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This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems
in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a
constructive design procedure for output feedback control is given. Together with a novel switching control strategy, the designed
controller renders that the states of closed-loop system are regulated to zero in a finite time. A simulation example is provided to
illustrate the effectiveness of the proposed approach.

1. Introduction

Over the past decade, nonholonomic systems have attracted
much attention because they can be used to model many real
systems, such as mobile robots, car-like vehicle, and under-
actuated satellites. An important feature of a nonholonomic
system is that the number of its inputs is less than the number
of its degree of freedom, which makes the control problems
of a nonholonomic system challenging. As pointed out by
Brockett in [1], there does not exist a pure-state feedback
control law for a nonholonomic system such that its state con-
verges to its equilibrium. To overcome this difficulty, with the
effort of many researchers a number of intelligent approaches
have been proposed, which can be classified into discontinu-
ous control laws [2, 3], time-varying control laws [4–6], and
hybrid control laws [7, 8]; see the survey paper [9] for more
details and references therein. Considering the difficulty of
measuring full states and the inevitability of uncertainties
in engineering practice, the output feedback issue of non-
holonomic systems with drift uncertainties has recently been
studied [10–16]. However, it should be mentioned that the
aforementioned works only consider the feedback stabilizer
that makes the trajectories of the systems converge to the
equilibrium as the time goes to infinity.

Compared to the asymptotic stabilization, the finite-time
stabilization, which renders the trajectories of the closed-loop
systems convergent to the origin in a finite time, has many

advantages such as fast response, high tracking precision, and
disturbance-rejection properties [17].Hence, it ismoremean-
ingful to investigate the finite-time stabilization problem than
the classical asymptotical stability. In recent years, the prob-
lem of finite-time stabilization for nonlinear systems has been
studied and some interesting results have been obtained [18–
25]. However, the finite-time stabilization of nonholonomic
systems is a relatively new problem. In fact, even in the case
of finite-time stabilization using state feedback, there are very
few results in the literature [26–28]. In the case when parts
of the states are not measurable, to stabilize a nonholonomic
system in a finite time only using limited measurable states
becomes challenging.

To illustrate the difficulties in finite-time control of
nonholonomic systems via output feedback, let us consider a
problem of finite time stabilizing the following simple system
at the origin:

𝑥̇

0
= 𝑢

0
, 𝑥̇

1
= 𝑥

1
𝑢

0
, 𝑥̇

2
= 𝑢

1
, (1)

where 𝑥
0
and 𝑥

1
are measurable and 𝑥

2
is not available for

feedback.
In discontinuous approach, as seen, for example, in [26–

28], assuming that 𝑥
0
(𝑡

0
) ̸= 0 one might design the control 𝑢

0

as follows:

𝑢

0
(𝑥

0
) = −𝑘

0
𝑥

𝛼0

0
, 0 < 𝛼

0
=

𝛼

1

𝛼

2

< 1, (2)
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where 𝑘
0
is a positive design parameter and 𝛼

𝑖
, 𝑖 = 1, 2, are

positive odd numbers. It is easy to verify that the 𝑢
0
in (2)

renders 𝑥
0
globally converging to zero in a finite time 𝑇

0
.

Next, we need to stabilize the 𝑥-subsystem

𝑥̇

1
= −𝑘

0
𝑥

𝛼0

0
𝑥

2
, 𝑥̇

2
= 𝑢

1
(3)

within a settling time 𝑇
1
satisfying 𝑇

1
< 𝑇

0
. By introducing

the input-state-scaling transformation 𝑥

1
= 𝑥

1
/𝑢

0
and 𝑧

2
=

𝑥

2
, the system (3) can be rewritten as

𝑧̇

1
= 𝑧

2
+

𝑢̇

0

𝑢

0

𝑧

1
, 𝑧̇

2
= 𝑢

1
. (4)

However, the system (3) possesses the time-varying coef-
ficient −𝑘

0
𝑥

𝛼0

0
(or the system (4) dissatisfies the low-order

growth condition), which renders the existing finite-time
control methods highly difficult to the control problem of the
𝑥-subsystem or even inapplicable. To the best of the authors’
knowledge, there is no result referred to the finite-time
stabilization of nonholonomic systems by output feedback.

Motivated by the aforementioned discussion, in this
paperwe aim to tackle this challenging question andprovide a
solution to the problem of global finite-time output feedback
stabilization for nonholonomic systems with uncertainties by
applying the homogeneous domination approach. The main
contribution of this paper is twofold. (i) Compared to the
existing output feedback stabilization results for nonholo-
nomic systems, the finite-time stabilizer proposed in this
paper leads to faster convergence rate. (ii) As the common
assumption to guarantee the existence of global finite-time
output feedback stabilizer for a nonlinear system, the low-
order growth (the order less than one) of system nonlinear-
ities renders the discontinuous change of coordinates (i.e.,
the 𝜎-process) inapplicable to the finite-time output feedback
control problem of the nonholonomic systems, even the ideal
chained systems, and how to deal with this constitutes one of
the main contributions of this paper.

The rest of this paper is organized as follows. Section 2
provides the problem formation and preliminary knowledge.
Section 3 presents the control design procedure and themain
result, while Section 4 gives a simulation example to illustrate
the theoretical finding of this paper. Finally, concluding
remarks are proposed in Section 5.

2. Problem Formulation and Preliminaries

In this paper, we consider the following uncertain nonholo-
nomic systems:

𝑥̇

0
= 𝑑

0
𝑢

0
+ 𝜙

0
(𝑡, 𝑥

0
) ,

𝑥̇

𝑖
= 𝑑

𝑖
𝑥

𝑖+1
𝑢

0
+ 𝜙

𝑖
(𝑡, 𝑥

0
, 𝑥) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇

𝑛
= 𝑑

𝑛
𝑢

1
+ 𝜙

𝑛
(𝑡, 𝑥

0
, 𝑥) ,

𝑦 = (𝑥

0
, 𝑥

1
)

𝑇
,

(5)

where (𝑥
0
, 𝑥)

𝑇
= (𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
)

𝑇
∈ 𝑅

𝑛+1, 𝑢 = (𝑢

0
, 𝑢

1
)

𝑇
∈ 𝑅

2,
𝑦 ∈ 𝑅

2 are the system state, control input, and system output,
respectively, 𝑑

𝑖
’s are disturbed virtual control coefficients, and

𝜙

𝑖
’s denote the input and states driven uncertainties, which

are called the nonlinear drifts of the system (5).
The objective of this paper is to design an output feedback

controller in the form

̇

𝑥̂ = 𝜗 (𝑥, 𝑦) , 𝑢

0
= 𝑢

0
(𝑥

0
) , 𝑢

1
= 𝑢

1
(𝑥, 𝑦) , (6)

such that the finite-time regulation of the states is achieved;
that is, lim

𝑡→𝑇
(|𝑥

0
(𝑡)| + |𝑥(𝑡)|) = 0 and (𝑥

0
(𝑡), 𝑥(𝑡)) = (0, 0)

for any 𝑡 ≥ 𝑇, where 𝑇 is a finite settling time.
To this end, the following assumptions regarding system

(5) are imposed.

Assumption 1. For 𝑖 = 0, 1, . . . , 𝑛, there are positive constants
𝑐

𝑖1
and 𝑐

𝑖2
such that

𝑐

𝑖1
≤ 𝑑

𝑖
≤ 𝑐

𝑖2
. (7)

Assumption 2. For 𝜙
0
, there is a positive constant 𝑎 such that
󵄨

󵄨

󵄨

󵄨

𝜙

0
(𝑡, 𝑥

0
)

󵄨

󵄨

󵄨

󵄨

≤ 𝑎

󵄨

󵄨

󵄨

󵄨

𝑥

0

󵄨

󵄨

󵄨

󵄨

. (8)

Assumption 3. For 𝑖 = 1, . . . , 𝑛, there are constants 𝑏 > 0 and
𝜏 ∈ (−1/𝑛, 0) such that

󵄨

󵄨

󵄨

󵄨

𝜙

𝑖
(𝑡, 𝑥

0
, 𝑥)

󵄨

󵄨

󵄨

󵄨

≤ 𝑏 (

󵄨

󵄨

󵄨

󵄨

𝑥

1

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟1
+ ⋅ ⋅ ⋅ +

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑖
) , (9)

where 𝑟
𝑖
= 1 + (𝑖 − 1)𝜏.

For simplicity, in this paper we assume 𝜏 = −𝑝/𝑞 with 𝑝

being any even integer and 𝑞 being any odd integer. Based on
this, we know that 𝑟

𝑖
∈ (0, 1) is a ratio of two positive odd

integers.

Remark 4. Assumptions 1-2 are common and similar to the
one usually imposed on the nonlinear systems [10]. Relatively
speaking, Assumption 3 seems to be quite restrictive; how-
ever, it plays an essential role in ensuring the existence of
finite-time output feedback stabilizer for nonholonomic sys-
tem (5). Furthermore, it is worth pointing out that there are a
number of nonlinear functions such as sin𝑥 and ln(1 + 𝑥

2
)

that can be bounded by a function |𝑥|

𝑚 for any constant
𝑚 ∈ (0, 1) actually satisfying this assumption.

The following definitions and lemmas will serve as the
basis of the coming control design and performance analysis.

Definition 5 (see [17]). Consider a system

𝑥̇ = 𝑓 (𝑥) with 𝑓 (0) = 0, 𝑥 ∈ 𝑅

𝑛
, (10)

where 𝑓 : 𝑈

0
→ 𝑅

𝑛 is continuous with respect to 𝑥 on an
open neighborhood 𝑈

0
of the origin 𝑥 = 0. The equilibrium

𝑥 = 0 of the system is (locally) finite-time stable if it is Lya-
punov stable and finite-time convergent in a neighborhood
𝑈 ∈ 𝑈

0
of the origin. By “finite-time convergence,” we mean

that if, for any initial condition, 𝑥(0) ∈ 𝑈, there is a settling
time𝑇 > 0, such that every solution𝑥(𝑡)with𝑥(0) as its initial
condition of (10) is well defined with 𝑥(0) ∈ 𝑈 \ {0} for 𝑡 ∈
[0, 𝑇) and satisfies lim

𝑡→𝑇
𝑥(𝑡) = 0 and 𝑥(𝑡) = 0 for any 𝑡 ≥ 𝑇.

If 𝑈 = 𝑈

0
= 𝑅

𝑛, the origin is a globally finite-time stable
equilibrium.
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Lemma 6 (see [17]). Consider the nonlinear system described
in (10). Suppose that there is a 𝐶

1 function 𝑉(𝑥) defined in a
neighborhood ̂

𝑈 ∈ 𝑅

𝑛 of the origin, real numbers 𝑐 > 0, and
0 < 𝛼 < 1, such that

(i) 𝑉(𝑥) is positive definite on ̂

𝑈;
(ii) ̇

𝑉(𝑥) + 𝑐𝑉

𝛼
(𝑥) ≤ 0, ∀𝑥 ∈

̂

𝑈.
Then, the origin of system (10) is locally finite-time stable with

𝑇 ≤

𝑉

1−𝛼
(𝑥 (0))

𝑐 (1 − 𝛼)

(11)

for initial condition 𝑥(0) in some open neighborhood 𝑈 ∈

̂

𝑈 of
the origin. If𝑈 = 𝑅

𝑛 and𝑉(𝑥) is also radially unbounded (i.e.,
𝑉(𝑥) → +∞ as 𝑥 → +∞), the origin of system (10) is glo-
bally finite-time stable.

Definition 7 (see [29]). Weighted homogeneity: for fixed
coordinates (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛 and real numbers 𝑟

𝑖
> 0,

𝑖 = 1, . . . , 𝑛, one has the following.
(i) The dilation Δ

𝜀
(𝑥) is defined by Δ

𝜀
(𝑥) = (𝜀

𝑟1
𝑥

1
, . . . ,

𝜀

𝑟𝑛
𝑥

𝑛
) for any 𝜀 > 0, where 𝑟

𝑖
is called the weights

of the coordinates. For simplicity, we define dilation
weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
).

(ii) A function 𝑉 ∈ (𝑅

𝑛
, 𝑅) is said to be homogeneous

of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑉(Δ

𝜀
(𝑥)) = 𝜀

𝜏
𝑉(𝑥

1
, . . . , 𝑥

𝑛
) for any 𝑥 ∈ 𝑅

𝑛
\{0}, 𝜀 > 0.

(iii) A vector field 𝑓 ∈ (𝑅

𝑛
, 𝑅

𝑛
) is said to be homogeneous

of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑓

𝑖
(Δ

𝜀
(𝑥)) = 𝜀

𝜏+𝑟𝑖
𝑓

𝑖
(𝑥), for any 𝑥 ∈ 𝑅

𝑛
\ {0}, 𝜀 > 0,

𝑖 = 1, . . . , 𝑛.
(iv) A homogeneous 𝑝-norm is defined as ‖𝑥‖

Δ,𝑝
=

(∑

𝑛

𝑖=1
|𝑥

𝑖
|

𝑝/𝑟𝑖
)

1/𝑝

for all 𝑥 ∈ 𝑅

𝑛, for a constant 𝑝 ≥ 1.
For simplicity, in this paper, one chooses 𝑝 = 2 and
writes ‖𝑥‖

Δ
for ‖𝑥‖

Δ,2
.

Lemma 8 (see [30]). Suppose that 𝑉 : 𝑅

𝑛
→ 𝑅 is a homoge-

neous function of degree 𝜏with respect to the dilation weightΔ.
Then the following hold.

(i) 𝜕𝑉/𝜕𝑥
𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with 𝑟

𝑖
being

the homogeneous weight of 𝑥
𝑖
.

(ii) There is a constant 𝑐 such that𝑉(𝑥) ≤ 𝑐‖𝑥‖

𝜏

Δ
.Moreover,

if 𝑉(𝑥) is positive definite, then 𝑐‖𝑥‖

𝜏

Δ
≤ 𝑉(𝑥), where 𝑐

is a constant.

Lemma 9 (see [31]). For 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, and 𝑝 ≥ 1 which is a
constant, the following inequalities hold:

󵄨

󵄨

󵄨

󵄨

𝑥 + 𝑦

󵄨

󵄨

󵄨

󵄨

𝑝
≤ 2

𝑝−1 󵄨
󵄨

󵄨

󵄨

𝑥

𝑝
+ 𝑦

𝑝󵄨
󵄨

󵄨

󵄨

,

(|𝑥| +

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

)

1/𝑝
≤ |𝑥|

1/𝑝
+

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

1/𝑝
≤ 2

(𝑝−1)/𝑝
(|𝑥| +

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

)

1/𝑝
.

(12)

If 𝑝 ≥ 1 is odd, then
󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

𝑝
≤ 2

𝑝−1 󵄨
󵄨

󵄨

󵄨

𝑥

𝑝
− 𝑦

𝑝󵄨
󵄨

󵄨

󵄨

,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

1/𝑝
− 𝑦

1/𝑝󵄨
󵄨

󵄨

󵄨

󵄨

≤ 2

(𝑝−1)/𝑝
(

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

)

1/𝑝
.

(13)

Lemma 10 (see [32]). Let 𝑥, 𝑦 be real variables; then for any
positive real numbers 𝑎,𝑚, and 𝑛, one has

𝑎|𝑥|

𝑚󵄨
󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑛

≤ 𝑏|𝑥|

𝑚+𝑛
+

𝑛

𝑚 + 𝑛

(

𝑚 + 𝑛

𝑚

)

−𝑚/𝑛

𝑎

(𝑚+𝑛)/𝑛
𝑏

−𝑚/𝑛󵄨
󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑚+𝑛
,

(14)

where 𝑏 > 0 is any real number.

Lemma 11 (see [33]). For 𝑥, 𝑦 ∈ 𝑅 and positive real number 𝑝,
the following inequality holds:

󵄨

󵄨

󵄨

󵄨

𝑥

𝑝
− 𝑦

𝑝󵄨
󵄨

󵄨

󵄨

≤ 𝑝

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑝−1
+ 𝑦

𝑝−1󵄨
󵄨

󵄨

󵄨

󵄨

≤ 𝑐

󵄨

󵄨

󵄨

󵄨

𝑥 − 𝑦

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑥 − 𝑦)

𝑝−1
+ 𝑦

𝑝−1󵄨
󵄨

󵄨

󵄨

󵄨

,

(15)

where 𝑐 = 𝑝 for 1 < 𝑝 ≤ 2 and 𝑐 = 𝑝2

𝑝−1 for 𝑝 > 2.

3. Finite-Time Output Feedback
Controller Design

In this section, we give a constructive procedure for the finite-
time stabilizer of system (5) by output feedback.The design of
finite-time output feedback controller is divided into the fol-
lowing two steps.

(i) We first stabilize the 𝑥-subsystem in a finite time by
output feedback.

(ii) Then we design a controller such that the 𝑥
0
-subsys-

tem is finite-time stable.

3.1. Finite-Time Output Feedback Stabilization of the 𝑥-Subsys-
tem. For the 𝑥

0
-subsystem, we choose the control 𝑢

0
as

𝑢

0
≡ 𝑢

∗

0
, (16)

where 𝑢∗
0
is a positive constant. In this case, the 𝑥

0
-subsystem

becomes

𝑥̇

0
= 𝑑

0
𝑢

∗

0
+ 𝜙

0
(𝑡, 𝑥

0
) . (17)

Noting that 𝜙
0
(𝑡, 𝑥

0
) satisfies the linear growth condition,

it is easy to obtain that the solution of 𝑥

0
-subsystem is

bounded, for any given finite time 𝑡
𝑠
> 0. Hence, 𝑥

0
is well

defined on [0, 𝑡
𝑠
]. Under the control law (16), the𝑥-subsystem

can be written as

𝑥̇

𝑖
= 𝑑

𝑖
𝑢

∗

0
𝑥

𝑖+1
+ 𝜙

𝑖
(𝑡, 𝑥

0
, 𝑥) , 𝑖 = 1, . . . , 𝑛 − 1,

𝑥̇

𝑛
= 𝑑

𝑛
𝑢

1
+ 𝜙

𝑛
(𝑡, 𝑥

0
, 𝑥) .

(18)

Next we consider the finite-time output feedback stabilizer
for system (18). For convenience, we define the following
change of coordinates:

𝜁

1
= 𝑥

1
, 𝜁

𝑖
= 𝑑

1
⋅ ⋅ ⋅ 𝑑

𝑖−1
𝑢

∗𝑖−1

0
𝑥

𝑖
, 𝑖 = 2, . . . , 𝑛 (19)
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under which system (18) is transformed into

̇

𝜁

𝑖
= 𝜁

𝑖+1
+ 𝑓

𝑖
(𝑡, 𝑥

0
, 𝜁) , 𝑖 = 1, . . . , 𝑛 − 1,

̇

𝜁

𝑛
= 𝑑𝑢

1
+ 𝑓

𝑛
(𝑡, 𝑥

0
, 𝜁) ,

(20)

where 𝑑 = 𝑑

1
⋅ ⋅ ⋅ 𝑑

𝑛
𝑢

∗𝑛−1

0
, 𝑓
𝑖
= 𝑑

1
⋅ ⋅ ⋅ 𝑑

𝑖−1
𝑢

∗𝑖−1

0
𝜙

𝑖
, and the state

𝜁

1
= 𝑥

1
is measurable.

Remark 12. It is worth pointing out that, in terms of the trans-
formation (19), the stabilizing control design of system (18) is
equivalent to that of system (20). Thus, in what follows, we
turn to designing the output feedback stabilizing controller
for system (20) rather than (18). Moreover, with the help of
Assumptions 1 and 3, it can be verified that 𝑓

𝑖
, 𝑖 = 1, . . . , 𝑛,

satisfy

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖
(𝑡, 𝑥

0
, 𝜁)

󵄨

󵄨

󵄨

󵄨

≤ 𝑏 (

󵄨

󵄨

󵄨

󵄨

𝜁

1

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟1
+ ⋅ ⋅ ⋅ +

󵄨

󵄨

󵄨

󵄨

𝜁

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑖
) (21)

with a new growth rate 𝑏.

To construct a global output feedback controller for
system (20), we will employ the homogeneous domination
approach introduced in [34]. We will first construct specifi-
cally a homogeneous output feedback controller for the nom-
inal system without considering perturbing terms 𝑓

𝑖
’s. Then,

we utilize a scaling gain in the controller to dominate the
uncertain nonlinearities 𝑓

𝑖
’s.

3.1.1. Homogeneous Output Feedback Control of the Nominal
System. In this subsection, we will construct an output feed-
back stabilizer for the following nominal system:

𝑧̇

𝑖
= 𝑧

𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1, 𝑧̇

𝑛
= 𝑑V. (22)

The design of output feedback controller is divided into
two steps. In Step A, we suppose that all the states are mea-
surable and develop a recursive design method to explicitly
construct a state feedback control law for system (22).Then in
Step B, by constructing a nonsmooth reduced-order observer,
we design an output feedback controller.

(A) State Feedback Controller Design

Step 1. Choose the Lyapunov function𝑉
1
= 𝑥

2

1
/2. Clearly, the

first virtual controller

𝑧

∗

2
= −𝑛𝑧

𝑟2

1
:= −𝛽

1
𝜉

𝑟2

1
(23)

with 𝜉

1
= 𝑧

1
and 𝛽

1
= 𝑛 renders

̇

𝑉

1
≤ −𝑛𝜉

2+𝜏

1
+ 𝜉

1
(𝑧

2
− 𝑧

∗

2
) . (24)

Step i (2 ≤ 𝑖 ≤ 𝑛). In this step, we can obtain the following
property.

Proposition 13. For the 𝑖th Lyapunov function defined by

𝑉

𝑖
= 𝑉

𝑖−1
+ ∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠

1/𝑟𝑖
− 𝑧

∗1/𝑟𝑖

𝑖
)

2−𝑟𝑖

𝑑𝑠 (25)

under the coordinate transformation

𝑧

∗

𝑘
= −𝛽

𝑘−1
𝜉

𝑟𝑘

𝑘−1
, 𝜉

𝑘
= 𝑧

1/𝑟𝑘

𝑘
− 𝑧

∗1/𝑟𝑘

𝑘
, 𝑘 = 2, . . . , 𝑖

(26)

there exists the 𝐶0 virtual controller 𝑧∗
𝑖+1

= −𝛽

𝑖
𝜉

1/𝑟𝑖+1

𝑖
such that

̇

𝑉

𝑖
≤ − (𝑛 − 𝑖 + 1) (𝜉

2+𝜏

1
+ ⋅ ⋅ ⋅ + 𝜉

2+𝜏

𝑖
) + 𝜉

2−𝑟𝑖

𝑖
(𝑧

𝑖+1
− 𝑧

∗

𝑖+1
) ,

(27)
where 𝛽

𝑗
> 0, 𝑗 = 1, . . . , 𝑖 are constants.

Proof. The detailed proof can be found in [20] and hence is
omitted here.

From the inductive steps, we can design

𝑧

∗

𝑛+1
= −𝛽

𝑛
𝜉

𝑟𝑛+𝜏

𝑛

= −𝛽

𝑛
(𝑧

1/𝑟𝑛

𝑛
+ 𝛽

1/𝑟𝑛

𝑛−1

× (𝑧

1/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1/𝑟3

2
(𝑧

1/𝑟2

2
+ 𝛽

1/𝑟2

1
𝑧

1
)))

𝑟𝑛+𝜏

= −𝛽

𝑛
(𝛽

𝑛
𝑧

1/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑧

1/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑧

1
)

𝑟𝑛+𝜏

,

(28)
where

𝛽

𝑖
= {

𝛽

1/𝑟𝑛

𝑛−1
⋅ ⋅ ⋅ 𝛽

1/𝑟𝑖+1

𝑖
, 𝑖 = 1, . . . , 𝑛 − 1

1, 𝑖 = 𝑛

(29)

such that
̇

𝑉

𝑛
≤ − (𝜉

2+𝜏

1
+ ⋅ ⋅ ⋅ + 𝜉

2+𝜏

𝑛
) + 𝑑𝜉

2−𝑟𝑛

𝑛
(V − 𝑧

∗

𝑛+1
) . (30)

(B) Output Feedback Controller Design. Since 𝑧

2
, . . . , 𝑧

𝑛
are

unmeasurable, we construct a homogeneous observer

̇𝜂

𝑖
= −𝑙

𝑖−1
𝑧̂

𝑖
, 𝑧̂

𝑖
= (𝜂

𝑖
+ 𝑙

𝑖−1
𝑧̂

𝑖−1
)

𝑟𝑖/𝑟𝑖−1
, 𝑖 = 2, . . . , 𝑛,

(31)
where 𝑧̂

1
= 𝑧

1
and 𝑙

𝑖
> 0; 𝑖 = 1, . . . , 𝑛 − 1 are the gains

to be determined. By the certainty equivalence principle, we
can replace 𝑧

𝑖
with 𝑧̂

𝑖
in (28) and obtain an output feedback

controller

V (𝑧̂) = −𝛽

𝑛
(𝛽

𝑛
𝑧̂

1/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑧̂

1/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑧

1
)

𝑟𝑛+𝜏

,
(32)

where 𝑧̂ = (𝑧

1
, 𝑧̂

2
, . . . , 𝑧̂

𝑛
).

Considering

𝑊

𝑖
= ∫

𝑧
(2−𝑟𝑖−1)/𝑟𝑖

𝑖

𝛾
(2−𝑟𝑖−1)/𝑟𝑖−1

𝑖

(𝑠

𝑟𝑖−1/(2−𝑟𝑖−1)
− 𝛾

𝑖
) 𝑑𝑠,

(33)

where 𝛾
𝑖
= 𝜂

𝑖
+ 𝑙

𝑖−1
𝑧

𝑖−1
, and setting 𝑒

𝑖
= (𝑧

𝑖
− 𝑧̂

𝑖
)

1/𝑟𝑖 , for 𝑖 =
2, . . . , 𝑛, from (22), (31), and (33), it follows that

̇

𝑊

𝑖
=

2 − 𝑟

𝑖−1

𝑟

𝑖

𝑧

(2−𝑟𝑖−1−𝑟𝑖 )/𝑟𝑖

𝑖
(𝑧

𝑟𝑖−1/𝑟𝑖

𝑖
− 𝛾

𝑖
) 𝑧

𝑖+1

− 𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
(𝑧

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝑧̂

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
)

− 𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
(𝑧̂

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝛾

(2−𝑟𝑖−1)/𝑟𝑖−1

𝑖
) ,

(34)

where 𝑧
𝑛+1

= V(𝑧̂).
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Each term on the right-hand side of (34) can be estimated
by the following propositions whose proofs are given in the
Appendix.

Proposition 14. There exists a positive constant 𝜆
𝑖
such that

−𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
(𝑧

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝑧̂

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
) ≤ −𝑙

𝑖−1
𝜆

𝑖
𝑒

2+𝜏

𝑖
. (35)

Proposition 15. For 𝑖 = 2, . . . , 𝑛 − 1,

2 − 𝑟

𝑖−1

𝑟

𝑖

𝑧

(2−𝑟𝑖−1−𝑟𝑖)/𝑟𝑖

𝑖
(𝑧

𝑟𝑖−1/𝑟𝑖

𝑖
− 𝛾

𝑖
) 𝑧

𝑖+1

≤

1

12

𝑖+1

∑

𝑗=𝑖−1

𝜉

2+𝜏

𝑗
+ 𝑚

𝑖
𝑒

2+𝜏

𝑖
+ 𝑔

𝑖
(𝑙

𝑖−1
) 𝑒

2+𝜏

𝑖−1
,

(36)

where 𝑔
𝑖
is a continuous function of 𝑙

𝑖−1
, 𝑚
𝑖
> 0 is a constant,

and 𝑔
2
= 0.

Proposition 16. For the controller V(𝑧̂), one obtains

2 − 𝑟

𝑛−1

𝑟

𝑛

𝑧

(2−𝑟𝑛−1−𝑟𝑛)/𝑟𝑛

𝑛
(𝑧

𝑟𝑛−1/𝑟𝑛

𝑛
− 𝛾

𝑛
) V (𝑧̂)

≤

1

8

𝑛

∑

𝑗=1

𝜉

2+𝜏

𝑗
+ 𝑐

𝑛

∑

𝑖=2

𝑒

2+𝜏

𝑖
+ 𝑔

𝑛
(𝑙

𝑛−1
) 𝑒

2+𝜏

𝑛−1
,

(37)

where𝑔
𝑛
is a continuous function of 𝑙

𝑛−1
and 𝑐 > 0 is a constant.

Proposition 17. For 𝑖 = 3, . . . , 𝑛,

− 𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
(𝑧̂

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝛾

(2−𝑟𝑖−1)/𝑟𝑖−1

𝑖
)

≤

1

16

(𝜉

2+𝜏

𝑖−1
+ 𝜉

2+𝜏

𝑖
) + 𝑒

2+𝜏

𝑖
+ ℎ

𝑖
(𝑙

𝑖−1
) 𝑒

2+𝜏

𝑖−1
,

(38)

where ℎ
𝑖
is a continuous function of 𝑙

𝑖−1
.

Choosing𝑊 = ∑

𝑛

𝑖=2
𝑊

𝑖
, by Propositions 14–17, we get

̇

𝑊 =

1

2

𝑛

∑

𝑖=1

𝜉

2+𝜏

𝑖
+ (−𝑙

1
𝜆

2
+ 𝑚

2
+ 𝑐 + 𝑔

3
(𝑙

2
) + ℎ

3
(𝑙

2
)) 𝑒

2+𝜏

2

+

𝑛−1

∑

𝑖=3

(−𝑙

𝑖−1
𝜆

𝑖
+ 𝑚

𝑖
+ 1 + 𝑐 + 𝑔

𝑖+1
(𝑙

𝑖
) + ℎ

𝑖+1
(𝑙

𝑖
)) 𝑒

2+𝜏

𝑖

+ (−𝑙

𝑛−1
𝜆

𝑛
+ 1 + 𝑐) 𝑒

2+𝜏

𝑛
.

(39)

By (28), (32), and Assumption 1, we can estimate
𝑑𝜉

2−𝑟𝑛

𝑖
(V − 𝑧

∗

𝑛+1
) in (29) by the following proposition, whose

proof is given in the Appendix.

Proposition 18. There exists a positive constant 𝜇 such that

𝑑𝜉

2−𝑟𝑛

𝑖
(V − 𝑧

∗

𝑛+1
) ≤

1

4

𝑛

∑

𝑖=1

𝜉

2+𝜏

𝑖
+ 𝜇

𝑛

∑

𝑖=2

𝑒

2+𝜏

𝑖
, (40)

where 𝑔
𝑛
is a continuous function of 𝑙

𝑛−1
.

With the help of Proposition 18, defining 𝑈 = 𝑉

𝑛
+ 𝑊,

combining (29) and (39), and recursively choosing

𝑙

𝑛−1
≥ 𝜆

−1

𝑛
(

1

4

+ 1 + 𝑐 + 𝜇) ,

𝑙

𝑖−1
≥ 𝜆

−1

𝑖
(

1

4

+ 𝑚

𝑖
+ 1 + 𝑐 + 𝜇 + 𝑔

𝑖+1
(𝑙

𝑖
) + ℎ

𝑖+1
(𝑙

𝑖
)) ,

𝑖 = 𝑛 − 1, . . . , 3,

𝑙

1
≥ 𝜆

−1

2
(

1

4

+ 𝑚

2
+ 𝑐 + 𝜇 + 𝑔

3
(𝑙

2
) + ℎ

3
(𝑙

2
))

(41)

we obtain

̇

𝑈 = −

1

4

𝑛

∑

𝑖=1

𝜉

2+𝜏

𝑖
−

1

4

𝑛

∑

𝑖=2

𝑒

2+𝜏

𝑖
. (42)

Since𝑈 is positive definite and proper with respect to𝑍 =

(𝑧

1
, . . . , 𝑧

𝑛
, 𝜂

2
. . . , 𝜂

𝑛
)

𝑇, (42) implies that the closed-loop sys-
tem can be rewritten as the following compact form:

̇

𝑍 = 𝐹 (𝑍) = (𝑧

2
, . . . , 𝑧

𝑛
, 𝑑V, ̇𝜂

2
. . . , ̇𝜂

𝑛
)

𝑇 (43)

which is homogeneous with the dilation weight

Δ = (𝑟

1
, . . . , 𝑟

𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝑧1 ,...,𝑧𝑛

, 𝑟

1
, . . . , 𝑟

𝑛−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝜂2...,𝜂𝑛

)

= (1, . . . , 1 + (𝑛 − 1) 𝜏
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝑧1,...,𝑧𝑛

, 1, . . . , 1 + (𝑛 − 2) 𝜏
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝜂2...,𝜂𝑛

) .

(44)

It can be shown that (43) is homogeneous of degree 𝜏. In
addition, 𝑈 is homogeneous of degree 2. By Lemma 8, there
is a constant 𝑐

1
, such that

𝑈 ≤ 𝑐

1‖
𝑍‖

2

Δ
, (45)

where 𝑐
1
> 0 and ‖𝑍‖

Δ
=

√

(∑

2𝑛−1

𝑖=1
|𝑍

𝑖
|

2/𝑟𝑖
). Similarly, since

the right-hand side of (42) is homogeneous of degree 2 + 𝜏,
by Lemma 8 there is a constant 𝑐

2
such that

𝜕𝑈

𝜕𝑍

𝐹 (𝑍) ≤ −

1

4

𝑛

∑

𝑖=1

𝜉

2+𝜏

𝑖
−

1

4

𝑛

∑

𝑖=2

𝑒

2+𝜏

𝑖
≤ −𝑐

2‖
𝑍‖

2+𝜏

Δ
. (46)

Combining (45) and (46), it can be deduced from (42)
that

̇

𝑈 ≤ −𝑘𝑈

(2+𝜏)/2 (47)

for a constant 𝑘 > 0. By Lemma 6 with 𝛼 = (2 + 𝜏)/2 < 1, the
closed-loop system is globally finite-time stable.

Remark 19. It should be pointed out that the output feedback
controller (32) is only continuous (rather than continuously
differentiable) due to the presence of the powers 𝑟

𝑛
+𝜏, which

is less than one. As a consequence, the closed-loop system
(22) and (32) is not locally Lipschitz. Therefore, the unique-
ness of the solution of system (22) and (32) is not guaranteed.
Fortunately, as shown in the work [35], the existence of the
solution can still be guaranteed for a continuous system
without Lipschitz condition.
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3.1.2. Homogeneous Output Feedback Control of the Sys-
tem (20). Together with the homogeneous controller and
observer established previously, in this subsection we are
ready to use the homogeneous domination approach to glo-
bally stabilize (20) via output feedback under (21). First, we
introduce the change of coordinates

𝑧

𝑖
=

𝜂

𝑖

𝐿

𝑖−1
, 𝑖 = 2, . . . , 𝑛,

V =
𝑢

1

𝐿

𝑛
,

(48)

where 𝐿 ≥ 1 is a constant to be determined later. Under (48),
system (20) can be rewritten as

𝑧̇

𝑖
= 𝐿𝑧

𝑖+1
+

𝑓

𝑖 (
⋅)

𝐿

𝑖−1
, 𝑖 = 1, . . . , 𝑛 − 1,

𝑧̇

𝑛
= 𝐿𝑑V + +

𝑓

𝑛
(⋅)

𝐿

𝑛−1
.

(49)

Now we construct an observer with a gain 𝐿 as follows:

̇𝜂

𝑖
= −𝐿𝑙

𝑖
𝑧̂

𝑖
, 𝑧̂

𝑖
= (𝜂

𝑖
+ 𝑙

𝑖−1
𝑧̂

𝑖−1
)

𝑟𝑖/𝑟𝑖−1
, 𝑖 = 2, . . . , 𝑛.

(50)

In addition, we design 𝑢
1
using the same construction of (32),

specifically,

𝑢

1
= −𝐿

𝑛
𝛽

𝑛
(𝛽

𝑛
𝑧̂

1/𝑟𝑛

𝑛
+ 𝛽

𝑛−1
𝑧̂

1/𝑟𝑛−1

𝑛−1
+ ⋅ ⋅ ⋅ + 𝛽

1
𝑧

1
)

𝑟𝑛+𝜏

.
(51)

Now, the closed-loop system (49)–(51) can be written as

̇

𝑍 = 𝐿𝐹 (𝑍) + (𝑓

1
(⋅) ,

𝑓

2 (
⋅)

𝐿

, . . . ,

𝑓

𝑛 (
⋅)

𝐿

𝑛−1
, 0, . . . , 0)

𝑇

.
(52)

Hence, it can be concluded from (46) that

̇

𝑈 ≤ −𝐿𝑐

2‖
𝑍‖

2+𝜏

Δ
+

𝜕𝑈

𝜕𝑍

(𝑓

1
(⋅) ,

𝑓

2
(⋅)

𝐿

, . . . ,

𝑓

𝑛
(⋅)

𝐿

𝑛−1
, 0, . . . , 0)

𝑇

.

(53)

From (21), (48), and 𝐿 ≥ 1, we can find constants 𝛿
𝑖
> 0

and 𝛼

𝑖
< 1 such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
⋅)

𝐿

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑏

𝑖

∑

𝑗=1

𝐿

(𝑗−1)(𝑟𝑖+𝜏)/𝑟𝑗

𝐿

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
≤ 𝛿

𝑖
𝐿

𝛼𝑖
‖𝑍‖

𝑟𝑖+𝜏

Δ
. (54)

Noting that, for 𝑖 = 1, . . . , 𝑛, 𝜕𝑈/𝜕𝑍
𝑖
is homogeneous of

degree 2 − 𝑟

𝑖
, we know that

𝜕𝑈

𝜕𝑍

𝑖

(

󵄨

󵄨

󵄨

󵄨

𝑧

1

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟1
+ ⋅ ⋅ ⋅ +

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑖
) (55)

is homogeneous of degree 2 + 𝜏.
With (54) and (55) in mind, we can find a positive con-

stant 𝑐
𝑖
such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑈

𝜕𝑍

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
⋅)

𝐿

𝑖−1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑐

𝑖
𝐿

𝛼𝑖
‖𝑍‖

2+𝜏

Δ
. (56)

Substituting (56) into (53) yields

̇

𝑈 ≤ −𝐿(𝑐

2
−

𝑛

∑

𝑖=1

𝑐

𝑖
𝐿

𝛼𝑖−1
)‖𝑍‖

2+𝜏

Δ

≤ −𝐿(𝑐

2
−

𝑛

∑

𝑖=1

𝑐

𝑖
𝐿

𝛼max−1
)‖𝑍‖

2+𝜏

Δ
,

(57)

where 𝛼max = max
1≤𝑖≤𝑛

{𝛼

𝑖
} < 1. Apparently, by choosing a

large enough𝐿, the right-hand side of (57) is negative definite.
Furthermore, it can be deduced from (57) that there is a

constant 𝑐
3
such that

̇

𝑈 ≤ −𝑐

3
𝑈

(2+𝜏)/2
.

(58)

By Lemma 6 (𝑈 = 𝑉, 𝑐 = 𝑐

3
, and 𝛼 = (2 + 𝜏)/2 < 1), (58)

leads to the conclusion that the closed-loop system (20), (50),
and (51) is globally finite-time stable, which yields that system
(18) can be globally finite-time stabilized by the output feed-
back. In addition, the settling time 𝑇

1
satisfies

𝑇

1
≤

−2𝑈

(−𝜏)/2
(0)

𝑐

3
𝜏

.
(59)

3.2. Finite-Time Output Feedback Stabilization of the 𝑥
0
-Sub-

system. From Section 3.1, we know that 𝑥(𝑡) ≡ 0 when 𝑡 ≥

𝑇

1
. Therefore, we just need to stabilize the 𝑥

0
-subsystem in a

finite time. When 𝑡 ≥ 𝑇

1
, for the 𝑥

0
-subsystem, we can take

the following control law:

𝑢

0
(𝑥

0
) = 𝑔

0
(𝑥

0
) 𝑥

𝛼0

0
, 0 < 𝛼

0
=

𝛼

1

𝛼

2

< 1,

𝑔

0
(𝑥

0
) = −

1

𝑐

01

(𝑘

0
+ 𝜙

0
(𝑥

0
)) ,

(60)

where 𝑘
0
is a positive design constant, 𝛼

𝑖
, 𝑖 = 1, 2 are positive

odd numbers, and 𝜙

0
(𝑥

0
) ≥ 𝑎|𝑥

0
|

1−𝛼0
≥ 0 is a smooth func-

tion. For instance, we can simply choose 𝜙
0
(𝑥

0
) = 𝑎(1 + 𝑥

2

0
).

Taking the Lyapunov function 𝑉

0
= 𝑥

2

0
/2, a simple

computation gives

̇

𝑉

0
≤ −𝑘

0
𝑥

1+𝛼0

0
≤ −𝑘

0
𝑉

(1+𝛼0)/2

0
.

(61)

Thus, by Lemma 6, 𝑥
0
tends to 0 within a settling time

denoted by 𝑇
2
and

𝑇

2
≤

2𝑉

(1−𝛼0)/2

0
(0)

𝑘

0
(1 − 𝛼

0
)

.
(62)

Up to now, we have finished the finite-time output feed-
back stabilizing controller design of the system (5). Conse-
quently, the following theorem can be obtained to summarize
the main result of the paper.

Theorem 20. Under Assumptions 1–3, if the proposed control
design procedure together with the above switching control
strategy is applied to system (5), then, for any initial conditions
in the state space (𝑥

0
, 𝑥) ∈ 𝑅

𝑛+1, the closed-loop system is glo-
bally finite-time regulated at origin.
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4. Simulation Example

To verify our proposed controller, we consider the following
low-dimensional system:

𝑥̇

0
= 𝑑

0
𝑢

0
+ 𝜃

0
(𝑡) 𝑥

0
,

𝑥̇

1
= 𝑑

1
𝑥

2
𝑢

0
+ 𝜃

1
(𝑡) ln (1 + 𝑥

2

1
) ,

𝑥̇

2
= 𝑑

2
𝑢

1
+ 𝜃

2
sin𝑥
1
,

(63)

where 𝑑

𝑖
, 𝑖 = 0, 1, 2 are unknown constants and 𝜃

𝑖
(𝑡), 𝑖 =

0, 1, 2 are unknown functions.
It should be mentioned that, when 𝑑

1
= 𝑑

2
= 1 and

𝜃

0
(𝑡) = 𝜃

1
(𝑡) = 𝜃

2
(𝑡) = 0, the system (63) collapses into a

third-order chained form system which can be viewed as the
bilinear model of a mobile robot with small angle measure-
ment error (see [10, 36] for more details).This means that the
system (63) is a simple one; however, it comes from realworld.

For simplicity, it is assumed that 𝑑
𝑖
∈ [0.5, 1] and |𝜃

𝑖
(𝑡)| ≤

1, 𝑖 = 1, 2, 3. From this and Remark 4, it is not difficult to
verify that Assumptions 1–3 hold. Firstly, we define the con-
trol law 𝑢

0
= 1 and introduce the change of coordinates

𝜁

1
= 𝑥

1
, 𝜁

2
= 𝑑

1
𝑥

2 (64)

under which the 𝑥-subsystem of (63) is transformed into

̇

𝜁

1
= 𝜁

2
+ 𝜃

1
(𝑡) ln (1 + 𝜁

2

1
) ,

̇

𝜁

2
= 𝑑

1
𝑑

2
𝑢

1
+ 𝑑

1
𝜃

2
(𝑡) sin 𝜁

1
.

(65)

If we pick 𝜏 = −2/5, the dilation is defined as 𝑟
1
= 1 and

𝑟

2
= 3/5. Then, according to the design procedure shown

in Section 3, we can explicitly construct an output feedback
controller for system (65). We can choose specifically

̇𝜂

2
= −𝐿𝑙

1
𝑧̂

2
, 𝑧̂

2
= (𝜂

2
+ 𝑙

1
𝑧

1
)

3/5
,

𝑢

1
= −𝐿

2
𝛽

2
(𝑧̂

5/3

2
+ 𝛽

5/3

1
𝑧

1
)

1/5
(66)

with appropriate positive constants 𝑙

1
, 𝛽
1
, 𝛽
2
, and a large

enough gain 𝐿 such that output feedback controller (66)
renders the system (65) (i.e., the𝑥-subsystemof (63)) globally
finite-time stable with a settling time 𝑇

1
.

Then, when 𝑡 ≥ 𝑇

1
, for the 𝑥

0
-subsystem, we switch the

control input 𝑢
0
to

𝑢

0
(𝑥

0
) = −2𝑘

0
𝑥

1/3

0
,

(67)

where 𝑘
0
is a positive design constant.

In the simulation, we assume 𝑑

0
= 𝑑

1
= 𝑑

2
= 1 and

𝜃

0
(𝑡) = 𝜃

1
(𝑡) = 𝜃

2
(𝑡) = sin 𝑡. When (𝑥

0
(0), 𝑥

1
(0), 𝑥

2
(0),

𝜂

2
(0)) = (0, 1, −1, 0), by choosing the gains for the output laws

as 𝐿 = 2, 𝛽
1
= 2, 𝛽

2
= 9, 𝑙
1
= 20, and 𝑘

0
= 1, the simulation

shown in Figure 1 demonstrates the global finite-time stability
property of the closed-loop system (63)–(67).

Remark 21. Although system (63) was asymptotically stabi-
lized by the existing output feedback controller in [10, 13], the
system (66)-(67) is the first output feedback controller which

globally finite-time stabilizes system (63). Compared to the
existing asymptotical stabilization results, the proposed con-
troller demonstrates more advantages such as faster con-
vergence rates, higher accuracies, and better disturbance
rejection properties [17].

5. Conclusion

This paper has solved the problemof global finite-time output
feedback stabilization for a class of nonholonomic systems in
chained form with uncertainties. With the help of backstep-
ping recursive technique and the homogeneous domination
approach, a constructive design procedure for output feed-
back control is given. It is shown that the designed control
laws can guarantee that the closed-loop system states are
globally finite-time regulated to zero. In this direction, there
are still remaining problems to be investigated. For example,
an interesting research problem is how to design a finite-time
output feedback stabilizing controller for nonholonomic sys-
tems in stochastic setting.

Appendix

Proof of Proposition 14. By Lemma 9, one obtains

− 𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
(𝑧

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝑧̂

(2−𝑟𝑖−1)/𝑟𝑖

𝑖
)

= −𝑙

𝑖−1
𝑒

𝑟𝑖

𝑖
((𝑧

1/𝑟𝑖

𝑖
)

2−𝑟𝑖−1

− (𝑧̂

1/𝑟𝑖

𝑖
)

2−𝑟𝑖−1

)

≤ −𝑙

𝑖−1
𝜆

𝑖
𝑒

2+𝜏

𝑖
,

(A.1)

where 𝜆
𝑖
> 0 is a constant.

Proof of Proposition 15. Using 𝛾
𝑖
= 𝜎

𝑖
+ 𝑙

𝑖−1
𝑧

𝑖−1
, (26), (31), and

Lemmas 9–11, it follows that

2 − 𝑟

𝑖−1

𝑟

𝑖

𝑧

(2−𝑟𝑖−1−𝑟𝑖)/𝑟𝑖

𝑖
(𝑧

(𝑟𝑖−1)/𝑟𝑖

𝑖
− 𝛾

𝑖
) 𝑧

𝑖+1

=

2 − 𝑟

𝑖−1

𝑟

𝑖

(𝜉

𝑖+1
− 𝛽

1/𝑟𝑖+1

𝑖
𝜉

𝑖
)

𝑟𝑖+1

(𝜉

𝑖
− 𝛽

1/𝑟𝑖

𝑖−1
𝜉

𝑖
)

2−𝑟𝑖−1−𝑟𝑖

× ((𝑧

𝑟𝑖−1/𝑟𝑖

𝑖
− 𝑧̂

𝑟𝑖−1/𝑟𝑖

𝑖
) − 𝑙

𝑖−1
(𝑧

𝑖−1
− 𝑧̂

𝑖−1
))

≤ 𝑘

𝑖3
(

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖+1

󵄨

󵄨

󵄨

󵄨

𝑟𝑖+1
+

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖+1
)

× (

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

2−𝑟𝑖−1−𝑟𝑖
+

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖−1

󵄨

󵄨

󵄨

󵄨

2−𝑟𝑖−1−𝑟𝑖
)

× [

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖−1
+

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖
(

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖−1−𝑟𝑖
+

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖−1

󵄨

󵄨

󵄨

󵄨

𝑟𝑖−1−𝑟𝑖
)

+𝑙

𝑖−1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖−1

󵄨

󵄨

󵄨

󵄨

𝑟𝑖−1
]

≤

1

12

𝑖+1

∑

𝑗=𝑖−1

𝜉

2+𝜏

𝑗
+ 𝑚

𝑖
𝑒

2+𝜏

𝑖
+ 𝑔

𝑖
(𝑙

𝑖−1
) 𝑒

2+𝜏

𝑖−1
,

(A.2)

where 𝑘
𝑖3

> 0, 𝑚
𝑖
> 0 are constants and 𝑔

𝑖
is a continuous

function of 𝑙
𝑖−1

. By 𝑒
1
= 0, one has 𝑔

2
= 0.
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Figure 1: The responses of the closed-loop system (63)–(67).
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Proof of Proposition 16. By (26), (32), 𝑒
𝑖
= (𝑧

𝑖
− 𝑧̂

𝑖
)

1/𝑟𝑖 , and the
definition of the homogeneous norm, one gets

|V (𝑧̂)| ≤ 𝑘

𝑛4‖
𝑧̂‖

𝑟𝑛+𝜏

Δ

= 𝑘

𝑛4
(

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑧̂

𝑖

󵄨

󵄨

󵄨

󵄨

2/𝑟𝑖
)

(𝑟𝑛+𝜏)/2

≤ 𝑘

𝑛4
(

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑟𝑛+𝜏)/𝑟𝑖
+

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑛+𝜏
)

≤

̃

𝑘

𝑛4
(

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑛+𝜏
+

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑛+𝜏
) ,

(A.3)

where 𝑘
𝑛4
, 𝑘
𝑛4
, and ̃𝑘

𝑛4
are positive constants.

Similar to (A.2), with the use of Lemmas 9–11 and (A.3),
(37) holds immediately.

Proof of Proposition 17. From 𝑒

𝑖
= (𝑧

𝑖
− 𝑧̂

𝑖
)

1/𝑟𝑖 , (26), and
Lemma 9, there is a positive constant 𝑘

𝑖5
such that

󵄨

󵄨

󵄨

󵄨

𝑧̂

𝑖

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖
− 𝑒

𝑟𝑖

𝑖

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑒

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖
≤ 𝑘

𝑖5
(

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖−1

󵄨

󵄨

󵄨

󵄨
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According to 𝛾
𝑖
= 𝜎

𝑖
+ 𝑙

𝑖−1
𝑧

𝑖−1
, (31), (A.4), and Lemmas 9–11,

one obtains
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(A.5)

where ℎ
𝑖
is a continuous function of 𝑙

𝑖−1
.

Proof of Proposition 18. By (26), (31), and Lemmas 9–11, it
follows that
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where 𝑘
𝑛6
, 𝑘
𝑛6
, and 𝜇 are positive constants.
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