
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 757824, 9 pages
http://dx.doi.org/10.1155/2013/757824

Research Article
Existence and Hölder Regularity of the Fractional
Landau-Lifshitz Equation without Gilbert Damping Term

Lijun Wang,1 Jingna Li,1 and Li Xia2

1 Department of Mathematics, Jinan University, Guangzhou 510632, China
2Department of Mathematics, Guangdong University of Finance & Economics, Guangzhou 510320, China

Correspondence should be addressed to Jingna Li; jingna8005@hotmail.com

Received 15 September 2013; Accepted 6 November 2013

Academic Editor: Natig M. Atakishiyev

Copyright © 2013 Lijun Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Existence and Hölder regularity of weak solutions to the fractional Landau-Lifshitz equation without Gilbert damping term is
proved through viscosity approximation. Since the nonlinear term is nonlocal and of full order of the equation, a commutator is
constructed to get the convergence of the approximating solutions.

1. Introduction

We study the fractional Landau-Lifshitz equation

𝜕𝑚

𝜕𝑡
= −𝜆
1
𝑚 × Λ

2𝛼
𝑚 + 𝜆

2
𝑚 × (𝑚 × Λ

2𝛼
𝑚) , (1)

where 𝑚(𝑥, 𝑡) is a three-dimensional vector representing the
magnetization and 𝛼, 𝜆

1
, 𝜆
2

≥ 0 are real numbers. Λ =

(−Δ)
1/2 is the square root of the Laplacian and the so-called

Zygmund operator and × denotes the cross product of R3-
valued vectors. The first term 𝑚 × Λ

2𝛼
𝑚 is the gyromagnetic

term and the second term 𝑚 × (𝑚 × Λ
2𝛼

𝑚) is called the
Gilbert damping term. The fractional diffusion operator Λ

2𝛼

is nonlocal except𝛼 = 0, 1, 2, 3, . . ., whichmeans thatΛ
2𝛼

𝑢(𝑥)

depends not only on 𝑢(𝑦) for 𝑦 near 𝑥 but also on 𝑢(𝑦) for all
𝑦.

Equation (1) plays a fundamental role in the understand-
ing of nonequilibrium magnetism, which is an interesting
problem from both scientific and technological points of
view. Besides their traditional applications in the magnetic
recording industry, these films are also currently being
explored as alternatives to semiconductors asmagneticmem-
ory devices (MRAMs), which has given greater incentive
to study this subject. Since defects, impurities, and thermal
noise play important roles in the dynamics of the mag-
netization field in nanometer thick films, they also make

an ideal playground for studying some of the nanoscale
physics branches [1–4].

Fractional differential equations, which appear in several
branches of physics such as viscoelasticity, electrochemistry,
control, porous media, and electromagnetic, now attract the
interests of many mathematicians; see, for example, [5, 6].
A good case in point is the quasi-geostrophic equation
with fractional dissipation, which has been extensively stud-
ied in the last decade see [7–9]. The fractional Landau-
Lifshitz equation shares some similar difficulties with quasi-
geostrophic equation; however, the equation studied here is
muchmore complicated in several ways.The derivative in the
nonlinear convective term is local in the quasi-geostrophic
equation and the fluid velocity is divergence free, but here for
𝜆
2

= 0, (1) is degenerate and even worse the derivative in
the nonlinear term is nonlocal and of the same order as the
equation, which brings new difficulties in the convergence of
the approximate solutions. Hence subtle techniques must be
used to overcome the difficulties.

Let us recall some previous results of the equation. When
𝛼 = 1, (1) becomes the standard Landau-Lifshitz equation
introduced first by Landau and Lifshitz in [10], which was
widely studied in [11–16]. For general 𝛼 ∈ (0, 1], the interested
reader can refer to [17] for mathematical theory. When 𝜆

2
=

0, (1) corresponds to Schrödinger flow which represents
the conservation of angular momentum [18–21]. Numerical
treatments can be found in [22, 23].
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In this paper, we will study local existence of weak
solutions in the spatial domain (0, 2𝜋) with 𝜆

2
= 0 and 𝛼 ∈

[1/2, 1]. The main difficulty, as in many partial differential
equations, is the convergence of the nonlinear terms. In our
situation, we even face the problem of nonlocal differential
operators, degeneracy, and nonlocal nonlinear term. For
these reasons, the structure of (1) must be explored in detail.

Without loss of generality, we assume that 𝜆
1

= 1.
Actually, (1) can be written as

𝜕𝑚

𝜕𝑡
= 𝐵 (𝑚) Λ

2𝛼
𝑚, (2)

in which

𝑚 = (

𝑚
1

𝑚
2

𝑚
3

) , 𝐵 (𝑚) = (

0 𝑚
3

−𝑚
2

−𝑚
3

0 𝑚
1

𝑚
2

−𝑚
1

0

) , (3)

with initial condition

𝑚 (𝑥, 0) = 𝑚
0

(𝑥) (4)

and the periodic boundary condition

𝑚 (𝑥, 𝑡) = 𝑚 (𝑥 + 2𝜋, 𝑡) . (5)

It is straightforward to check the following conclusions.

(1) The matrix 𝐵(𝑚) is “zero definite”; namely,

𝜉
𝜏
𝐵 (𝑚) 𝜉 = 0, ∀𝜉, 𝑚 ∈ R

3
. (6)

(2) The matrix 𝐵(𝑚) is singular; that is,

det𝐵 (𝑚) = 0, ∀𝑚 ∈ R
3
. (7)

Hence (2) is quite different from usual quasilinear parabolic
equations for the above reasons.

To approximate (2), we consider the following mollified
equation:

𝜕𝑚

𝜕𝑡
= −𝜀Λ

2𝛼
𝑚 − 𝑚 × Λ

2𝛼
𝑚, (8)

which can be written as

𝜕𝑚

𝜕𝑡
+ (𝜀𝐸 − 𝐵 (𝑚)) Λ

2𝛼
𝑚 = 0. (9)

The rest of this paper is divided into three parts: first,
we consider the corresponding linear equation and get the
regularity as a preparation to deal with (9); second, positive-
definition and uniform ellipticity of matrix 𝜀𝐸 − 𝐵(𝑚) and
choice of norm space 𝐿

∞ ensure that Leray-Schauder fixed-
point theorem can be applied to prove the existence of weak
solution to (9), and the necessary a priori estimates in order
to guarantee convergence are obtained; finally, existence and
Hölder regularity of weak solution to (2) is proved by taking
the limit of the solution to (9), in which a commutator is
constructed to get the convergence.

2. Cauchy Problem for the Corresponding
Linear Equation

Our starting point is the linear equation

𝜕𝑚

𝜕𝑡
+ 𝐴 (𝑥, 𝑡) Λ

2𝛼
𝑚 = 𝑓 (𝑥, 𝑡) , in T

𝑛
× (0, 𝑇) , (10)

𝑚 (𝑥, 0) = 𝑚
0

(𝑥) , on T
𝑛
, (11)

where T𝑛 = R𝑛/𝑍
𝑛 is the flat torus and 𝑚(𝑥, 𝑡) and 𝑚

0
(𝑥)

are N-dimensional vector-valued functions. We have the
following theorem about existence of solution to (10)-(11).

Theorem 1. Suppose that𝑁×𝑁matrix𝐴(𝑥, 𝑡) defined on T𝑛×
(0, 𝑇) is measurable, bounded, and uniformly elliptic; namely,
there exists a constant 𝐾 such that

𝐴 (𝑥, 𝑡) 𝜂 ⋅ 𝜂 ≥ 𝐾
󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨
2

, (12)

for all 𝑁-dimensional vectors, 𝑓(𝑥, 𝑡) ∈ 𝐿
2
(0, 𝑇; 𝐿

2
(T𝑛)),

and 𝑚
0
(𝑥) ∈ 𝐻

𝛼
(T𝑛).Then there exists a unique vector-valued

solution to (10)-(11) such that

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(T
𝑛
)) ⋂ 𝐿

2
(0, 𝑇; 𝐻

2𝛼
(T
𝑛
)) ,

𝜕𝑚

𝜕𝑡
∈ 𝐿
2

(0, 𝑇; 𝐿
2

(T
𝑛
)) .

(13)

Proof of Theorem 1. Weapply theGalerkinmethod: let {𝜑
𝑗
} be

an orthogonal basis of 𝐿
2
(T𝑛) consisting of all the eigenfunc-

tions for the operator

Λ
2𝛼

𝜑
𝑗

= 𝜆
𝑗
𝜑
𝑗
,

𝜑
𝑗

(0) = 𝜑
𝑗

(2𝜋) .

(14)

We are looking for approximate solutions 𝑚
𝑛
(𝑥, 𝑡) to (10)-(11)

under the form

𝑚
𝑛

(𝑥, 𝑡) =

𝑛

∑

𝑗=1

𝑔
𝑗

(𝑡) 𝜑
𝑗

(𝑥) , (15)

where 𝑔
𝑗
are vector-valued functions, such that, for 1 ⩽ 𝑖 ⩽ 𝑛,

there holds

∫
Ω

[
𝜕𝑚
𝑛

𝜕𝑡
+ 𝐴 (𝑥, 𝑡) Λ

2𝛼
𝑚
𝑛

− 𝑓 (𝑥, 𝑡)] 𝜑
𝑖
𝑑𝑥 = 0, (16)

∫
Ω

[𝑚
𝑛

(𝑥, 0) − 𝑚
0

(𝑥)] 𝜑
𝑖
𝑑𝑥 = 0. (17)

These relations produce an ordinary differential system that
can be writeen as

𝜕𝑔

𝜕𝑡
= 𝐹 (𝑔) , 𝑔 (0) = 𝑔

0
, (18)

where 𝑔 = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛
) and 𝑔

0
is the projection of

𝑚
0
on (𝜑

1
, 𝜑
2
, . . . 𝜑
𝑛
). The existence of a local solution to

system (18) is a classical matter. We now proceed to estimate
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the approximate solution 𝑚
𝑛
. Multiplying equality (16) by 𝑔

𝑖

and summing for 1 ≤ 𝑖 ≤ 𝑛, we have

1

2

󵄩󵄩󵄩󵄩𝑚
𝑛

(⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

= ∫

𝑇

0

∫
T𝑛

(𝑓 ⋅ 𝑚
𝑛

− 𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚
𝑛

⋅ 𝑚
𝑛
) 𝑑𝑥 𝑑𝑡

+
1

2

󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

.

(19)

Multiplying equality (16) by 𝜆
𝑖
𝑔
𝑖
and summing for 1 ≤ 𝑖 ≤ 𝑛,

we have

1

2

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
𝑛

(⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

+ ∫

𝑇

0

∫
T𝑛

𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚
𝑛

⋅ Λ
2𝛼

𝑚
𝑛

𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

∫
T𝑛

𝑓 ⋅ Λ
2𝛼

𝑚
𝑛

𝑑𝑥 𝑑𝑡 +
1

2

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

.

(20)

Adding (19) to (20), we get

1

2

󵄩󵄩󵄩󵄩𝑚
𝑛

(⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

+
1

2

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
𝑛

(⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

+ ∫

𝑇

0

∫
T𝑛

𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚
𝑛

⋅ Λ
2𝛼

𝑚
𝑛
𝑑𝑥 𝑑𝑡

=
1

2
(
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

+
󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

)

+ ∫

𝑇

0

∫
T𝑛

(𝑓 ⋅ 𝑚
𝑛

+ 𝑓 ⋅ Λ
2𝛼

𝑚
𝑛
) 𝑑𝑥 𝑑𝑡

− ∫

𝑇

0

∫
T𝑛

𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚
𝑛

⋅ 𝑚
𝑛

𝑑𝑥 𝑑𝑡

≤
1

2
(
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

+
󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛)

) + 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

+ 𝐶 ∫

𝑇

0

∫
T𝑛

󵄨󵄨󵄨󵄨𝑚𝑛
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 +
𝐾

2

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼

𝑚
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

.

(21)

Since ∫
𝑇

0
∫
T𝑛

𝐴(𝑥, 𝑡)Λ
2𝛼

𝑚
𝑛

⋅ Λ
2𝛼

𝑚
𝑛
𝑑𝑥 𝑑𝑡 ≥

𝐾‖Λ
2𝛼

𝑚
𝑛
‖
2

𝐿
2
(T𝑛×(0,𝑇)), by Gronwall’s inequality, we have

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑚
𝑛

(⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐻
𝛼
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑚
𝑛

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐻
𝛼
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

) ,

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼

𝑚
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐻
𝛼
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

) .

(22)

Taking the inner product of 𝜕𝑚
𝑛
/𝜕𝑡 and (10) and integrating

over T𝑛 × (0, 𝑇), we have

∫

𝑇

0

∫
T𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑚
𝑛

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

= ∫

𝑇

0

∫
T𝑛

(𝑓 − 𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚
𝑛
) ⋅

𝜕𝑚
𝑛

𝜕𝑡
𝑑𝑥 𝑑𝑡

≤ 𝐶 ∫

𝑇

0

∫
T𝑛

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
2

𝑑𝑥 𝑑𝑡 + 𝐶 ∫

𝑇

0

∫
T𝑛

󵄨󵄨󵄨󵄨󵄨
Λ
2𝛼

𝑚
𝑛

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡

+
1

2
∫

𝑇

0

∫
T𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑚
𝑛

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡.

(23)

Hence
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚
𝑛

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐻
𝛼
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

) . (24)

Actually, if the matrix 𝐴(𝑥, 𝑡) is retrained to a small class
of good function matrix, one can get higher regularity of
solution to (10)-(11).

Since the right-hand member of equality (22) and (24) is
uniformly bounded, thus the solution g can be extended to all
time, andwe can extract from𝑚

𝑛
a subsequence (still denoted

by 𝑚
𝑛
) such that

𝑚
𝑛

⇀ 𝑚𝑠𝑤, in 𝐿
2

(0, 𝑇; 𝐻
2𝛼

(T
𝑛
))weakly∗,

𝜕𝑚
𝑛

𝜕𝑡
⇀

𝜕𝑚

𝜕𝑡
, in 𝐿

2
(0, 𝑇; 𝐿

2
(T
𝑛
))weakly.

(25)

Hence, we know that [24]

𝑚
𝑛

󳨀→ 𝑚, strongly in 𝐿
2

(0, 𝑇; 𝐿
2

(T
𝑛
))

a.e. in T
𝑛

× [0, 𝑇] .

(26)

Passing to the limit (𝑛 → ∞), we find a weak solution to
(10)-(11). From (16), and taking the limit 𝑛 → ∞, we deduce
that, for all 𝜑 in vectors (𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑛
), there holds

∫
T𝑛

𝜕𝑚
𝑛

𝜕𝑡
𝜑 + ∫

T𝑛
𝐴 (𝑥, 𝑡) Λ

2𝛼
𝑚
𝑛
𝜑 − ∫

T𝑛
𝑓 (𝑥, 𝑡) 𝜑 𝑑𝑥 = 0.

(27)

By a density argument, we also obtain formula (27) for all 𝜑

in 𝐻
𝛼

(𝑄
𝑇

) 𝑄
𝑇

= T𝑛 × [0, 𝑇].

Theorem 2. Suppose that:
(i) 𝑁 × 𝑁 matrix 𝐴(𝑥, 𝑡) defined on T𝑛 × (0, 𝑇) is

measurable, bounded, and uniformly elliptic; namely, there
exists a constant 𝐾 such that

𝐴 (𝑥, 𝑡) 𝜂 ⋅ 𝜂 ≥ 𝐾
󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨
2

, (28)

for all N-dimensional vectors 𝜂, Δ𝐴(𝑥, 𝑡) is bounded, and
|∇𝐴(𝑥, 𝑡)|

∞
≤ 𝐾/√5𝛿, where 𝛿 is the Sobolev embedding

constant satisfying
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿2(T𝑛×(0,𝑇)) ≤ 𝛿
󵄩󵄩󵄩󵄩Δ𝑓

󵄩󵄩󵄩󵄩𝐿2(T𝑛×(0,𝑇)); (29)
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(ii) 𝑓(𝑥, 𝑡) ∈ 𝐿
2
(0, 𝑇; 𝐻

2
(T𝑛)), 𝑚

0
(𝑥) ∈ 𝐻

𝛼+2
(T𝑛). Then

there exists a unique vector-valued solution to (10)-(11) such
that

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼+2

(T
𝑛
)) ⋂ 𝐻

1
(T
𝑛

× (0, 𝑇)) ,

sup
0≤𝑡≤𝑇

‖𝑚 (⋅, 𝑡)‖
2

𝐻
𝛼+2
(T𝑛) +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚

𝜕𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

+ ‖𝑚‖
2

𝐿
2(0,𝑇;𝐻2𝛼+2(T𝑛))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐻
𝛼+2
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2(0,𝑇;𝐻2(T𝑛))

) ,

(30)

in which constant 𝐶 is dependent 𝐴(𝑥, 𝑡) independent of
𝑚(𝑥, 𝑡).

Proof. Let the operator Λ
2 act on (10); we have

− Δ𝑚
𝑡

− Δ𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚 + 𝐴 (𝑥, 𝑡) Λ
2𝛼+2

𝑚

− ∇𝐴 (𝑥, 𝑡) ⋅ ∇Λ
2𝛼

𝑚 = −Δ𝑓 (𝑥, 𝑡) .

(31)

Taking the inner product of Λ
2𝛼+2

𝑚 and (31) and integrating
over T𝑛 × (0, 𝑇), we have

1

2
∫
T𝑛

󵄨󵄨󵄨󵄨󵄨
Λ
𝛼+2

𝑚
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫

𝑇

0

∫
T𝑛

𝐴 (𝑥, 𝑡) Λ
2𝛼+2

𝑚 ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥 𝑑𝑡

= − ∫

𝑇

0

∫
T𝑛

Δ𝑓 ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫
T𝑛

Δ𝐴 (𝑥, 𝑡) Λ
2𝛼

𝑚 ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥 𝑑𝑡

+ ∫

𝑇

0

∫
T𝑛

∇𝐴 (𝑥, 𝑡) ∇Λ
2𝛼

𝑚 ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥 𝑑𝑡

+
1

2
∫
T𝑛

󵄨󵄨󵄨󵄨󵄨
Λ
𝛼+2

𝑚
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
1

2

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼+2

𝑚
0

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛)

+
1

𝐾

󵄩󵄩󵄩󵄩Δ𝑓
󵄩󵄩󵄩󵄩
2

𝐿
2
(T𝑛×(0,𝑇))

+
𝐾

4

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

+
1

𝐾

󵄩󵄩󵄩󵄩󵄩
Δ𝐴 (𝑥, 𝑡) Λ

2𝛼
𝑚

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

+
𝐾

4

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

+
1

𝐾

󵄩󵄩󵄩󵄩󵄩
∇𝐴 (𝑥, 𝑡) ∇Λ

2𝛼
𝑚

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

+
𝐾

4

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

.

(32)

Note that

|∇𝐴 (𝑥, 𝑡)|∞ <
𝐾

√5𝛿
,

󵄩󵄩󵄩󵄩󵄩
∇Λ
2𝛼

𝑚
󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑛×(0,𝑇))

≤ 𝛿
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩𝐿2(T𝑛×(0,𝑇))

, and

Δ𝐴 (𝑥, 𝑡) is bounded.

(33)

Reporting (33) in (32) and taking into account

∫

𝑇

0

∫
T𝑛

𝐴 (𝑥, 𝑡) Λ
2𝛼+2

𝑚 ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥 𝑑𝑡

≥ 𝐾
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼
+
2
𝑚

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

,

(34)

we have

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼+2

𝑚 (⋅, 𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛)

+
󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(T𝑛×(0,𝑇))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐻
𝛼+2
(T𝑛)

+
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

𝐿
2(0,𝑇:𝐻2(T𝑛))

) .

(35)

3. Cauchy Problem for the Mollified Equation

To get existence of weak solution to (2), we consider the fol-
lowing approximate equation:

𝜕𝑚

𝜕𝑡
= −𝜀Λ

2𝛼
𝑚 − 𝑚 × Λ

2𝛼
𝑚, (36)

which is called mollified equation. In this section and next
section, we assume that the spatial variable 𝑥 ∈ (0, 2𝜋). By
Leray-Schauder fixed-point theorem, we have the following
theorem.

Theorem3. Suppose that𝑚
0
(𝑥) ∈ 𝐻

𝛼
(0, 2𝜋), then there exists

a unique weak solution to (36)with initial-boundary condition
(4) and (5) such that

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(0, 2𝜋)) , (37)

where 𝑄
𝑇

= (0, 2𝜋) × (0, 𝑇).

Proof. First, themapping𝑇
𝜆

: 𝐿
∞

(𝑄
𝑇

) → 𝐿
∞

(𝑄
𝑇

) is defined
as follows. For each 𝑢 ∈ 𝐿

∞
(𝑄
𝑇

), 𝑚 = 𝑇
𝜆
(𝑢) is a solution to

𝜕𝑚

𝜕𝑡
= −𝜀Λ

2𝛼
𝑚 − 𝜆𝑢 × Λ

2𝛼
𝑚 (38)

with initial condition (4), in which 0 ≤ 𝜆 ≤ 1. By Theorem 1,
we know that 𝑚 = 𝑇

𝜆
(𝑢) is the unique solution to (38)

with initial-boundary condition (4) and (5); moreover, 𝑚 ∈

𝐿
∞

(0, 𝑇; 𝐻
1
(0, 2𝜋)).

Obviously, for all 𝜆, the mapping 𝑇
𝜆
is continuous; and

for any bounded closed set of 𝐿
∞

(𝑄
𝑇

), 𝑇
𝜆
is uniformly

continuous with respect to 0 ≤ 𝜆 ≤ 1.
To apply Leray-Schauder fixed-point theorem, wemake a

priori estimate on all fixed points of 𝑇
𝜆
.
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Taking the inner product of 𝑚(𝑥, 𝑡) and equation

𝜕𝑚

𝜕𝑡
= −𝜀Λ

2𝛼
𝑚 − 𝜆𝑚 × Λ

2𝛼
𝑚, (39)

we have

𝑚 ⋅
𝜕𝑚

𝜕𝑡
= −𝜀𝑚 ⋅ Λ

2𝛼
𝑚 − 𝜆 (𝑚 × Λ

2𝛼
𝑚) ⋅ 𝑚. (40)

Integrating (40) over 𝑄
𝜏
(0 ≤ 𝜏 ≤ 𝑇), we get

‖𝑚 (⋅, 𝜏)‖
2

𝐿
2
(0,2𝜋)

+ 2𝜀
󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
󵄩󵄩󵄩󵄩
2

𝐿
2(𝑄𝜏)

≤
󵄩󵄩󵄩󵄩𝑚
0

󵄩󵄩󵄩󵄩
2

𝐿
2
(0,2𝜋)

, (41)

in which 0 ≤ 𝜆 ≤ 1, 0 ≤ 𝜏 ≤ 𝑇. Hence

sup
0≤𝑡≤𝑇

‖𝑚 (⋅, 𝑡)‖
𝐿
2
(0,2𝜋)

≤ 𝐶
1
, (42)

in which 𝐶
1
is a constant independent of 𝜀, 𝜆.

Taking the inner product of Λ
2𝛼

𝑚(𝑥, 𝑡) and (39), we
obtain

Λ
2𝛼

𝑚 ⋅
𝜕𝑚

𝜕𝑡
= −𝜀Λ

2𝛼
𝑚 ⋅ Λ
2𝛼

𝑚 − 𝜆Λ
2𝛼

𝑚 ⋅ (𝑚 × Λ
2𝛼

𝑚) .

(43)

Integrating (43) over (0, 2𝜋) with respect to variable 𝑥 leads
to

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚 (⋅, 𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2
(0,2𝜋)

+ 𝜀 ∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
Λ
2𝛼

𝑚
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 0. (44)

Obviously,

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚 (⋅, 𝑡)
󵄩󵄩󵄩󵄩𝐿2(0,2𝜋) ≤ 𝐶

2
, (45)

in which 𝐶
2
is a constant independent of 𝜆, 𝜀. From (42), for

each 𝜀 > 0, we have

‖𝑚‖𝐿2(0,𝑇;𝐻2𝛼(0,2𝜋)) ≤ 𝐶. (46)

In view of (42), (45), and (46), Sobolev embedding theorem
gives the desired result.

For small initial data 𝑚
0
(𝑥), we can get higher regularity

of the solution to (36).

Theorem 4. Suppose that 𝑚
0
(𝑥) ∈ 𝐻

𝛼+2
(0, 2𝜋), 𝛼 ∈ (1/2, 1],

and ‖𝑚
0
(𝑥)‖
2

𝐻
𝛼+2 ≤ 1/𝑀𝑇, where 𝑀 = 𝑜(1/𝜀) is a certain

constant, then there exists a unique weak solution to (36) with
initial-boundary condition (4) and (5), such that

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼+2

(0, 2𝜋)) . (47)

Proof. Let the operator Λ
2 act on (39) we get

−Δ𝑚
𝑡

= − 𝜀Λ
2𝛼+2

𝑚 + 𝜆Δ𝑚 × Λ
2𝛼

𝑚

− 𝜆𝑚 × Λ
2𝛼+2

𝑚 + 𝜆∇𝑚 × ∇Λ
2𝛼

𝑚.

(48)

Taking the inner product of Λ
2𝛼+2

𝑚 and (48) and integrating
over (0, 2𝜋), we have

1

2

𝑑

𝑑𝑡
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
Λ
𝛼+2

𝑚
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜀 ∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
Λ
2𝛼+2

𝑚
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= 𝜆 ∫

2𝜋

0

(Δ𝑚 × Λ
2𝛼

𝑚) ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥

+ 𝜆 ∫

2𝜋

0

(∇𝑚 × ∇Λ
2𝛼

𝑚) ⋅ Λ
2𝛼+2

𝑚 𝑑𝑥

≤
1

𝜀

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
∞

‖Δ𝑚‖
2

𝐿
2

+
1

𝜀
‖∇𝑚‖

2

𝐿
∞

󵄩󵄩󵄩󵄩󵄩
∇Λ
2𝛼

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+
𝜀

2

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤
𝑀

2

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

4

𝐿
2

+
𝜀

2

󵄩󵄩󵄩󵄩󵄩
Λ
2𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
.

(49)

Note that𝑀 = 𝑜(1/𝜀) is a constant; hence by Lemma 5, which
will be proved later, we have

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼+2

𝑚
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(0,2𝜋)

≤ 𝐶
3
, (50)

in which 𝐶
3
is independent of 𝜀, 𝜆. From (49), for each 𝜀 > 0,

we have

‖𝑚‖𝐿2(0,𝑇;𝐻2𝛼+2(0,2𝜋)) ≤ 𝐶. (51)

Lemma 5. Let 𝑓(𝑡) be nonnegative continuous functions for
0 ≤ 𝑡 ≤ 𝑇. Suppose that 𝑓(0) < 1/𝑘𝑇 and

𝑓 (𝑡) ≤ 𝑘 ∫

𝑡

0

𝑓
2

(𝜏) 𝑑𝜏 + 𝑓 (0) , 0 ≤ 𝑡 ≤ 𝑇, (52)

where 𝑘 is a constant. Then

𝑓 (𝑡) ≤
𝑓 (0)

1 − 𝑘𝑇𝑓 (0)
(53)

holds for 0 ≤ 𝑡 ≤ 𝑇.

Proof. Define

V (𝑡) = 𝑘 ∫

𝑡

0

𝑓
2

(𝜏) 𝑑𝜏 + 𝑓 (0) . (54)

Then the function V(𝑡) is nondecreasing, V(0) = 𝑓(0), and

𝑑V (𝑡)

𝑑𝑡
= 𝑘𝑓
2

(𝑡) ≤ 𝑘V2 (𝑡) , (55)

since 𝑓(𝑡) ≤ V(𝑡) ≤ V(𝑇). According to (55), the function
𝑧(𝑡) = −1/V(𝑡) satisfies

𝑑𝑧 (𝑡)

𝑑𝑡
=

V󸀠 (𝑡)

V2 (𝑡)
=

𝑘𝑓
2

(𝑡)

V2 (𝑡)
≤ 𝑘. (56)
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Integrating (56) from 0 to 𝑡 yields

𝑧 (𝑡) ≤ 𝑘𝑡 + 𝑧 (0) , (57)

or
−

1

V (𝑡)
≤ 𝑘𝑡 −

1

V (0)
; (58)

that is
V (𝑡) ≤

V (0)

1 − 𝑘𝑡V (0)
. (59)

Hence

𝑓 (𝑡) ≤
𝑓 (0)

1 − 𝑘𝑇𝑓 (0)
. (60)

4. Convergence Process

Before we prove existence of weak solution to the fractional
Landau-Lifshitz model without Gilbert term (2), we first
recall two Lemmas in [25, 26], respectively.

Lemma 6. Suppose that 𝑠 > 0 and 𝑝 ∈ (1, +∞). If 𝑓, 𝑔 ∈ S,
the Schwartz class, then

󵄩󵄩󵄩󵄩Λ
𝑠

(𝑓𝑔) − 𝑓Λ
𝑠
𝑔

󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝑊̇𝑠−1,𝑝2 +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊̇𝑠,𝑝3
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝐿𝑝4 ) ,

󵄩󵄩󵄩󵄩Λ
𝑠

(𝑓𝑔)
󵄩󵄩󵄩󵄩𝐿𝑝 ≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑊̇𝑠,𝑝2 +

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊̇𝑠,𝑝3

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝4 ) ,

(61)

with 𝑝
2
, 𝑝
3

∈ (1, +∞) such that

1

𝑝
=

1

𝑝
1

+
1

𝑝
2

=
1

𝑝
3

+
1

𝑝
4

, (62)

where 𝑊̇
𝑘,𝑝 is the homogeneous Sobolev space and the 𝑊̇

𝑘,𝑝-
norm of 𝑓 is defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊̇𝑘,𝑝 =

󵄩󵄩󵄩󵄩󵄩
F
−1

(
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨
𝑠

𝑓 (𝜉))
󵄩󵄩󵄩󵄩󵄩𝐿𝑝

. (63)

The following Lemma is due to Gagliardo and Nirenberg,
see [11].

Lemma 7. Let Ω be R𝑛 or a bounded Lipschitz domain in R𝑛

with 𝜕Ω, and let 𝑢 be any function in 𝑊
𝑚,𝑟

(Ω) ⋂ 𝐿
𝑞
(Ω), 1 ≤

𝑟, 𝑞 ≤ +∞. For any integer 𝑗, 0 ≤ 𝑗 < 𝑚, and for any number
𝑎 in the interval 𝑗/𝑚 ≤ 𝑎 ≤ 1, set

1

𝑝
=

𝑗

𝑛
+ 𝑎 (

1

𝑟
−

𝑚

𝑛
) + (1 − 𝑎)

1

𝑞
. (64)

If 𝑚 − 𝑗 − (𝑛/𝑟) is not a nonnegative integer, then
󵄩󵄩󵄩󵄩󵄩
∇
𝑗
𝑢

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
≤ 𝐶‖𝑢‖

𝑎

𝑊
𝑚,𝑟
(Ω)

‖𝑢‖
1−𝑎

𝐿
𝑞
(Ω)

. (65)

If 𝑚 − 𝑗 − (𝑛/𝑟) is a nonnegative integer, then (65) holds for
𝑎 = 𝑗/𝑚. The constant 𝐶 depends only on 𝑟, 𝑞, 𝑚, 𝑗, 𝑎, and the
shape of Ω.

From (45), we conclude the following.

Lemma 8. Solutions to (36) satisfy

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑚
𝜀

(⋅, 𝑡)
󵄩󵄩󵄩󵄩𝐻𝛼(0,2𝜋) ≤ 𝐶, (66)

in which 𝐶 is independent of 𝜀.

For the uniform bound of 𝜕𝑚
𝜀
/𝜕𝑡, we have the following

lemma.

Lemma 9. 𝜕𝑚
𝜀
/𝜕𝑡 in (36) satisfies

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑚
𝜀

𝜕𝑡
(⋅, 𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻−𝑘(0,2𝜋)
≤ 𝐶, (67)

in which 1/2 < 𝑘 < 1 and 𝐶 is independent of 𝜀.

Proof. For all 𝜓(𝑥) ∈ (𝐻
𝛼

(0, 2𝜋))
3, we have

∫

+∞

−∞

𝜓 ⋅
𝜕𝑚
𝜀

𝜕𝑡
𝑑𝑥

= −𝜀 ∫

+∞

−∞

Λ
𝛼

𝜓 (𝑥) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥

− ∫

+∞

−∞

(𝑚
𝜀

× Λ
2𝛼

𝑚
𝜀
) ⋅ 𝜓 (𝑥) 𝑑𝑥

= −𝜀 ∫

+∞

−∞

Λ
𝛼

𝜓 (𝑥) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥

− ∫

+∞

−∞

(𝜓 (𝑥) × 𝑚
𝜀
) ⋅ Λ
2𝛼

𝑚
𝜀
𝑑𝑥

= −𝜀 ∫

+∞

−∞

Λ
𝛼

𝜓 (𝑥) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥

− ∫

+∞

−∞

Λ
𝛼

(𝜓 (𝑥) × 𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥

≤
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿∞
󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
𝜀󵄩󵄩󵄩󵄩
2

𝐿
2 +

󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
𝜀󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩Λ
𝛼

𝜓
󵄩󵄩󵄩󵄩𝐿4

󵄩󵄩󵄩󵄩𝑚
𝜀󵄩󵄩󵄩󵄩𝐿4

≤ 𝐶
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻𝑘(0,2𝜋),

(68)

in which formula ( ⃗𝑎 × 𝑏⃗) ⋅ ⃗𝑐 = ( ⃗𝑐 × ⃗𝑎) ⋅ 𝑏⃗; Sobolev embedding
theorem and Lemma 6 are used.

The following lemma is about the uniform bound of the
Hölder norm of 𝑚

𝜀.

Lemma 10. Solutions to (36) satisfy

󵄩󵄩󵄩󵄩𝑚
𝜀

(𝑥, 𝑡)
󵄩󵄩󵄩󵄩𝐶(2𝛼−1)/(𝛼+1),(2𝛼−1)/(2(𝛼+1))(𝑄

𝑇
)

≤ 𝐶, (69)

where 𝐶 is independent of 𝜀.
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Proof. Denote 𝜔
𝜀

= ∫
𝑥

0
𝑚
𝜀
(𝜉, 𝑡)𝑑𝜉

∀𝜓 (𝑥) ∈ 𝐻
𝑘

0
(0, 2𝜋) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝜓
󸀠

(𝑥) 𝜔
𝜀

𝑡
(𝑥, 𝑡) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝜓 (𝑥) 𝑚
𝜀

𝑡
(𝑥, 𝑡) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝜓 (𝑥)

󵄩󵄩󵄩󵄩𝐻𝑘(0,2𝜋)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝜓
󸀠

(𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿2(0,2𝜋)

.

(70)

Therefore

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝜔
𝜀

𝑡
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶. (71)

Hence

{𝜔
𝜀

(𝑥, 𝑡)} is bounded in 𝐿
∞

(0, 𝑇; 𝐻
𝛼+1

(0, 2𝜋))

⋂ 𝑊
1,∞

(0, 𝑇; 𝐻
1−𝛼

(0, 2𝜋)) .

(72)

Therefore, by Lemma 7,

󵄨󵄨󵄨󵄨𝑚
𝜀

(𝑥, 𝑡
2
) − 𝑚
𝜀

(𝑥, 𝑡
1
)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝜔
𝜀

𝑥
(𝑥, 𝑡
2
) − 𝜔
𝜀

𝑥
(𝑥, 𝑡
1
)
󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝜔
𝜀

(⋅, 𝑡
2
) − 𝜔
𝜀

(⋅, 𝑡
1
)
󵄩󵄩󵄩󵄩
(2𝛼−1)/2(𝛼+1)

𝐿
2
(0,2𝜋)

×
󵄩󵄩󵄩󵄩𝜔
𝜀

(⋅, 𝑡
2
) − 𝜔
𝜀

(⋅, 𝑡
1
)
󵄩󵄩󵄩󵄩
3/2(𝛼+1)

𝐻
𝛼+1
(0,2𝜋)

≤ 𝐶
󵄨󵄨󵄨󵄨𝑡2 − 𝑡

1

󵄨󵄨󵄨󵄨
(2𝛼−1)/2(𝛼+1)

× sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑤
𝜀

𝑡
(⋅, 𝑡)

󵄩󵄩󵄩󵄩
(2𝛼−1)/2(𝛼+1)

𝐿
2
(0,2𝜋)

×
󵄩󵄩󵄩󵄩𝜔
𝜀

(⋅, 𝑡
2
) −𝜔
𝜀

(⋅, 𝑡
1
)
󵄩󵄩󵄩󵄩
3/2(𝛼+1)

𝐻
𝛼+1
(0,2𝜋)

.

(73)

Weak solution to (2) with initial-boundary condition (4)
and (5) is defined as follows.

Definition 11. 3-dimensional vector-valued function 𝑚(𝑥, 𝑡)

is called a weak solution to (2) with initial-boundary condi-
tion (4) and (5), if

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(0, 2𝜋))

⋂ 𝐶
(2𝛼−1)/(𝛼+1),(2𝛼−1)/2(𝛼+1)

(𝑄
𝑇

) ,

∫ ∫
𝑄
𝑇

[
𝜕𝑚

𝜕𝑡
⋅ 𝜑 + Λ

𝛼
(𝜑 × 𝑚) ⋅ Λ

𝛼
𝑚] 𝑑𝑥 𝑑𝑡

+ ∫

2𝜋

0

𝜑 (𝑥, 0) ⋅ 𝑚
0

(𝑥) 𝑑𝑥 = 0,

(74)

for all test functions 𝜑 ∈ (𝐶
∞

(𝑄
𝑇

))
3.

Theorem 12. Suppose that 𝑚
0
(𝑥) ∈ 𝐻

𝛼
(0, 2𝜋); then there

exists a weak solution to (2) with initial-boundary condition
(4) and (5) satisfying

𝑚 (𝑥, 𝑡) ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(0, 2𝜋))

⋂ 𝐶
(2𝛼−1)/(𝛼+1),(2𝛼−1)/2(𝛼+1)

(𝑄
𝑇

) ,

𝜕𝑚

𝜕𝑡
∈ 𝐿
∞

(0, 𝑇; 𝐻
−𝛼

(0, 2𝜋)) .

(75)

Proof. For a solution to the mollified equation (36), we have

∫ ∫
𝑄
𝑇

[
𝜕𝑚
𝜀

𝜕𝑡
⋅ 𝜑 + 𝜀Λ

𝛼
𝜑 ⋅ Λ
𝛼

𝑚
𝜀

+ Λ
𝛼

(𝜑 × 𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
] 𝑑𝑥 𝑑𝑡

+ ∫

2𝜋

0

𝜑 (𝑥, 0) 𝑚
0

(𝑥) 𝑑𝑥 = 0, ∀𝜑 ∈ (𝐶
∞

(𝑄
𝑇

))
3

.

(76)

By Lemmas 8 and 9,

{𝑚
𝜀

(𝑥, 𝑡)} is bounded in 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(0, 2𝜋))

⋂ 𝐶
(2𝛼−1)/(𝛼+1),(2𝛼−1)/2(𝛼+1)

(𝑄
𝑇

) ,

{
𝜕𝑚
𝜀

𝜕𝑡
(𝑥, 𝑡)} is bounded in 𝐿

∞
(0, 𝑇; 𝐻

−𝑘
(0, 2𝜋)) .

(77)

Hence 𝑚(𝑥, 𝑡) ∈ 𝐶
(2𝛼−1)/(𝛼+1),(2𝛼−1)/2(𝛼+1)

(𝑄
𝑇

). We select a
subsequence (still denoted as {𝑚

𝜀
(𝑥, 𝑡)}), such that

{𝑚
𝜀

(𝑥, 𝑡)} is weak∗ convengent to 𝑚 (𝑥, 𝑡)

in 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(0, 2𝜋)) ,

{𝑚
𝜀

(𝑥, 𝑡)} is uniformly convergent to 𝑚 (𝑥, 𝑡) in 𝑄
𝑇

, and

{
𝜕𝑚
𝜀

𝜕𝑡
(𝑥, 𝑡)} is weak∗ convengent to 𝜕𝑚

𝜕𝑡

in 𝐿
∞

(0, 𝑇; 𝐻
−𝑘

(0, 2𝜋)) .

(78)

By a theorem in [24], we have that

{𝑚
𝜀

(𝑥, 𝑡)} is strongly convengent to 𝑚 (𝑥, 𝑡)

in 𝐿
2

(0, 𝑇; 𝐿
2

(0, 2𝜋)) .

(79)

To prove that

∫ ∫
𝑄
𝑇

Λ
𝛼

(𝜑 × 𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥 𝑑𝑡

󳨀→ ∫ ∫
𝑄
𝑇

Λ
𝛼

(𝜑 × 𝑚) ⋅ Λ
𝛼

𝑚 𝑑𝑥 𝑑𝑡,

(80)
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we have to construct a commutator. Actually,

∫ ∫
𝑄
𝑇

Λ
𝛼

(𝜑 × 𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥 𝑑𝑡

= ∫ ∫
𝑄
𝑇

Λ
𝛼

(𝜑 × 𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥 𝑑𝑡

− ∫ ∫
𝑄
𝑇

(𝜑 × Λ
𝛼

𝑚
𝜀
) ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥 𝑑𝑡

= ∫ ∫
𝑄
𝑇

[Λ
𝛼

(𝜑 × 𝑚
𝜀
) − 𝜑 × Λ

𝛼
𝑚
𝜀
] ⋅ Λ
𝛼

𝑚
𝜀
𝑑𝑥 𝑑𝑡.

(81)

Similarly,

∫ ∫
𝑄
𝑇

Λ
𝛼

(𝜑 × 𝑚) ⋅ Λ
𝛼

𝑚 𝑑𝑥 𝑑𝑡

= ∫ ∫
𝑄
𝑇

[Λ
𝛼

(𝜑 × 𝑚) − 𝜑 × Λ
𝛼

𝑚] ⋅ Λ
𝛼

𝑚 𝑑𝑥 𝑑𝑡.

(82)

Denote Λ
𝛼

(𝜑 × 𝑢) − 𝜑 × Λ
𝛼

𝑢 byL
𝜑

(𝑢). To get (80), it suffices
to prove that

∫ ∫
𝑄
𝑇

L
𝜑

(𝑚
𝜀
) Λ
𝛼

𝑚
𝜀

− L
𝜑

(𝑚) Λ
𝛼

𝑚 𝑑𝑥 𝑑𝑡

= ∫ ∫
𝑄
𝑇

[L
𝜑

(𝑚
𝜀
) − L

𝜑
(𝑚)] ⋅ Λ

𝛼
𝑚
𝜀

+ ∫ ∫
𝑄
𝑇

L
𝜑

(𝑚) [Λ
𝛼

𝑚
𝜀

− Λ
𝛼

𝑚] 𝑑𝑥 𝑑𝑡

= 𝐼
1

+ 𝐼
2

󳨀→ 0, as 𝜀 󳨀→ 0.

(83)

Obviously 𝐼
2

→ 0, as 𝜀 → 0. We need to prove that 𝐼
1

→ 0,
as 𝜀 → 0. Actually, by Lemma 6, we can get

󵄩󵄩󵄩󵄩󵄩
L
𝜑

(𝑚
𝜀
) − L

𝜑
(𝑚)

󵄩󵄩󵄩󵄩󵄩𝐿2(0,2𝜋)

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝜑

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝑊̇𝛼−1,𝑝2 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝑊̇𝛼,𝑝3

󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝐿𝑝4 )

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝜑

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝐿2 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝑊̇𝛼,𝑝3

󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝐻𝛽)

≤ 𝐶
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻𝛾(0,2𝜋)
󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝐻𝛽(0,2𝜋),

(84)

where 𝑝
2
, 𝑝
3

∈ (1, +∞) are such that

1

𝑝
1

+
1

𝑝
2

=
1

2
,

1

𝑝
3

+
1

𝑝
4

=
1

2
,

0 < 𝛽 < 𝛼 < 1,
𝑝
2

𝛼𝑝
2

− 1
= 2,

𝑝
4

=
2

1 − 2𝛽
, 2 (𝛾 − 1) > 1.

(85)

Therefore 𝛾 > 𝛼 + (1/2) − (1/𝑝
3
) automatically.

By Hölder’s inequality, we can show that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫ ∫
𝑄
𝑇

Λ
𝛼

𝑚
𝜀
L
𝜑

(𝑚
𝜀

− 𝑚) 𝑑𝑥 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩Λ
𝛼

𝑚
𝜀󵄩󵄩󵄩󵄩𝐿2(𝑄

𝑇
)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻𝛾(0,2𝜋))

×
󵄩󵄩󵄩󵄩𝑚
𝜀

− 𝑚
󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻𝛽(0,2𝜋)) 󳨀→ 0, as 𝜀 󳨀→ 0.

(86)

As 𝜀 → 0 in (76), we have

∫ ∫
𝑄
𝑇

[
𝜕𝑚

𝜕𝑡
𝜑 + Λ

𝛼
(𝜑 × 𝑚) ⋅ Λ

𝛼
𝑚] 𝑑𝑥 𝑑𝑡

+ ∫

2𝜋

0

𝜑 (𝑥, 0) ⋅ 𝑚
0

(𝑥) 𝑑𝑥 = 0,

(87)

for all test functions 𝜑 ∈ (𝐶
∞

(𝑄
𝑇

))
3.
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