡)) ≥ 0; ∀𝑡 ∈ R
0+

(82)

from (80) and any of (C1)-(C2) implies the existence of
(((𝑃

𝑁
+ 𝜌

𝑁
)/(1 − 𝑞)

2𝛼−𝑘+1
𝑡
𝛼
)𝐼 − 𝐴

0
(𝑡))

−1

∈ R𝑛×𝑛

+
; for all 𝑡 ∈

R
0+
.

Theorem 16. Under similar assumptions for the control, the
matrix 𝐵 and the initial conditions as in Theorem 15, assume
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that 𝛼 = 𝑘 ∈ Z
0+
, 𝐵(𝑡) = (𝑏

𝑖𝑗
(𝑡)) ∈ R𝑛×𝑛

+
and that the control

components satisfy the constraints

𝑢
𝑖
(𝑡) ≥ max(0, 𝑏−1

𝑖𝑖
(𝑡)

× (𝑒
𝑇

𝑖
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

𝑝

∑

𝑗=1

𝑒
𝑇

𝑖
𝐴

𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
))) ;

∀𝑖 ∈ 𝑛, ∀𝑡 ∈ R
0+

(83)

for some𝑁 ∈ Z
+
and some real nonnegative strictly decreasing

sequence {𝜀
𝑛
}. Then, 𝑥 : [−ℎ, 0] ∪ R

0+
→ R𝑛

0+
under a

nonnegative real control 𝑢 : R
0+
→ R𝑛

0+
if one of the following

conditions holds.
(C3) Either (1 − 𝑞)𝑘−𝛼/(1 − 𝑞)𝛼+1𝑡𝛼 > 𝐴

0𝑖𝑖
(𝑡) > 0 or

𝐴
0𝑖𝑖
(𝑡) ≤ 0 with lim sup

𝑡→∞
𝐴

0𝑖𝑖
(𝑡) < 0 and 𝐴

0𝑖𝑗
(𝑡) =

0for all 𝑖, 𝑗 ( ̸= i) ∈ 𝑛; for each 𝑡 ∈ R
0+
, or

(C4) (−𝐴
0
(𝑡)) ∈ 𝑀R𝑛×𝑛

+
with 𝐴

0𝑖𝑖
(𝑡) = −(1 − 𝑞)

𝑘−𝛼
/(1 −

𝑞)
𝛼+1
𝑡
𝛼; 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑛 and𝐴

0𝑖𝑗
(𝑡) ≤ 0 with𝐴

0𝑖𝑗
(𝑡) < 0 for only

one 𝑗 ∈ 𝑛 for each 𝑖 ∈ 𝑛; for each 𝑡 ∈ R
0+
.

Proof. Since 𝛼 (=k) ∈ Z
0+
, one gets from (55)–(58), (49), and

(83) that

𝑥 (𝑡) ≥ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒]

]

+𝐵 (𝑡) 𝑢 (𝑡)) ≥ 0;

∀𝑡 ∈ R
0+

(84)

since there is ((1/(1 − 𝑞)𝛼+1𝑡𝛼)𝐼 − 𝐴
0
(𝑡))

−1

∈ R𝑛×𝑛

+
, for all 𝑡 ∈

R
0+
under any of conditions (C3) or (C4). Then,

𝑥 (𝑡) ≥ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)

+ 𝐵 (𝑡) 𝑢 (𝑡) − (
𝛾

𝑞𝑘
)

𝑁+1
(𝛼 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒) ≥ 0; ∀𝑡 ∈ R
0+

(85)

from (83) and any of conditions (C3) or (C4) imply from
Proposition 7 the existence of ((1/(1 − 𝑞)𝛼+1𝑡𝛼)𝐼 − 𝐴

0
(𝑡))

−1

∈

R𝑛×𝑛

+
, for all 𝑡 ∈ R

0+
.

Remark 17. If the 𝑞-Caputo fractional differential system (61)
is considered instead of (55), Theorems 15 and 16 apply with
the replacements

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩
󳨀→
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩
;

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩
󳨀→
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑁(𝑡−𝜁)

(𝑞
𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)
󵄩󵄩󵄩󵄩󵄩

(86)

for any given 𝜁 ∈ R
+
and for all 𝑡 (≥ 𝜁)∈ R

+
with the second

replacement leading to the replacement below in (80)–(85)
from (67) so as to keep the validity of both theorems under
themodified nonnegative controls (80) and (83), respectively:

(
𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

󳨀→ 2
𝑞
𝑁+1

(1 − 𝑞)
𝑘+1

(1 − 𝑞𝑁+1)

× sup
𝑖≥𝑁

[
1

(𝑡 − 𝜁)
𝛼
(
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

(𝑡 − 𝜁))
󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩󵄩
𝑥 (𝑞

𝑗+𝑖

𝑡)
󵄩󵄩󵄩󵄩󵄩
)] ;

∀𝑡 (≥ 𝜁) ∈ R
0+
.

(87)

Theorem 15 is extendable for a nondiagonal square or a
rectangular control matrix as follows.

Theorem 18. Consider (55) with 𝛼 ∉ Z
0+

under a piecewise-
continuous control vector function 𝑢 : R

0+
→ R𝑚

0+
,

with 𝑚 ≤ 𝑛, and any set of vector functions of initial
conditions 𝜑

𝑗
: [−ℎ, 0] → R𝑛

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝑘 − 1 ∪ {0}.

Assume also that 𝐵(𝑡) = (𝑏
𝑖𝑗
(𝑡)) ∈ R𝑛×𝑚

+
has positive rows

𝑏
𝑇

𝑖
(𝑡) = (𝑏

𝑖1
(𝑡), 𝑏

𝑖2
(𝑡), . . . , 𝑏

𝑖𝑚
(𝑡)) ∈ R𝑛

+
, that the control

components of 𝑢(𝑡) are generated as 𝑢
𝑗
(𝑡) = 𝜆

𝑗
(𝑡)𝑚(𝑡), where
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𝜆
𝑗
: R

0+
→ R

0+
and the solution nonnegativity lower-

bounding function 𝑚 : R
0+
→ R

+
satisfy the constraints

inf
𝑡∈R0+min

𝑖∈𝑛
(∑

𝑚

𝑗=1
𝑏
𝑖𝑗
(𝑡)𝜆

𝑗
(𝑡)) > 0, and

𝑚(𝑡) ≥ max
𝑖∈𝑛

{

{

{

(

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝜆

𝑗
(𝑡))

−1

× ( (𝑃
𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

(
𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

]

−

𝑝

∑

𝑗=1

𝑒
𝑇

𝑖
𝐴

𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − 𝑒

𝑇

𝑖
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡))
}

}

}

;

∀𝑡 ∈ R
0+

(88)

for some 𝑁 ∈ Z
+
and some nonnegative strictly decreasing

sequence {𝜀
𝑛
}. Then, the solution of (55) is nonnegative under

a nonnegative real control if either (C1) or (C2) of Theorem 15
holds.

Theproof ofTheorem 18 is direct and then omitted. Close
extensions to Theorem 18 for Theorem 16 (𝛼 = 𝑘 ∈ Z

0+
) and

for Remark 17 (the Caputo fractional derivative operator is
defined on finite sliding intervals) can be directly made for a
nondiagonal square or a rectangular control matrix.

Theorem 19. Consider (55) under any set of bounded vector
functions of initial conditions 𝜑

𝑗
: [−ℎ, 0] → R𝑛

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈

𝑘 − 1 ∪ {0}. Assume also that 𝐵(𝑡) ∈ R𝑛×𝑚

+
, with 𝑚 ≥ 𝑛 and

rank 𝐵(𝑡) = 𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+
, and that the following control

law is used for some given bounded vector function 𝑢
0
: R

0+
→

R𝑚

0+
:

𝑢 (𝑡) = 𝐵
𝑇

(𝑡) (𝐵 (𝑡) 𝐵
𝑇

(𝑡))
−1

𝑢
1
(𝑡) , (89)

𝑢
1
(𝑡) = 𝑢

0
(𝑡) −

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
)

+ (𝑃
𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒]

]

.

(90)

Then, the following properties hold.

(i) The solution of (55) is nonnegative and bounded if 𝛼 ∉
Z

0+
and either condition (C1) or condition (C2) of Theorem 15

holds. If, in addition, 𝑢
0
(𝑡) → 0 as 𝑡 → ∞ then the solution

𝑥 : R
0+
→ R𝑚

0+
of (55) converges asymptotically to 𝑥

𝑒
= 0

so that (55) is globally asymptotically stable for any control law
and any set of vector functions of initial conditions satisfying
the given constraints.

(ii) Property (i) also holds if 𝛼 = 𝑘 ∈ Z
0+

and either
condition (C3) or condition (C4) of Theorem 16 holds.

Proof. Since rank 𝐵(𝑡) = 𝑛 for all 𝑡 ∈ R
0+

and, since 𝑚 ≥ 𝑛,
the right generalized inverse of 𝐵(𝑡), 𝐵−1right(𝑡) = (𝐵(𝑡)𝐵

𝑇
(𝑡))

−1

exists for all 𝑡 ∈ R
0+

and then (89) is well-posed. One gets
fromTheorem 15, (84), after substituting (89) into (81)

𝑥 (𝑡) ≥ (
𝑃
𝑁
+ 𝜌

𝑁

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

𝑢
0
(𝑡) ≥ 0;

∀𝑡 ∈ R
0+

(91)

since 𝑢
0
: R

0+
→ R𝑚

0+
and either condition (C1) or condition

(C2) of Theorem 15 holds. Then, 𝑥 : R
0+
→ R𝑛

0+
and it is

bounded since 𝑢
0
: R

0+
→ R𝑚

0+
is bounded. Note also that

a similar upper-bounding expression for 𝑥(𝑡) can be got by
rearranging signs in (81) resulting to be

𝑥 (𝑡) ≤ (
𝑃
𝑁
+ 𝜌

𝑁

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) − (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) − (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒]

]

+ 𝐵 (𝑡) 𝑢 (𝑡)) ≥ 0;

∀𝑡 ∈ R
0+

(92)
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so that

0 ≤ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

𝑢
0
(𝑡) ≤ 𝑥 (𝑡)

≤ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (𝑢
0
(𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒) .

(93)

Thus, if 𝑢
0
(𝑡) → 0 as 𝑡 → ∞ then 𝑥(𝑡) → 0 as 𝑡 → ∞

since (𝛾/𝑞𝑘)
𝑁+1

(𝑘 + 1)(‖𝑥(0)‖ + 𝜀
𝑁
)/(1 − 𝛾)(1 − 𝑞)

𝑘
𝑡
𝛼
→ 0

as 𝑡 → ∞ and Property (i) has been proved. Property (ii) is
similar to the solution satisfying

𝑥 (𝑡) ≥ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

𝑢
0
(𝑡) ≥ 0; ∀𝑡 ∈ R

0+
.

(94)

Note that (𝛾/𝑞𝑘)
𝑁+1

(𝑘 + 1)(‖𝑥(0)‖ + 𝜀
𝑁
)/(1 − 𝛾)(1 − 𝑞)

𝑘
𝑡
𝛼

converges to zero as𝑁 → ∞ and as 𝑡 → ∞. Thus, for any
given 𝜀 ∈ R

+
and𝑁 ∈ Z

+
there is 𝑡

0
= 𝑡

0
(𝑁, 𝜀) ∈ R

+
such that

(
𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀;

∀𝑡 (≥ 𝑡
0
) ∈ R

+
.

(95)

As a result, if 𝑢
1
(𝑡) in (90) is replaced with

𝑢
1
(𝑡) = 𝑢

0
(𝑡) −

𝑝

∑

𝑗=1

𝐴
𝑗
(𝑡) 𝑥 (𝑡 − ℎ

𝑗
) + (𝑃

𝑁
+ 𝜌

𝑁
) (1 − 𝑞)

𝑘−𝛼

× [

[

𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1

×
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

𝑡
𝛼

0

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒]

]

.

(96)

The following result is a consequence of Theorem 19 and
Theorems 15-16 under a control law given by (89) and (96).

Corollary 20. Consider (55) under any set of bounded vector
functions of initial conditions 𝜑

𝑗
: [−ℎ, 0] → R𝑛

0+
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈

𝑘 − 1 ∪ {0}. Assume also that 𝐵(𝑡) ∈ R𝑛×𝑚

+
, with 𝑚 ≥ 𝑛 and

rank 𝐵(𝑡) = 𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ R
0+
.Then, the following properties

hold.
(i) If 𝛼 ∉ Z

0+
and the control law (89)-(90) is replaced

with (89) and (96) then under either condition (C1) or
condition (C2) of Theorem 15

𝑥 (𝑡) ≥ (
(𝑃

𝑁
+ 𝜌

𝑁
)

(1 − 𝑞)
2𝛼−𝑘+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (𝑢
0
(𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
1

𝑡
𝛼

0

−
1

𝑡𝛼
) 𝑒) ≥ 0;

∀𝑡 ∈ R
0+
,

(97)

lim inf
𝑡→∞

(𝑥 (𝑡) − 𝐴
−1

0
(𝑡) (𝑢

0
(𝑡) + 𝜀𝑒)) ≥ 0 (98)

for any given 𝜀 ∈ R
+
and 𝑁 ∈ Z

+
and some 𝑡

0
=

𝑡
0
(𝑁, 𝜀) ∈ R

+
. As a result, lim inf

𝑡→∞
(𝑥(𝑡)−𝐴

−1

0
𝜀𝑒) ≥

0 if 𝑢
0
(𝑡) → 0 as 𝑡 → ∞.

(ii) If 𝛼 = 𝑘 ∈ Z
0+

and (90) is replaced with (96) for 𝑘 = 𝛼
then under either condition (C3) or condition (C4) of
Theorem 16

𝑥 (𝑡) ≥ (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (𝑢
0
(𝑡) + (

𝛾

𝑞𝑘
)

𝑁+1
(𝑘 + 1) (‖𝑥 (0)‖ + 𝜀

𝑁
)

(1 − 𝛾) (1 − 𝑞)
𝑘

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
1

𝑡
𝛼

0

−
1

𝑡𝛼
) 𝑒) ≥ 0;

∀𝑡 ∈ R
0+

(99)

and (98) holds.

Example 21. FromTheorem 11, (57), one concludes that (55),
under any set of nonnegative set of real vector functions of
initial conditions on [−ℎ, 0] and any admissible nonnegative
control vector function, has a limiting nonnegative 𝑞-solution
of (Caputo) fractional order 𝛼 ∈ Z

+
satisfying

lim inf
𝑡→∞

(𝑥 (𝑡) − (
1

(1 − 𝑞)
𝛼+1

𝑡𝛼
𝐼 − 𝐴

0
(𝑡))

−1

× (

𝑝

∑

𝑖=1

𝐴
𝑖
(𝑡) 𝑥 (𝑡 − ℎ

𝑖
) + 𝐵 (𝑡) 𝑢 (𝑡))) ≥ 0

(100)

if ∃((1/(1 − 𝑞)𝛼+1𝑡𝛼)𝐼 − 𝐴
0
(𝑡))

−1for all 𝑡 ∈ R
0+
in order that

the 𝑞-solution of (Caputo) fractional order 𝛼 ∈ Z
+
of (55)

exist for 𝑡 ∈ R
0+

some of the two sets of constraints below
holds:
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(1) One has lim inf
𝑡→∞
(𝐴

0
(𝑡) − (1/(1 − 𝑞)

𝛼+1
𝑡
𝛼
)𝐼)

−1

≤

0, lim inf
𝑡→∞

𝐴
𝑖
(𝑡) ≥ 0; for all 𝑖 ∈ 𝑝,

lim inf
𝑡→∞

𝐵(𝑡) ≥ 0.
The first above condition implies
∃ lim

𝑡→∞
(−𝐴

−1

0
(𝑡)) = −𝐴

−1

0∞
≥ 0 so that (−𝐴

0∞
) is a

monomialmatrix which implies that if𝐴
0∞
∈ 𝑀R𝑛×𝑛

then it is diagonal nonsingular with negative diagonal
entries.

(2) One has ∃ lim
𝑡→∞
(−𝐴

−1

0
(𝑡)) = −𝐴

−1

0∞
,

−𝐴
−1

0∞
(lim inf

𝑡→∞
𝐴

𝑖
(𝑡)) ≥ 0; for all 𝑖 ∈ 𝑝,

−𝐴
−1

0∞
(lim inf

𝑡→∞
𝐵(𝑡)) ≥ 0.

Note that it has been used that for 𝛼 > 0, 𝑆
𝑁
(𝑞

𝑁
𝑡) → 0,

𝑆
𝑁
(𝑞

𝑁
𝑡) → 0 as 𝑡 → ∞, for all 𝑁 ∈ Z

0+
from (47)-(48).

If 𝛼 = 0 then the existence of 𝐴−1

0∞
is not required

and the first constraint of each of the above sets is changed
to the existence of lim inf

𝑡→∞
(𝐴

0
(𝑡) − (1 − 𝑞)

−1
𝐼)

−1
≤

0, that is, lim sup
𝑡→∞
𝐴

0
(𝑡) ≤ (1 − 𝑞)

−1

𝐼 provided that
lim sup

𝑡→∞
‖𝐴

0
(𝑡)‖

2
< (1 − 𝑞)

−1 to guarantee the nonsingu-
larity of (𝐴

0
(𝑡) − (1 − 𝑞)

−1
𝐼).

If 𝛼 ∉ Z
0+

and 𝑘 = [𝛼] + 1 then the above constraints
have to be amended via (56) with the replacement ((1/(1 −
𝑞)

𝛼+1
𝑡
𝛼
)𝐼) → ((𝑃

∗
/(1 − 𝑞)

2𝛼−k+1
𝑡
𝛼
)𝐼).

On the other hand, note that the various above results and
properties given in the above remarks within this section lead
directly to sufficiency-type conditions for the nonnegativity
of the quantum fractional solutions and their limit values
under the proposed control laws.

Remark 22. If the 𝑞-Caputo fractional differential system
(61) is considered instead of (55), then Theorem 19 and
Corollary 20 hold under modified equations (90), (92),
(93), (95), and (96) being subject to replacements (87) and
𝑆
𝑁𝑡
(𝑞

𝑁
𝑡) → (𝑆

𝑁(𝑡−𝜁)
(𝑞

𝑁
(𝑡 − 𝜁)) − 𝑆

𝑁𝑡
(𝑞

𝑁
𝑡)) for any given

𝜁 ∈ R
+
and for all 𝑡 (≥ 𝜁) ∈ R

+
(see Remark 17). On the

other hand, modified equations (97) and (99) remain valid
under the above replacements together with the additional
replacements 1/𝑡𝛼

0
→ (1/𝑡

𝛼

0
− 1/(𝑡

0
− 𝜁)

𝛼

) and 1/𝑡𝛼 →

(1/𝑡
𝛼
−1/(𝑡 − 𝜁)

𝛼

). A variant of the disposal can bemade with
the replacement of 𝜁 with a function 𝜁 : R

0+
→ R

+
with

𝜁(𝑡) ≤ 𝑡, for all 𝑡 ∈ R
0+
.

Remark 23. In the delay-free case and in the case that the
delays are time-varying, the given formalism is extendable
under minor modifications. For instance, assume that the
delays satisfy the constraints 𝑡 − ℎ

𝑖
(𝑡) = 𝑞

−𝑐𝑖(𝑡)𝑡, for all 𝑖 ∈ 𝑝,
for all 𝑡 ∈ R

0+
for a set of positive real constants satisfying

𝑐
𝑖
(𝑡) < 𝑐

𝑖+1
(𝑡), for all 𝑖 ∈ 𝑝 − 1, for all 𝑡 ∈ R

0+
. Thus,

an appropriate solution of (61) in discretized form can be
organized on intervals [𝑡

𝑖
− 𝜁

𝑖
(𝑡i), 𝑡𝑖], for all 𝑖 ∈ Z+

according
to the subsequent algorithm.

Step 1 (initial point). Select an initial point 𝑡
1
∈ R

0+
.

Step 2 (sequence of points to construct the discrete solution).
Fix a strictly increasing string of positive real numbers

(𝑡
1
, 𝑡

2
, 𝑡

3
, . . .) such that 𝑡

𝑖+1
= 𝑞

−𝑚𝑖(𝑡𝑖)𝑡
𝑖
for all 𝑖 ∈ Z

+
and some

given sequence {𝑚
𝑖
(𝑡

𝑖
)} of positive integers.

Step 3 (sequence of interval lengths to construct the discrete
solution recursively). Fix a string of interval (nonzero) mea-
sures (𝜁

1
(𝑡

1
), 𝜁

2
(𝑡

2
), 𝜁

3
(𝑡

3
), . . .), which are the measures of the

computation intervals [𝑡
𝑖
− 𝜁

𝑖
(𝑡

𝑖
), 𝑡

𝑖
], for all 𝑖 ∈ Z

+
in (61),

such that 𝜁
𝑖+1
(𝑡

𝑖+1
) = 𝑞

−𝑗𝑖(𝑡𝑖+1)𝑡
𝑖
, for all 𝑖 ∈ Z

+
for some

sequence {𝑗
𝑖
(𝑡

𝑖+1
)}, of nonnegative integers, with 𝑗

𝑖
(𝑡

𝑖+1
) ≤

𝑚
𝑖
(𝑡

𝑖
), satisfying 1 ≤ 𝑞−𝑚𝑖(𝑡𝑖) − 𝑞−𝑗𝑖(𝑡𝑖+1), for all 𝑖 ∈ Z

+
so as

to guarantee the algorithm running constraints:

𝑡
𝑖
≤ (𝑞

−𝑚𝑖(𝑡𝑖) − 𝑞
−𝑗𝑖(𝑡𝑖+1)) 𝑡

𝑖
< 𝑡

𝑖+1
= 𝑞

−𝑚𝑖(𝑡𝑖)𝑡
𝑖
; ∀𝑖 ∈ Z

+
.
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