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This paper concerns initial boundary value problem for 3-dimensional compressible bipolar Navier-Stokes-Poisson equations
with density-dependent viscosities. When the initial data is large, discontinuous, and spherically symmetric, we prove the global
existence of the weak solution.

1. Introduction

Bipolar Navier-Stokes-Poisson (BNSP) has been used to sim-
ulate the transport of charged particles under the influence
of electrostatic force governed by the self-consistent Poisson
equation. In this paper, we consider the initial boundary value
problem (IBVP) for 3-dimensional isentropic compressible
BNSP with density-dependent viscosities:

𝜌
𝑡
+ div (𝜌U) = 0,

(𝜌U)
𝑡
+ div (𝜌U ⊗ U) + ∇𝑃 (𝜌)

= div (ℎ (𝜌)D (U)) + ∇ (𝑔 (𝜌) divU) + 𝜌∇Φ,

𝑛
𝑡
+ div (𝑛V) = 0,

(𝑛V)
𝑡
+ div (𝑛V ⊗ V) + ∇𝑃 (𝑛)

= div (ℎ (𝑛)D (V)) + ∇ (𝑔 (𝑛) divV) − 𝑛∇Φ,

ΔΦ = 𝜌 − 𝑛,

(1)

where the unknown functions are the charges densities
𝜌(x, 𝑡), 𝑛(x, 𝑡), the velocities U(x, 𝑡), V(x, 𝑡), the pressure
functions 𝑃(𝜌) = 𝜌𝛾, 𝑃(𝑛) = 𝑛𝛾 (𝛾 > 1), and the electrostatic
potential Φ(x, 𝑡). In (1), the strain tensors D(U) and D(V)
are defined by D(U) = (1/2)(∇U + ∇U𝑇), D(V) = (1/2)

(∇V + ∇V𝑇), and the Lamé viscosity coefficients satisfying
ℎ(𝜌) ≥ 0, ℎ(𝜌) + 𝑁𝑔(𝜌) ≥ 0, ℎ(𝑛) ≥ 0, ℎ(𝑛) + 𝑁𝑔(𝑛) ≥ 0.

There have been extensive studies on the global existence
and asymptotic behavior of weak solution to the unipolar
Navier-Stokes-Poisson system (NSP). The global existence of
weak solution to NSP with general initial data was proved in
[1, 2]. The quasineutral and some related asymptotic limits
were studied in [3–5]. In the case when the Poisson equation
describes the self-gravitational force for stellar gases, the
global existence of weak solution and asymptotic behavior
were also investigated together with the stability analysis;
refer to [6, 7] and the references therein. In addition, Hao
and Li [8] proved the global well-posedness of NSP in the
Besov space. Li et al. in [9] proved the global existence and
the optimal time convergence rates of the classical solution.

For bipolar Navier-Stokes-Poisson system, there are also
abundant results on the existence and asymptotic behavior
of the global solution. Li et al. [10] proved optimal 𝐿2
time convergence rate for the global classical solution for a
small initial perturbation of the constant equilibrium state.
The optimal time decay rate of global strong solution was
established in [11, 12]. Liu and Lian in [13] proved global
existence of weak solution to free boundary value problem.
Liu et al. [14] established global existence and asymptotic
behavior of weak solution to initial boundary value problem
in one-dimensional case. Lin et al. [15] studied the global
existence and uniqueness of the strong solution in hybrid
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Besov spaces with the initial data close to an equilibrium
state. As a continuation of the study in this direction, in this
paper, we will deal with the initial boundary value problem
for BNSP.

The rest of this paper is as follows. In Section 2, we state
themain results of this paper. In Section 3, we give the entropy
estimates and the pointwise bounds of the density of the
smooth approximate solution. In Section 4, we prove the
global existence of weak solution.

2. Main Results

For the sake of simplicity, the viscosity terms are assumed to
satisfy ℎ(𝜌) = 𝜌, 𝑔(𝜌) = 0, ℎ(𝑛) = 𝑛, and 𝑔(𝑛) = 0, and the
strain tensors are given by D(U) = ∇U, D(V) = ∇V. Then (1)
is reduced to

𝜌
𝑡
+ div (𝜌U) = 0,

(𝜌U)
𝑡
+ div (𝜌U ⊗ U) + ∇𝜌𝛾 = 𝜌∇Φ + ∇ ⋅ (𝜌∇U) ,

𝑛
𝑡
+ div (𝑛V) = 0,

(𝑛V)
𝑡
+ div (𝑛V ⊗ V) + ∇𝑛𝛾 = −𝑛∇Φ + ∇ ⋅ (𝑛∇V) ,

ΔΦ = 𝜌 − 𝑛,

(2)

for (x, 𝑡) ∈ Ω × [0, 𝑇] with 𝑇 > 0 andΩ being the unit ball in
𝑅
3.
The boundary condition is taken as

m
1
(x, 𝑡) = 𝜌 (x, 𝑡)U (x, 𝑡) = 0,

m
2
(x, 𝑡) = 𝑛 (x, 𝑡)V (x, 𝑡) = 0,

∇Φ ⋅ ] = 0,

x ∈ 𝜕Ω,

(3)

where ] is outward pointing unit normal vector of Ω.
The initial data is

(𝜌,U, 𝑛,V, ∇Φ) (x, 0) = (𝜌
0
,U
0
, 𝑛
0
,V
0
, ∇Φ
0
) (x) , x ∈ Ω,

m
10
(x, 0) = 𝜌

0
(x)U
0
(x) ,

m
20
(x, 0) = 𝑛

0
(x)V
0
(x) ,

x ∈ Ω.
(4)

Definition 1. (𝜌,U, 𝑛,V, ∇Φ) is said to be a weak solution to
the initial boundary value problem (2)–(4) on Ω × [0, 𝑇],
provided that

0 ≤ 𝜌, 𝑛 ∈ 𝐿
∞
(0, 𝑇; 𝐿

1
(Ω) ∩ 𝐿

𝛾
(Ω)) ,

𝜌∇U, 𝑛∇V ∈ 𝐿
2
(0, 𝑇;𝑊

1,−1
(Ω)) ,

√𝜌,√𝑛 ∈ 𝐿
∞
(0, 𝑇;𝐻

1
(Ω)) ,

√𝜌 U, √𝑛 V ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)) ,

∇Φ ∈ 𝐿
∞
(0, 𝑇;𝑊

1,1
(Ω)) ,

(5)

and the equations are satisfied in the sense of distributions.
Namely, it holds for any 𝑡

2
> 𝑡
1
≥ 0 and 𝜙 ∈ 𝐶1(Ω × [0, 𝑇])

that

∫
Ω

𝜌𝜙 dx󵄨󵄨󵄨󵄨
𝑡
2

𝑡=𝑡
1

= ∫

𝑡
2

𝑡
1

∫
Ω

(𝜌𝜙
𝑡
+ 𝜌U ⋅ ∇𝜙) dx d𝑡,

∫
Ω

𝑛𝜙 dx󵄨󵄨󵄨󵄨
𝑡
2

𝑡=𝑡
1

= ∫

𝑡
2

𝑡
1

∫
Ω

(𝑛𝜙
𝑡
+ 𝑛V ⋅ ∇𝜙) dx d𝑡,

(6)

and for𝜓 = (𝜓1, 𝜓2, 𝜓3) ∈ 𝐶1(Ω×[0, 𝑇]) satisfying𝜓(x, 𝑡) = 0
on 𝜕Ω and 𝜓(x, 𝑇) = 0 that

∫
Ω

m
10
⋅ 𝜓 (x, 0) dx

+ ∫

𝑇

0

∫
Ω

[√𝜌 (√𝜌 U) ⋅ 𝜕
𝑡
𝜓 + √𝜌 U ⊗ √𝜌 U : ∇𝜓] dx d𝑡

+ ∫

𝑇

0

∫
Ω

𝜌
𝛾 div𝜓 dx d𝑡 + ∫

𝑇

0

∫
Ω

𝜌𝜓 ⋅ ∇Φ dx d𝑡

− ∫

𝑇

0

∫
Ω

𝜌∇U : ∇𝜓 dx d𝑡 = 0,
(7)

∫
Ω

m
20
⋅ 𝜓 (x, 0) dx

+ ∫

𝑇

0

∫
Ω

[√𝑛 (√𝑛 V) ⋅ 𝜕
𝑡
𝜓 + √𝑛 V ⊗ √𝑛 V : ∇𝜓] dx d𝑡

+ ∫

𝑇

0

∫
Ω

𝑛
𝛾 div𝜓 dx d𝑡 − ∫

𝑇

0

∫
Ω

𝑛𝜓 ⋅ ∇Φ dx d𝑡

− ∫

𝑇

0

∫
Ω

𝑛∇V : ∇𝜓 dx d𝑡 = 0.
(8)

Before stating the main result, we make the following
assumptions on the initial data (4):

𝜌
0
= 𝜌
0
(|x|) , U

0
= 𝑢
0
(|x|) x

𝑟
, 𝑛

0
= 𝑛
0
(|x|) ,

V
0
= V
0
(|x|) x

𝑟
,

𝜌
0
≥ 0 a.e. in Ω, 𝜌

0
∈ 𝑊
1,4
(Ω) ,

𝑛
0
≥ 0 a.e. in Ω, 𝑛

0
∈ 𝑊
1,4
(Ω) ,

m
10
= 0, a.e. on {x ∈ Ω | 𝜌

0
(x) = 0} ,

m4
10
∈ 𝐿
1
(Ω) ,

m2+𝜂
10

𝜌
1+𝜂

0

∈ 𝐿
1
(Ω) ,
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m
20
= 0, a.e. on {x ∈ Ω | 𝑛

0
(x) = 0} ,

m4
20
∈ 𝐿
1
(Ω) ,

m2+𝜂
20

𝑛
1+𝜂

0

∈ 𝐿
1
(Ω) ,

∇√𝜌0 ∈ 𝐿
2
(Ω) , ∇√𝑛0 ∈ 𝐿

2
(Ω) , ∇Φ

0
∈ 𝐿
2
(Ω) ,

(9)

where 𝜂 > 0 is small enough. It follows from (9) that

𝜌
0
∈ 𝐿
∞
(Ω) ; 𝜌

0
U2+𝜂
0

∈ 𝐿
1
(Ω) ; 𝜌

0
U2
0
∈ 𝐿
1
(Ω) ,

𝑛
0
∈ 𝐿
∞
(Ω) ; 𝑛

0
V2+𝜂
0

∈ 𝐿
1
(Ω) ; 𝑛

0
V2
0
∈ 𝐿
1
(Ω) .

(10)

Then, we have the following results for global weak
solution.

Theorem 2. Let 1 < 𝛾 < 3. If the initial data satisfies (9),
then the initial boundary value problem (2)–(4) has a global
spherically symmetric weak solution

(𝜌,U, 𝑛,V, ∇Φ) (x, 𝑡)

= (𝜌 (𝑟, 𝑡) , 𝑢 (𝑟, 𝑡)
x
𝑟
, 𝑛 (𝑟, 𝑡) , V (𝑟, 𝑡)

x
𝑟
, ∇Φ (𝑟, 𝑡)) ,

𝑟 = |x| ,

(11)

which satisfies, for all 𝑇 > 0,

𝜌 (x, 𝑡) ∈ 𝐶 ([0, 𝑇] ; 𝐿3/2 (Ω)) ,

𝑛 (x, 𝑡) ∈ 𝐶 ([0, 𝑇] ; 𝐿3/2 (Ω)) ,

√𝜌 U ∈ 𝐿
∞
([0, 𝑇] ; 𝐿

2
(Ω)) ,

√𝑛 V ∈ 𝐿
∞
([0, 𝑇] ; 𝐿

2
(Ω)) ,

∫
Ω

𝜌 (x, 𝑡)dx = ∫
Ω

𝜌
0
(x)dx,

∫
Ω

𝑛 (x, 𝑡)dx = ∫
Ω

𝑛
0
(x)dx,

∇Φ ∈ 𝐿
∞
([0, 𝑇] ;𝑊

1,3/2
(Ω)) .

(12)

Moreover,

sup
𝑡∈[0,𝑇]

∫
Ω

(
1

2
𝜌|U|2 + 1

2
𝑛 |V|2 + 1

𝛾 − 1
𝜌
𝛾

+
1

𝛾 − 1
𝑛
𝛾
+
1

2
|∇Φ|
2
)dx ≤ 𝐶,

sup
𝑡∈[0,𝑇]

∫
Ω

(
󵄨󵄨󵄨󵄨∇√𝜌

󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨∇
√𝑛
󵄨󵄨󵄨󵄨

2

)dx ≤ 𝐶,

(13)

where 𝐶 > 0 is a constant.

3. Approximate Solutions and Their Estimates

The key point of the proof of Theorem 2 is to construct
smooth approximate solution satisfying the a priori estimates

required in the 𝐿1 stability analysis. The crucial issue is to
obtain lower and upper bounds of the density. To this end,
we study the following approximate system of (2):

𝜌
𝑡
+ div (𝜌U) = 0, (14)

(𝜌U)
𝑡
+ div (𝜌U ⊗ U) − div ((𝜌 + 𝜀𝜌3/4) ∇U)

+ ∇(
𝜀

4
𝜌
3/4 divU) + ∇𝜌𝛾 = 𝜌∇Φ,

𝑛
𝑡
+ div (𝑛V) = 0,

(𝑛V)
𝑡
+ div (𝑛V ⊗ V) − div ((𝑛 + 𝜀𝑛3/4) ∇V)

+ ∇(
𝜀

4
𝑛
3/4 divV) + ∇𝑛𝛾 = −𝑛∇Φ,

ΔΦ = 𝜌 − 𝑛,

(15)

where 0 < 𝜀 < 1 is a constant.
Set 𝜌(x, 𝑡) = 𝜌(𝑟, 𝑡),U(x, 𝑡) = 𝑢(𝑟, 𝑡)(x/𝑟), 𝑛(x, 𝑡) = 𝑛(𝑟, 𝑡),

V(x, 𝑡) = V(𝑟, 𝑡)(x/𝑟), and Φ(x, 𝑡) = Φ(𝑟, 𝑡), and rewrite (15)
in the form

𝜌
𝑡
+ (𝜌𝑢)

𝑟
+
2𝜌𝑢

𝑟
= 0,

(𝜌𝑢)
𝑡
+ (𝜌𝑢

2
+ 𝜌
𝛾
)
𝑟
+
2𝜌𝑢
2

𝑟
+
2𝑢

𝑟
(𝜌 + 𝜀𝜌

3/4
)
𝑟

= ((𝜌 +
3𝜀

4
𝜌
3/4
)(𝑢
𝑟
+
2𝑢

𝑟
))
𝑟

+
𝜌

𝑟2
∫

𝑟

𝜀

(𝜌 − 𝑛) 𝑠
2d𝑠,

𝑛
𝑡
+ (𝑛V)

𝑟
+
2𝑛V
𝑟
= 0,

(𝑛V)
𝑡
+ (𝑛V2 + 𝑛𝛾)

𝑟
+
2𝑛V2

𝑟
+
2V
𝑟
(𝑛 + 𝜀𝑛

3/4
)
𝑟

= ((𝑛 +
3𝜀

4
𝑛
3/4
)(V
𝑟
+
2V
𝑟
))
𝑟

−
𝑛

𝑟2
∫

𝑟

𝜀

(𝜌 − 𝑛) 𝑠
2d𝑠,

(16)

for 𝑟 > 0.Wewill first construct the smooth solution of (16) in
the truncated region 0 < 𝜀 < 𝑟 < 1 with the initial condition

(𝜌, 𝜌𝑢) (𝑟, 0) = (𝜌
0
+ 𝜀,𝑚

10
) ,

(𝑛, 𝑛V) (𝑟, 0) = (𝑛
0
+ 𝜀,𝑚

20
) ,

(17)

and the boundary condition

𝑢 (𝑟, 𝑡)|
𝑟=𝜀

= 𝑢 (𝑟, 𝑡)|
𝑟=1

= 0,

V (𝑟, 𝑡)|
𝑟=𝜀

= V (𝑟, 𝑡)|
𝑟=1

= 0.

(18)

For the approximate solution which will have lower
bound of the density (see Lemma 8), the boundary condition
of (18) is equivalent to 𝜌𝑢(𝑟, 𝑡)|

𝑟=𝜀
= 𝜌𝑢(𝑟, 𝑡)|

𝑟=1
= 0,

𝑛V(𝑟, 𝑡)|
𝑟=𝜀

= 𝑛V(𝑟, 𝑡)|
𝑟=1

= 0.
We assume that the initial data is smooth and satisfies (9)

with constants independent of 𝜀.
In the following, we will state the energy and

entropy estimates for approximate solution (𝜌, 𝑛, 𝑢, V, Φ
𝑟
).
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First, making use of similar arguments as in [16] with
modifications, we can establish the following Lemma 3, of
which we omit the details.

Lemma 3. Let (𝜌, 𝑛, 𝑢, V, Φ
𝑟
) be smooth solution of (16)

defined on [𝜀, 1] × [0, 𝑇] with boundary conditions (18) such
that 𝜌 > 0, 𝑛 > 0. Then there exists a constant 𝐶, independent
of 𝜀, such that

∫

1

𝜀

(𝜌 (𝑟, 𝑡) + 𝑛 (𝑟, 𝑡)) 𝑟
2d𝑟 ≤ 𝐶, (19)

∫

1

𝜀

(
1

2
𝜌𝑢
2
+
1

2
𝑛V2 +

1

𝛾 − 1
𝜌
𝛾
+

1

𝛾 − 1
𝑛
𝛾
+
1

2
Φ
2

𝑟
) 𝑟
2d𝑟

+ ∫

𝑇

0

∫

1

𝜀

((𝜌 +
𝜀

4
𝜌
3/4
) (𝑟
2
𝑢
2

𝑟
+ 𝑢
2
)

+ (𝑛 +
𝜀

4
𝑛
3/4
) (𝑟
2V2
𝑟
+ V2)) d𝑟 d𝑡 ≤ 𝐶,

(20)

∫

1

𝜀

(
1

2
𝜌

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 + (log 𝜌)

𝑟
+
3𝜀

4
𝜌
−5/4

𝜌
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V + (log 𝑛)

𝑟
+
3𝜀

4
𝑛
−5/4

𝑛
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

) 𝑟
2d𝑟

+ ∫

𝑇

0

∫

1

𝜀

((𝛾𝜌
𝛾−2

+
3𝜀

4
𝛾𝜌
𝛾−9/4

) 𝜌
2

𝑟

+ (𝛾𝑛
𝛾−2

+
3𝜀

4
𝛾𝑛
𝛾−9/4

) 𝑛
2

𝑟
) 𝑟
2d𝑟d𝑡

+ ∫

𝑇

0

∫

1

𝜀

((𝜌 − 𝑛)
2

+ 𝜀 (𝜌
3/4
− 𝑛
3/4
) (𝜌 − 𝑛)) 𝑟

2d𝑟d𝑡

≤ 𝐶.

(21)

Lemma 4. Given 𝜀 > 0, there is an absolute constant 𝐶, which
is independent of 𝜀, such that

0 ≤ 𝜌 (𝑟, 𝑡) ≤
𝐶

𝜀2
, 0 ≤ 𝑛 (𝑟, 𝑡) ≤

𝐶

𝜀2
, (22)

for 𝜀 ≤ 𝑟 ≤ 1 and 𝑡 ≥ 0.

Proof. Define characteristic line: d𝑟(𝑡)/d𝑡 = 𝑢(𝑟(𝑡), 𝑡). Then,
along the particle path, (16)

1
can be solved to obtain

𝜌 (𝑟 (𝑡) , 𝑡) 𝑟
2
= 𝜌
0
(𝑟 (0)) 𝑟(0)

2
𝑒
−∫
𝑡

0
𝜕
𝑟
𝑢(𝑟(𝑠),𝑠)d𝑠

, (23)

which implies that 𝜌 ≥ 0 provided that 𝜌
0
≥ 0.

It follows from (20) and (21) that

∫

1

𝜀

𝜌
2

𝑟

𝜌
𝑟
2d𝑟 ≤ 𝐶, (24)

for some absolute constant 𝐶 independent of 𝜀.

Then, it follows from (19) and (24) that

𝜌 (𝑟, 𝑡) ≤ ∫

1

𝜀

𝜌 (𝑟, 𝑡) d𝑟 + ∫
1

𝜀

󵄨󵄨󵄨󵄨𝜕𝑟𝜌 (𝑟, 𝑡)
󵄨󵄨󵄨󵄨 d𝑟

≤
1

𝜀2
∫

1

𝜀

𝜌 (𝑟, 𝑡) 𝑟
2d𝑟 + 1

𝜀2
(∫

1

𝜀

𝜌𝑟
2d𝑟 + ∫

1

𝜀

𝜌
2

𝑟

𝜌
𝑟
2d𝑟)

≤
𝐶

𝜀2
,

(25)

for 𝜀 ≤ 𝑟 ≤ 1 and 𝑡 ≥ 0.
Similarly, we also have

0 ≤ 𝑛 (𝑟, 𝑡) ≤
𝐶

𝜀2
. (26)

The proof of the lemma is finished.

To derive a priori estimates about the velocity of the
approximate solution, the crucial step is to obtain lower
bounds of the density. For this purpose and for simplicity,
we solve the IBVP (16) in Lagrangian coordinates. Since the
process is the same, we just deal with (16)

1
-(16)
2
.

Let 𝜀 > 0 be fixed and define

𝑥 (𝑟, 𝑡) = ∫

𝑟

𝜀

𝜌𝑟
2d𝑟, 𝜏 = 𝑡. (27)

Without loss of generality, we set ∫1
𝜀
𝜌𝑟
2d𝑟 = 1. Then,

𝜕𝑥

𝜕𝑟
= 𝜌𝑟
2
,

𝜕𝑥

𝜕𝑡
= −𝜌𝑟

2
𝑢,

𝜕𝜏

𝜕𝑟
= 0,

𝜕𝜏

𝜕𝑡
= 1,

(28)

and (16)
1
-(16)
2
becomes

𝜌
𝜏
+ 𝜌
2
(𝑟
2
𝑢)
𝑥
= 0,

𝑟
−2
𝑢
𝜏
+ (𝜌
𝛾
)
𝑥
= ((𝜌

2
+
3𝜀

4
𝜌
7/4
) (𝑟
2
𝑢)
𝑥
)
𝑥

−
2𝑢

𝑟
(𝜌 + 𝜀𝜌

3/4
)
𝑥
+ 𝜌Φ
𝑥
,

(29)

for 𝜏 > 0 and 0 ≤ 𝑥 ≤ 1.
The corresponding initial data is

(𝜌, 𝜌𝑢) (𝑥, 0) = (𝜌
0
+ 𝜀,𝑚

10
) , (30)

and the boundary condition is

𝑢 (0, 𝜏) = 0, 𝑢 (1, 𝜏) = 0. (31)

For this system, the following a priori estimates hold.
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Lemma 5. For all 𝜏 ∈ [0, 𝑇], it holds that

∫

1

0

(
1

2
𝑢
2
+

1

𝛾 − 1
𝜌
𝛾−1
) d𝑥 + ∫

𝜏

0

∫

1

0

(
2𝑢
2

𝑟2
+ 𝜌
2
𝑟
4
𝑢
2

𝑥
) d𝑥 d𝑠

+ ∫

𝜏

0

∫

1

0

(
𝜀

2

𝑢
2

𝜌1/4𝑟2
+
𝜀

4
𝜌
7/4
𝑟
4
𝑢
2

𝑥
) d𝑥 d𝑠

≤ ∫

1

0

(
1

2
𝑢
2

0
+

1

𝛾 − 1
𝜌
𝛾−1

0
) d𝑥 + 𝐶 (𝜀, 𝑇) ,

(32)

0 ≤ 𝜌 (𝑥, 𝜏) ≤ 𝐶 (𝜀, 𝑇) , (33)

𝜀 ≤ 𝑟 (𝑥, 𝜏) ≤ 1, (34)

∫

1

0

𝑢
4d𝑥 + ∫

𝜏

0

∫

1

0

(
4𝑢
2

𝑟2
+ 6𝜌
2
𝑟
4
𝑢
4
𝑢
2

𝑥

+
2𝜀𝑢
4

𝜌1/4𝑟2
+ 𝜀𝜌
7/4
𝑟
4
𝑢
2
𝑢
2

𝑥
) d𝑥 d𝑠

≤ ∫

1

0

𝑢
4

0
d𝑥 + 𝐶 (𝜀, 𝑇) .

(35)

Proof. Multiplying (29)
2
by 𝑟2𝑢, using (29)

1
and integration

by parts, we can get

d
d𝜏
∫

1

0

(
1

2
𝑢
2
+

1

𝛾 − 1
𝜌
𝛾−1
) d𝑥

+ ∫

1

0

(𝜌
2
+
3𝜀

4
𝜌
7/4
) ((𝑟
2
𝑢)
𝑥
)
2

d𝑥

= ∫

1

0

(𝜌 + 𝜀𝜌
3/4
) (2𝑟𝑢

2
)
𝑥
d𝑥 + ∫

1

0

𝜌𝑟
2
𝑢Φ
𝑥
d𝑥

= 4∫

1

0

(𝜌 + 𝜀𝜌
3/4
) 𝑢𝑢
𝑥
𝑟 d𝑥 + 2∫

1

0

(1 + 𝜀𝜌
−1/4

)
𝑢
2

𝑟2
d𝑥

+ ∫

1

0

𝜌𝑟
2
𝑢Φ
𝑥
d𝑥.

(36)

Since

((𝑟
2
𝑢)
𝑥
)
2

= (
2𝑢

𝑟𝜌
+ 𝑟
2
𝑢
𝑥
)

2

=
4𝑢
2

𝜌2𝑟2
+
4𝑟𝑢𝑢
𝑥

𝜌
+ 𝑟
4
𝑢
2

𝑥
,

(37)

then from (36), we get

d
d𝜏
∫

1

0

(
1

2
𝑢
2
+

1

𝛾 − 1
𝜌
𝛾−1
) d𝑥 + ∫

1

0

(
2𝑢
2

𝑟2
+ 𝜌
2
𝑢
2

𝑥
𝑟
4
) d𝑥

+ ∫

1

0

(
𝜀𝑢
2

𝜌1/4𝑟2
+
3𝜀

4
𝜌
7/4
𝑢
2

𝑥
𝑟
4
) d𝑥

= 𝜀∫

1

0

𝜌
3/4
𝑢𝑢
𝑥
𝑟 d𝑥 + ∫

1

0

𝜌𝑟
2
𝑢Φ
𝑥
d𝑥

≤
1

2
∫

1

0

𝜀𝑢
2

𝜌1/4𝑟2
d𝑥 + 1

2
∫

1

0

𝜀𝜌
7/4
𝑢
2

𝑥
𝑟
4d𝑥

+ (∫

1

0

𝜌𝑟
4
Φ
2

𝑥
d𝑥)
1/2

(∫

1

0

𝜌𝑢
2d𝑥)
1/2

≤
1

2
∫

1

0

𝜀𝑢
2

𝜌1/4𝑟2
d𝑥 + 1

2
∫

1

0

𝜀𝜌
7/4
𝑢
2

𝑥
𝑟
4d𝑥 + 𝐶 (𝜀) .

(38)

Thus (32) holds.
Next, (33) follows from Lemma 4 and (34) holds trivially.
Now, we prove (35). In fact, multiplying (29)

2
by 𝑟2𝑢3,

using (29)
1
and integration by parts, we get

1

4

d
d𝜏
∫

1

0

𝑢
4d𝑥 + ∫

1

0

(𝜌
2
+
3𝜀

4
𝜌
7/4
) ((𝑟
2
𝑢)
𝑥
)
2

𝑢
2d𝑥

+ 2∫

1

0

(𝜌
2
+
3𝜀

4
𝜌
7/4
) 𝑢
2
𝑢
2

𝑥
𝑟
4d𝑥

= −4∫

1

0

(𝜌 +
3𝜀

4
𝜌
3/4
) 𝑢
3
𝑢
𝑥
𝑟 d𝑥 + ∫

1

0

𝜌
𝛾
(𝑢
3
𝑟
2
)
𝑥
d𝑥

+ ∫

1

0

(𝜌 + 𝜀𝜌
3/4
) (2𝑢
4
𝑟)
𝑥
d𝑥 + ∫

1

0

𝜌Φ
𝑥
𝑟
2
𝑢
3d𝑥.

(39)

Thus

1

4

d
d𝜏
∫

1

0

𝑢
4d𝑥 + ∫

1

0

(
2𝑢
4

𝑟2
+ 3𝜌
2
𝑢
2
𝑢
2

𝑥
𝑟
4
) d𝑥

+ ∫

1

0

(
𝜀𝑢
4

𝜌1/4𝑟2
+
9𝜀

4
𝜌
7/4
𝑢
2
𝑢
2

𝑥
𝑟
4
) d𝑥

= 2∫

1

0

𝜀𝜌
3/4
𝑢
3
𝑢
𝑥
𝑟 d𝑥 + ∫

1

0

(2𝜌
𝛾−1 𝑢
3

𝑟
+ 3𝜌
𝛾
𝑢
2
𝑢
𝑥
𝑟
2
) d𝑥

+ ∫

1

0

𝜌Φ
𝑥
𝑟
2
𝑢
3d𝑥.

(40)

Using Hölder inequality, Young’s inequality, and Lemma 4,
we estimate the right hand side of (40) as follows:

2∫

1

0

𝜀𝜌
3/4
𝑢
3
𝑢
𝑥
𝑟 d𝑥 ≤ 1

2
∫

1

0

𝜀𝑢
4

𝜌1/4𝑟2
d𝑥 + 2∫

1

0

𝜀𝜌
7/4
𝑢
2
𝑢
2

𝑥
𝑟
4d𝑥;

2 ∫

1

0

𝜌
𝛾−1 𝑢
3

𝑟
d𝑥 ≤ 2(∫

1

0

𝜌
4(𝛾−1)

𝑟
2d𝑥)
1/4

(∫

1

0

𝑢
4

𝑟2
d𝑥)
3/4

≤
1

3
∫

1

0

𝑢
4

𝑟2
d𝑥 + 𝐶;

3∫

1

0

𝜌
𝛾
𝑢
2
𝑢
𝑥
𝑟
2d𝑥 ≤ 3(∫

1

0

𝜌
2𝛾−2

𝑢
2d𝑥)
1/2

× (∫

1

0

𝜌
2
𝑢
2
𝑢
2

𝑥
𝑟
4d𝑥)
1/2
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≤
3

2
∫

1

0

𝜌
2𝛾−2

𝑢
2d𝑥 + 3

2
∫

1

0

𝜌
2
𝑢
2
𝑢
2

𝑥
𝑟
4d𝑥

≤
3

2
∫

1

0

𝜌
2
𝑢
2
𝑢
2

𝑥
𝑟
4d𝑥 + 1

3
∫

1

0

𝑢
4

𝑟2
d𝑥 + 𝐶,

∫

1

0

𝜌Φ
𝑥
𝑟
2
𝑢
3d𝑥 = ∫

1

𝜀

𝜌𝑟
2
𝑢
3
Φ
𝑟
d𝑟

= ∫

1

𝜀

𝜌𝑢
3
(∫

𝑟

𝜀

(𝜌 − 𝑛) 𝑠
2d𝑠) d𝑟

≤ 𝐶 (𝜀, 𝑇) ∫

1

𝜀

𝜌𝑢
3d𝑟

= 𝐶 (𝜀, 𝑇) ∫

1

0

𝑢
3

𝑟2
d𝑥

≤
1

3
∫

1

0

𝑢
4

𝑟2
d𝑥 + 𝐶 (𝜀, 𝑇) ∫

1

0

𝑢
2

𝑟2
d𝑥.

(41)

Putting the above estimates into (40) and using (32), one gets

∫

1

0

𝑢
4d𝑥

+ ∫

𝜏

0

∫

1

0

(
4𝑢
4

𝑟2
+ 6𝜌
2
𝑢
2
𝑢
2

𝑥
𝑟
4
+
2𝜀𝑢
4

𝜌1/4𝑟2
+ 𝜀𝜌
7/4
𝑢
2
𝑢
2

𝑥
𝑟
4
) d𝑥 d𝑠

≤ ∫

1

0

𝑢
4

0
d𝑥 + 𝐶 (𝜀, 𝑇) .

(42)

This proves (35).

Remark 6. Consider

∫

1

0

𝑢
4

0
d𝑥 = ∫

1

𝜀

𝑚
4

10

(𝜌
0
+ 𝜀)
4
𝜌𝑟
2d𝑟 ≤ 𝐶 (𝜀) 󵄩󵄩󵄩󵄩m10

󵄩󵄩󵄩󵄩
4

𝐿
4
(Ω)
. (43)

Lemma 7. There is a positive constant 𝐶 =

𝐶(𝜀, 𝑇, ‖𝜌
0
‖
𝑊
1,4
(Ω)
, ‖m
10
‖
𝐿
4
(Ω)
) such that

∫

1

0

((𝜌
3/4
)
𝑥
)
4

(𝑥, 𝜏) d𝑥 ≤ 𝐶, ∀𝜏 ∈ [0, 𝑇] . (44)

Proof. We rewrite (29)
1
in the form

(𝜌 + 𝜀𝜌
3/4
)
𝑥𝜏
= −[(𝜌

2
+
3𝜀

4
𝜌
7/4
) (𝑟
2
𝑢)
𝑥
]
𝑥

. (45)

Then substituting (45) into (29)
2
, one gets

𝑟
−2
𝑢
𝜏
+ (𝜌
𝛾
)
𝑥
= −(𝜌 + 𝜀𝜌

3/4
)
𝑥𝜏
−
2𝑢

𝑟
(𝜌 + 𝜀𝜌

3/4
)
𝑥
+ 𝜌Φ
𝑥
;

(46)

that is,

𝑟
2
(𝜌 + 𝜀𝜌

3/4
)
𝑥𝜏
+ 2𝑢𝑟(𝜌 + 𝜀𝜌

3/4
)
𝑥
= −𝑢
𝜏
− 𝑟
2
(𝜌
𝛾
)
𝑥
+ 𝜌𝑟
2
Φ
𝑥
.

(47)

Since 𝜕𝑟/𝜕𝜏 = 𝑢, the above equation can be rewritten as

(𝑟
2
(𝜌 + 𝜀𝜌

3/4
)
𝑥
)
𝜏
= −𝑢
𝜏
− 𝑟
2
(𝜌
𝛾
)
𝑥
+ 𝜌𝑟
2
Φ
𝑥
. (48)

Integrating it over [0, 𝜏], one gets

𝑢 (𝑥, 𝜏) − 𝑢
0
(𝑥) + ∫

𝜏

0

𝑟
2
(𝜌
𝛾
)
𝑥
(𝑥, 𝑠) d𝑠

= 𝑟
2

0
(
4

3
𝜌
1/4

0
+ 𝜀) 𝜕

𝑥
(𝜌
3/4

0
) − (

4

3
𝜌
1/4
+ 𝜀) 𝑟

2
𝜕
𝑥
(𝜌
3/4
)

+ ∫

𝜏

0

𝜌𝑟
2
Φ
𝑥
d𝑠.

(49)

Multiplying (49) by (𝑟2𝜕
𝑥
(𝜌
3/4
))
3 and integrating over [0, 1]

with respect to 𝑥, one gets

∫

1

0

(
4

3
𝜌
1/4
+ 𝜀) (𝑟

2
𝜕
𝑥
(𝜌
3/4
))
4

d𝑥

= ∫

1

0

𝑟
2

0
(
4

3
𝜌
1/4

0
+ 𝜀) 𝜕

𝑥
(𝜌
3/4

0
) (𝑟
2
𝜕
𝑥
(𝜌
3/4
))
3

d𝑥

+ ∫

1

0

(𝑟
2
𝜕
𝑥
(𝜌
3/4
))
3

∫

𝜏

0

𝜌𝑟
2
Φ
𝑥
d𝑠 d𝑥

− ∫

1

0

{𝑢 − 𝑢
0
+ ∫

𝜏

0

𝑟
2
(𝜌
𝛾
)
𝑥
(𝑥, 𝑠) d𝑠} (𝑟2𝜕

𝑥
(𝜌
3/4
))
3

d𝑥

≤ 𝐶(∫

1

0

(𝑟
2
𝜕
𝑥
(𝜌
3/4
))
4

d𝑥)
3/4

× {
󵄩󵄩󵄩󵄩𝑢 − 𝑢0

󵄩󵄩󵄩󵄩𝐿4 +
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
(𝜌
3/4

0
)
󵄩󵄩󵄩󵄩󵄩𝐿4

+(∫

𝜏

0

󵄩󵄩󵄩󵄩󵄩
𝜌𝑟
2
Φ
𝑥

󵄩󵄩󵄩󵄩󵄩

4

𝐿
4
d𝑠)
1/4

+ (∫

𝜏

0

󵄩󵄩󵄩󵄩𝜕𝑥𝜌
𝛾󵄩󵄩󵄩󵄩
4

𝐿
4d𝑠)
1/4

} ,

(50)

in which

∫

𝜏

0

󵄩󵄩󵄩󵄩󵄩
𝜌𝑟
2
Φ
𝑥

󵄩󵄩󵄩󵄩󵄩

4

𝐿
4
d𝑠 = ∫

𝜏

0

∫

1

0

(𝜌𝑟
2
Φ
𝑥
)
4

d𝑥 d𝑠

= ∫

𝜏

0

∫

1

𝜀

𝜌𝑟
2
Φ
4

𝑟
d𝑟 d𝑠

= ∫

𝜏

0

∫

1

𝜀

𝜌𝑟
2
(
1

𝑟2
∫

𝑟

𝜀

(𝜌 − 𝑛) 𝑠
2d𝑠)
4

d𝑟 d𝑠

≤ 𝐶 (𝜀, 𝑇) .

(51)

Using Lemma 5 and Young’s inequality, we deduce from (50)
that there is a positive constant 𝐶, depending on ‖𝜌

0
‖
𝑊
1,4
[0,1]

,
‖𝑢
0
‖
𝐿
4
[0,1]

, 𝜀, and 𝑇, such that

𝜀 ∫

1

0

(𝑟
2
𝜕
𝑥
(𝜌
3/4
))
4

d𝑥 ≤ 𝜀

2
∫

1

0

(𝑟
2
𝜕
𝑥
(𝜌
3/4
))
4

d𝑥

+ 𝐶∫

𝜏

0

∫

1

0

(𝜕
𝑥
𝜌
𝛾
)
4d𝑥 d𝑠 + 𝐶;

(52)
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that is,

∫

1

0

(𝜕
𝑥
(𝜌
3/4
))
4

d𝑥

≤ 𝐶 + 𝐶∫

𝜏

0

max
[0,1]

(𝜌
4𝛾−3

) ∫

1

0

(𝜕
𝑥
(𝜌
3/4
))
4

d𝑥 d𝑠.
(53)

Applying Gronwall’s inequality to (53), we have

∫

1

0

(𝜕
𝑥
(𝜌
3/4
))
4

d𝑥 ≤ 𝐶. (54)

This proves (44).

Now we can obtain the lower bound of the density 𝜌.

Lemma 8. There is a positive constant 𝐶 = 𝐶(𝜀, 𝑇,
‖𝜌
0
‖
𝑊
1,4
(Ω)
, ‖m
10
‖
𝐿
4
(Ω)
) such that

𝜌 ≥ 𝐶, ∀𝑥 ∈ [0, 1] , 𝜏 ∈ [0, 𝑇] . (55)

Proof. Set V(𝑥, 𝜏) = 1/𝜌(𝑥, 𝜏) and 𝑉(𝜏) = max
[0,1]×[0,𝜏]

V(𝑥, 𝑠).
Equation (29)

1
can be written as V

𝜏
= (𝑟
2
𝑢)
𝑥
, which implies

that ∫1
0
V(𝑥, 𝜏)d𝑥 = ∫1

0
V(𝑥, 0)d𝑥 ≤ 𝐶

0
. Then it follows from

Sobolev’s embedding𝑊1,1([0, 1]) 󳨅→ 𝐿
∞
([0, 1]) that, for any

0 < 𝛽 < 1,

V𝛽 (𝑥, 𝜏) ≤ ∫
1

0

V𝛽 (𝑥, 𝜏) d𝑥 + ∫
1

0

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑥
V𝛽
󵄨󵄨󵄨󵄨󵄨
d𝑥

≤ (∫

1

0

V d𝑥)
𝛽

+ 𝛽∫

1

0

V𝛽+3/4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌
𝑥

𝜌1/4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d𝑥

≤ 𝐶 + 𝐶𝛽(∫

1

0

(V𝛽+3/4)
4/3

d𝑥)
3/4

× (∫

1

0

((𝜌
3/4
)
𝑥
)
4

d𝑥)
1/4

≤ 𝐶 + 𝐶𝛽𝑉
𝛽
(∫

1

0

Vd𝑥)
3/4

(∫

1

0

((𝜌
3/4
)
𝑥
)
4

𝑑𝑥)

1/4

≤ 𝐶 + 𝐶𝛽𝑉
𝛽
.

(56)

Choosing 𝛽 > 0 small enough, which may depend on 𝜀 and
𝑇, we obtain

𝑉 (𝜏) ≤ 𝐶, (57)

where 𝐶 = 𝐶(𝜀, 𝑇, ‖𝜌
0
‖
𝑊
1,4
(Ω)
, ‖m
10
‖
𝐿
4
(Ω)
). The proof of the

lemma is completed.

4. Proof of Theorem 2

Proof. With the estimates obtained in Section 3, we can apply
the method in [16] and references therein with modifications
to prove the existence of weak solution to the IBVP (2). The
details are omitted.
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